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a b s t r a c t

This article addresses the problem of parametric time-domain identification and dynamic

analysis for time-varying (TV) mechanical structures under unobservable random excitation.

The methods presented are based on time-dependent autoregressive moving average

(TARMA) models, and are classified according to the mathematical structure imposed on the

and deterministic parameter evolution. The features and relative merits of each class are

outlined. A representative method from each is then assessed through its application to the

identification and dynamic analysis of a laboratory TV structure consisting of a beam with a

mass moving on it. The results are mutually compared and contrasted to those obtained

through ‘‘frozen-configuration’’ (multiple experiment) baseline identification.

& 2009 Elsevier Ltd. All rights reserved.
Important Conventions and Symbols

Bold-face upper/lower case symbols designate matrix/column-vector quantities, respectively.
Matrix transposition is indicated by the superscript T.
A functional argument in parentheses designates function of a real variable; for instance xðtÞ is a function of analog time t 2 R.
A functional argument in brackets designates function of an integer variable; for instance x½t� is a function of normalized

discrete time ðt ¼ 1;2; . . .Þ. The conversion from discrete normalized time to analog time is based on ðt � 1ÞTs, with Ts

standing for the sampling period.
A time instant used as superscript to a function indicates the set of values of the function up to that time instant; for

instance xt9fx½i�; i ¼ 1;2; . . . ; tg.
A hat designates estimator/estimate of the indicated quantity; for instance ĥ is an estimator/estimate of h.
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Nomenclature

ai½t�, ci½t� AR, MA time-dependent parameters
a, c, s AR, MA, innovations variance projection coef-

ficient vectors (FS-TARMA models)
A½B; t�, C½B; t� AR, MA time-dependent polynomial op-

erators
B backshift operator ðBkx½t�9x½t � k�Þ

e½t� model innovations sequence
F functional space
Gj½t� j-th basis function
na, nc AR, MA model orders
N signal length in samples
pa, pc , ps AR, MA, innovations variance functional sub-

space dimensionality (FS-TARMA models)
Sðo; tÞ time-dependent power spectral density
Ts sampling period

x½t� vibration signal (discrete time)
xðtÞ vibration signal (continuous time)
xN data set ðx½t�; t ¼ 1;2; . . . ;NÞ

Greek symbols

zi½t� time-dependent i-th damping ratio
h½t� AR/MA parameter vector at time t

ht set of AR/MA parameter vectors at times
1; . . . ; t

! AR/MA projection coefficient vector (FS-TAR-
MA models)

k constraint equation order (SP-TARMA models)
l forgetting factor (UPE-TARMA models)
s2

e ½t� innovations sequence variance
oni
½t� time-dependent i-th natural frequency in rad/s
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1. Introduction

Time-varying (TV), or else nonstationary, mechanical structures are those characterized by (mass, stiffness, power
dissipation) properties that vary with time. Prime examples include crane and similar structures, robotic and other variable
configuration structures, railway bridges, rocket and aircraft structures, rotating structures, vehicle suspensions with
adjustable characteristics, deployable space structures, and so on. Continuously variable configuration structures, that is
structures with geometrical characteristics varying with time, constitute an important subclass of TV structures.

TV structures are often subject to random excitation producing random vibration responses. In contrast to time-
invariant (TI) structures which produce vibration responses with TI (stationary) statistical characteristics, the responses of
TV structures are characterized by TV (nonstationary) statistical characteristics [1, Ch. 12, 2–6]. Nonstationary responses
may be also produced by TI structures subject to nonstationary excitation (such as earthquakes and atmospheric
turbulence), or by structures with inherent nonlinear dynamics. Although these cases may be also treated by the methods
of this article, our main focus will be on TV structures.

In many cases it is useful to identify a model of a TV structure which may be subsequently used for dynamic analysis
[7–11], for the refinement of analytical models [12], for simulation [13], for damage detection and identification [14–16], as
well as for prediction and control [17]. Oftentimes, this identification has to be based on vibration response-only
measurements (the output-only problem). This is so because the force excitation may be due to various sources that are
difficult or impossible to precisely isolate and measure (this is the case of oscillations in a crane system, a rocket, a railway
bridge, and so on). The focus of this article is precisely on this case, although the methods may be extended to the
observable excitation case as well (for instance see [12,15,18]). A recent survey on the topic is Ref. [2], where the methods
surveyed are compared by means of a Monte Carlo study based on a TV suspension model.

The mathematical models for the output-only identification of TV structures may be of the parametric or nonparametric

types. Attention is presently restricted to the former category, which is known to offer a number of potential advantages
compared to the category of nonparametric methods [2,5,7,8]. These include (i) representation parsimony, (ii) improved
accuracy, (iii) improved frequency resolution, (iv) improved tracking of the time-varying dynamics, and (v) flexibility in
analysis, as parametric methods are capable of directly capturing the underlying dynamics responsible for the time-varying
behavior. The reader may consult references such as [5,19,20] for nonparametric methods.

Parametric mathematical models are of the time-dependent autoregressive moving average (TARMA) type or corresponding
state space forms [10]. TARMA models resemble their conventional, stationary ARMA counterparts [21, p. 53], with the
significant difference being that they allow their parameters to depend on time [2,8,22–25]. Depending on the nature of the
mathematical structure imposed on the time evolution of their parameters, TARMA models may be classified as unstructured
parameter evolution, stochastic parameter evolution, and deterministic parameter evolution.

Unstructured parameter evolution TARMA (UPE-TARMA) models impose no mathematical structure on the time evolution
of their parameters, which are thus free to change with time. Such a model is thus directly parameterized in terms of its TV
parameters. As the complete description of a TV structure requires knowledge of the model parameters at each time
instant, UPE-TARMA models are characterized by low parsimony (low model parametrization economy) and are mainly
capable of tracking slow evolutions in the dynamics. Due to their simplicity and ease of use, they are frequently used in
practice (for instance see [24–27]).

The class of stochastic parameter evolution TARMA models impose stochastic structure on the time evolution of their
parameters. The latter are thus assumed to be autocorrelated random variables allowed to change with time, but with their



ARTICLE IN PRESS

M.D. Spiridonakos et al. / Journal of Sound and Vibration 329 (2010) 768–785770
evolution being subject to certain smoothness constraints. These are often referred to as smoothness priors constraints, and
the models are thus referred to as smoothness priors TARMA (SP-TARMA) models. SP-TARMA models achieve low parsimony,
as knowledge of the model parameters at each time instant is still required. At the same time, they may still leave an
unnecessarily high number of degrees of freedom in parameter evolution. SP-TARMA models have been used primarily for
the modelling and analysis of earthquake ground motion signals (for instance see [6,28,29]).

Finally, deterministic parameter evolution TARMA models impose deterministic structure on the time evolution of their
parameters. This is achieved by postulating model parameters as deterministic functions of time belonging to specific
functional subspaces [2,7,14,22, Chapter 6,23,30]. These models are specifically referred to as functional series TARMA

(FS-TARMA) models. FS-TARMA models achieve high parsimony, as they use a limited number of parameters. Through
proper selection of the functional subspaces, FS-TARMA models may represent various types of evolution in the dynamics,
including slow, fast or even discontinuous evolutions [7,8,13,17,22, p. 215, 31].

FS-TAR/TARMA models have been used in various structural dynamics related applications, such as the modelling and
simulation of earthquake ground motion [13,32], vibration analysis in rotating machinery [7], the modelling and prediction
of power consumption in an automobile active suspension [17], the modelling and analysis of simulated robot vibration [8],
and the modelling and vibration analysis of a bridge with heavy vehicle type laboratory structure [11].

The aim of the present study is twofold: (i) to provide a concise overview of the techniques of time-dependent ARMA
methods for TV structural identification and (ii) to present an application and comparative assessment of the methods
through a case study, pertaining to the modelling and dynamic analysis of the nonstationary random vibration of a time-
varying bridge with heavy vehicle type laboratory structure. Comparisons with a ‘‘frozen-configuration’’ baseline model
based on multiple stationary experiments are also made.

The remainder of this paper is organized as follows: the mathematical description of a TV and a continuously variable
configuration structure and their connection are discussed in Section 2. The parametric models for the output-only
identification of TV structures are presented in Section 3, while in Section 4 the model parameter estimation and model
structure selection problems are considered. In Section 5 the TV (continuously variable configuration) structure under
study is presented. The identification results and the dynamic analysis of the structure based on the identified TARMA
models are in the focus of Sections 6 and 7, respectively. Finally the conclusions of the study are summarized in Section 8.

2. Time-varying and continuously variable configuration structures and their response

A lumped parameter model of a TV viscously damped structure is provided by the ordinary differential equation (ODE)

MðtÞ €xðtÞ þ CðtÞ _xðtÞ þ KðtÞxðtÞ ¼ f ðtÞ; t 2 ½t0; tf � (1)

with t designating analog time, xðtÞ the structural displacement response vector, and f ðtÞ the force excitation vector. MðtÞ,
CðtÞ, and KðtÞ stand for the TV mass, viscous damping, and stiffness matrices, respectively, which are responsible for the TV
nature of the structure.

By ‘‘freezing’’ the mass, viscous damping, and stiffness matrices successively at each time instant t ðt 2 ½t0; tf �Þ, one may
associate a noncountable sequence of TI structures with the TV structure of Eq. (1). Each such ‘‘frozen’’ structure is described
by the ODE

MðtÞ €xðtÞ þ CðtÞ _xðtÞ þ KðtÞxðtÞ ¼ f ðtÞ for all t (2)

which is TI for the selected time instant t. This sequence of TI structures may be thought of as a ‘‘frozen-time’’ representation

of the TV structure. The knowledge of the frozen-time representation of a TV structure is equivalent to knowledge of the TV
structure and vice versa, as it provides the characteristics that the structure would have if it were indeed frozen at each
time instant.

As already noted, continuously variable configuration structures characterized by geometrical characteristics that vary
with time, form an important subclass of TV structures. Defining a configuration vector rðtÞ that fully describes the geometry
of the continuously variable configuration structure at each time instant, the structure matrices of Eq. (1) become functions
of rðtÞ, that is MðtÞ �MðrðtÞÞ, CðtÞ � CðrðtÞÞ, and KðtÞ � KðrðtÞÞ.

By analogy to the frozen-time representation of a TV structure, the ‘‘frozen-configuration’’ representation of a
continuously variable configuration structure may be thought of as consisting of a noncountable sequence of TI structures
obtained by ‘‘freezing’’ the configuration vector successively at each time instant t ðt 2 ½t0; tf �Þ. Designating the frozen-
configuration vector rðtÞ ¼ q, each such frozen structure is described by the ODE

MðqÞ €xðtÞ þ CðqÞ _xðtÞ þ KðqÞxðtÞ ¼ f ðtÞ for all t (3)

and is TI for the selected q. Obviously, the frozen-time and frozen-configuration representations are equivalent for a
continuously variable configuration structure with known time variation of its configuration vector.

A practically important feature of continuously variable configuration structures is that it is often possible to obtain
access to a (configuration-vector-discretized) version of its frozen-configuration representation by ‘‘freezing’’ the
configuration vector at selected discrete values (say q1;q2; . . . ;qM). The dynamics of the structure for each value of q
are described by Eq. (3), and identification of its frozen-configuration representation may be based on data sets obtained
from M distinct experiments. This procedure is referred to as baseline identification and is used in the present article as well.
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Its advantage is twofold: conventional TI identification is used, and the achievable accuracy may be high due to the
availability of (large) data sets from M experiments. Yet, its disadvantage is exactly the need for running M distinct
experiments and identification cycles. Moreover, TI identification does not directly provide information on the actual
nonstationary vibration response.

The above concepts and ideas obviously extend to the discrete-time case. The ODE representation of Eq. (1) is then
converted into a vector second-order difference equation. When the single excitation single vibration response is
considered, the (partial) dynamics may be described by a scalar difference equation

x½t� þ
Xna

i¼1

ai½t�x½t � i� ¼
Xnc

i¼0

ci½t�f ½t � i�; t ¼ 1; . . . ;N (4)

in which t designates normalized discrete-time (absolute time normalized by the sampling period), f ½t�, x½t� the discretized
versions of the scalar force and observed vibration displacement response, respectively, ai½t�, ci½t� the discrete-time TV
parameters, na, nc the equation orders, and N the signals’ length in samples. The expressions for the discrete-time frozen-
time and frozen-configuration representations are analogous to their continuous-time counterparts.

3. Parametric models for the identification of time-varying structures

Parametric models typically are of the TARMA type or proper extensions (for instance TARMAX models—that is TARMA
models with exogenous excitation, which additionally account for measurable force excitations). A TARMAðna;ncÞ model,
with na, nc designating its autoregressive (AR) and moving average (MA) orders, respectively, is thus of the form [compare
with Eq. (4)]

x½t� þ
Xna

i¼1

ai½t�x½t � i�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
AR part

¼ e½t� þ
Xnc

i¼1

ci½t�e½t � i�;|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
MA part

e½t��NIDð0;s2
e ½t�Þ (5)

with t designating normalized discrete time, x½t� the nonstationary vibration response signal, e½t� an unobservable
uncorrelated (white) nonstationary innovations, or else residual signal characterized by zero mean and TV variance s2

e ½t�,
and ai½t�, ci½t� the model’s TV AR and MA parameters, respectively. NIDð�; �Þ stands for normally independently distributed
random variables with the indicated mean and variance.

As already indicated, depending on the nature of the mathematical structure imposed on the time evolution of their
parameters, TARMA models may be classified as unstructured parameter evolution, stochastic parameter evolution, and
deterministic parameter evolution.

3.1. Unstructured parameter evolution TARMA models

Unstructured parameter evolution TARMA (UPE-TARMA) models impose no mathematical structure on the time
evolution of their parameters, which are thus free to change with time. Such a model is thus directly parameterized in
terms of its TV parameters ai½t�; ci½t�;s2

e ½t�, and a specific model structure, sayMUPE, is defined by the representation orders
na, nc , that is

MUPE9fna;ncg (6)

3.2. Stochastic parameter evolution TARMA models

Stochastic parameter evolution TARMA models impose stochastic structure on the time evolution of their parameters.
The latter are thus assumed to be autocorrelated random variables allowed to change with time, but with their evolution
being subject to certain smoothness constraints. These are often referred to as smoothness priors constraints, and the models
are thus referred to as smoothness priors TARMA (SP-TARMA) models. The smoothness priors constraints typically are
stochastic difference equations of the forms

Dkai½t� ¼ wai
½t�; wai

½t��NIDð0;s2
wai
½t�Þ (7a)

Dkci½t� ¼ wci
½t�; wci

½t��NIDð0;s2
wci
½t�Þ (7b)

acting on each one of the AR and MA parameters. In these expressions k designates the difference equation order, Dk the
k�th order difference operator (Dk9ð1� BÞk; where B the backshift operator Bix½t�9x½t � i�) and wai

½t�;wci
½t� zero-mean,

uncorrelated (white) and mutually uncorrelated, and uncrosscorrelated with e½t�, Gaussian sequences with potentially TV
variances. The degree of smoothness of the time evolution of each parameter is controlled by the corresponding
white sequence variance, and increases for decreasing variance. A specific SP-TARMA model structure is defined by the
model orders na, nc and the smoothness constraints order k (the latter being typically assumed to be common for all AR and
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MA parameters):

MSP9fna;nc ;kg (8)

3.3. Deterministic parameter evolution TARMA models

Deterministic parameter evolution TARMA models impose deterministic structure on the time evolution of their
parameters. This is achieved by postulating model parameters as deterministic functions of time belonging to specific
functional subspaces [2,7,14,22, Ch. 6, 23,30]. These models are specifically referred to as functional series TARMA (FS-TARMA)
models. Their AR and MA parameters, as well as their innovations variance, are thus expanded on the selected functional
subspaces

FAR9fGbað1Þ½t�; . . . ;GbaðpaÞ
½t�g; FMA9fGbc ð1Þ½t�; . . . ;Gbc ðpc Þ

½t�g

Fs2
e
9fGbsð1Þ½t�; . . . ;GbsðpsÞ

½t�g

Each functional subspace consists of a set of orthogonal basis functions selected from a suitable family (such as a
polynomial family, a trigonometric family, and so on). The AR, MA, and variance subspace dimensionalities are indicated as
pa, pc , ps, respectively, while the indices baðiÞ ði ¼ 1; . . . ; paÞ, bcðiÞ ði ¼ 1; . . . ; pcÞ and bsðiÞ ði ¼ 1; . . . ; psÞ designate the specific
basis functions of a particular family that are included in each subspace. The TV AR and MA parameters and the innovations
variance of an FS-TARMAðna;ncÞ½pa ;pc ;ps �

model are then expressed as

ai½t�9
Xpa

j¼1

ai;jGbaðjÞ½t�; ci½t�9
Xpc

j¼1

ci;jGbc ðjÞ½t�; s2
e ½t�9

Xps

j¼1

sjGbsðjÞ½t�

with ai;j, ci;j, and sj designating the AR, MA, and innovations variance, respectively, coefficients of projection. An FS-TARMA
model is thus parameterized in terms of its projection coefficients ai;j; ci;j; sj, while a specific model structureMFS is defined
by the model orders na, nc , and the functional subspaces FAR;FMA;Fs2

e
.

MFS9fna;nc ;FAR;FMA;Fs2
e
g (9)

FS-TARMA models achieve high parsimony, as they use a limited number of parameters. Through proper selection of the
functional subspaces, FS-TARMA models may represent various types of evolution in the dynamics, including slow, fast or
even discontinuous evolutions [7,8,13,17,22, p. 215, 31].

4. The identification problem and methods

Given a single, N-sample-long, nonstationary vibration response signal xN9fx½1�; . . . ; x½N�g and a selected model class
(unstructured, stochastic, or deterministic parameter evolution), the TARMA identification problem may be posed as the
problem of selecting the corresponding model structure M, the model AR/MA parameter vector h½t�9½a1½t� . . . ana ½t�^
c1½t� . . . cnc ½t��

T and the innovations variance s2
e ½t� that best ‘‘fit’’ the observed response. Model ‘‘fitness’’ may be understood in

various ways. In all of them a key role is assigned to the model predictive ability, that is the ability of a specific model in
providing accurate one-step-ahead predictions.

Based on Eq. (5) it is straightforward to verify that the minimum mean square error one-step-ahead prediction x̂½tjt � 1�
of the signal value x½t� made at time t � 1 is equal to

x̂½tjt � 1� ¼ �
Xna

i¼1

ai½t�x½t � i� þ
Xnc

i¼1

ci½t�e½t � i� (10)

(note that the hat generally designates estimator/estimate of the indicated quantity). Comparing Eq. (10) with the TARMA
model of Eq. (5) it is also straightforward to verify that the one-step-ahead prediction error ê½tjt � 1�9x½t� � x̂½tjt � 1� is
equal to e½t�.

Common ‘‘fitness’’ functions include the residual sum of squares (RSS), the Gaussian negative log-likelihood function,
and the Bayesian information criterion (BIC) defined as [21, pp. 200–202, 33, pp. 505–507]

RSS ¼
XN

t¼1

e2½t� (11)

�lnLðxNÞ ¼
N

2
ln2pþ 1

2

XN

t¼1

lnðs2
e ½t�Þ þ

e2½t�

s2
e ½t�

� �
(12)

BIC ¼ �lnLðxNÞ þ
lnN

2
d (13)
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respectively. In the BIC expression d designates the number of independently estimated model parameters. Also note that
the BIC consists of the superposition of the negative log-likelihood function and a term that penalizes the model size
(complexity), thus discouraging model overfitting. For this reason it may be used for both parameter estimation and model
structure selection. Nevertheless, it may not be formally used within the context of UPE-TARMA and SP-TARMA models, the
parameters of which are (recursively) updated at each time instant. In principle, a model is thus identified as that
minimizing a selected ‘‘fitness’’ function.

For purposes of practicality and conceptual simplicity, the identification problem is commonly distinguished into two
subproblems: (a) model parameter estimation and (b) model structure selection. Model parameter estimation is subsequently
discussed first, as it is an essential part of model structure selection as well.

4.1. Model parameter estimation

Model parameter estimation refers to the determination, for a given model form and structure, of the AR/MA parameter
vector h½t� and the residual variance s2

e ½t� at all time instants t ¼ 1; . . . ;N.

4.1.1. Unstructured parameter evolution TARMA models

The estimation of UPE-TARMA models is often based on recursive methods, which update the parameter vector estimate
each time a new signal sample becomes available [25,33, ch. 11, 34,35]. Presently, the recursive maximum likelihood (RML)
algorithm [33, p. 372] is used for UPE-TARMA model parameter estimation and the corresponding method is thus referred
to as RML-TARMA. A summary of the method is provided in Table 1. The quantity l of these equations is referred to as the
forgetting factor; its selection is critical and represents the basic tradeoff between tracking ability in the dynamics and
achievable parameter accuracy.

Following parameter estimation, the innovations (one-step-ahead prediction error) variance s2
e ½t� may be estimated by

using a window of length 2K þ 1, centered at the time instant t, that slides over the prediction error (residual) sequence, that is

ŝ2
e ½t� ¼

1

2K þ 1

XtþK

t¼t�K

ê
2
½tjt� 1� (14)

4.1.2. Stochastic parameter evolution TARMA models

Model parameter estimation for the SP-TARMA models of Eq. (7) may be developed by setting the latter, along with the
TARMA model expression of Eq. (5), into linear state space form.

It can be shown that in the general (k�th order) smoothness constraint SP-TARMAðna;ncÞ model is expressed as [2,6]

z½t� ¼ F � z½t � 1� þ G �w½t�; x½t� ¼ hT
½t; zt�1� � z½t� þ e½t� (15a)

(15b)

with:

h½t; zt�1�9½�x½t � 1� . . .� x½t � na�^e½t � 1; zt�1� . . . e½t � nc ; z
t�nc �^0 . . .0�Tk�ðnaþnc Þ�1 (15c)

z½t�9½a1½t� . . . ana ½t� c1½t� . . . cnc ½t�^ . . . ^a1½t � kþ 1� . . . ana ½t � kþ 1� c1½t � kþ 1� . . . cnc ½t � kþ 1��Tk�ðnaþnc Þ�1 (15d)

w½t�9½wa1
½t� wa2

½t� . . .wana
½t� ^ wc1

½t� wc2
½t� . . .wcnc

½t��Tðnaþnc Þ�1 (15e)
Table 1
RML-TARMA estimation.

Estimator update ĥ½t� ¼ ĥ½t � 1� þ k½t�ê½tjt � 1�

Prediction error ê½tjt � 1� ¼ x½t� � x̂½tjt � 1� ¼ x½t� � /T
½t�ĥ½t � 1�

Gain
k½t� ¼

P½t � 1�w½t�

lþwT
½t�P½t � 1�w½t�

’’Covariance’’ update
P½t� ¼

1

l
P½t � 1� �

P½t � 1�w½t�wT
½t�P½t � 1�

lþ wT
½t�P½t � 1�w½t�

 !
Filtering w½t� þ ĉ1½t � 1�w½t � 1� þ � � � þ ĉ nc ½t � 1�w½t � nc � ¼ /½t�

A-posteriori error ê½tjt� ¼ x½t� �/T
½t�ĥ½t�

/½t�9½�x½t � 1� . . .� x½t � na�^ê½t � 1jt � 1� . . . ê½t � nc jt � nc ��
T

Initialization: ĥ½0� ¼ 0, P½0� ¼ aI with a designating a ‘‘large’’ positive number. The signal and a-posteriori error initial values are set to zero.
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zt designating a vector containing all state vectors z½t� up to time t, and F, G matrices of the following forms (depending
upon the value of k):

k ¼ 1 : F9Inaþnc ; G9Inaþnc

and so on, where In and 0n designate the n� n dimensional identity and zero matrices, respectively. As indicated by the
above expressions, z½t� forms a state vector [Eq. (15a)], whereas w½t� consists of the scalar innovations entering in each
constraint expression.

The second of Eq. (15a) is a nonlinear function of z½t�. SP-TARMA parameter estimation may be then based on an
extended least squares (ELS)-like algorithm, by replacing the theoretical prediction errors e½t; zt� in Eq. (15c) with their
respective posterior estimates ê½tjt� (which are then treated as measurements). SP-TARMA parameter estimation may be
then achieved via the ordinary Kalman filter (KF) algorithm with:

h½t� ¼ ½�x½t � 1� . . .� x½t � na�^ê½t � 1jt � 1� . . . ê½t � ncjt � nc�^0 . . .0�Tk�ðnaþnc Þ�1

ê½tjt� ¼ x½t� � hT
½t� � ẑ½tjt� (16)

A summary of a normalized version of the method, including a final backward smoothing phase, is provided in Table 2. It
should be noted that the ratio n½t� of the constraint model innovations variance s2

w½t� (assumed to be common for all
constraints) over the residual variance s2

e ½t�, which is for simplicity assumed to be constant ðn½t� ¼ nÞ in the rest of the paper,
constitutes a user selected design parameter that controls the equivalent memory of the estimation algorithm (similar to
the forgetting factor in the RML-TARMA estimation method). Indeed, n-0 implies a locally deterministic (polynomial)
parameter evolution, while n-1 implies no structure on parameter evolution. Of course, it is also possible to optimize
(estimate) n based on a suitable criterion (such as minimization of the RSS).

Innovations variance estimation may be achieved either via the scheme described in Ref. [29], or through that of the
previous (RML-TARMA) method [Eq. (14)].

4.1.3. Deterministic parameter evolution TARMA models

Parameter estimation for FS-TARMA models consists of determining the AR/MA and innovations variance projection
coefficient vectors

!9½aT^cT�Tðnapaþncpc Þ�1 and s9½s1 . . . sps �
T
ps�1 (17)
Table 2
Kalman filter and backward smoothing for the estimation of SP-TARMA models (normalized form).

Time update (prediction)

State prediction ẑ ½tjt � 1� ¼ Fẑ ½t � 1jt � 1�

Prediction error ê½tjt � 1� ¼ x½t� � hT
½t�ẑ ½tjt � 1�

‘‘Covariance’’ update ~P ½tjt � 1� ¼ F ~P ½t � 1jt � 1�FT
þ G ~Q ½t�GT

Observation update (filtering)

Gain k½t� ¼ ~P ½tjt � 1�h½t�ðhT
½t� ~P ½tjt � 1�h½t� þ 1Þ�1

State update ẑ ½tjt� ¼ ẑ ½tjt � 1� þ k½t�ê½tjt � 1�

‘‘Covariance’’ update ~P ½tjt� ¼ ðI � k½t�hT
½t�Þ ~P ½tjt � 1�

Smoothing

A½t� ¼ ~P ½tjt�FT ~P
�1
½t þ 1jt�

ẑ ½tjN� ¼ ẑ ½tjt� þ A½t�ðẑ ½t þ 1jN� � ẑ ½t þ 1jt�Þ
~P ½tjN� ¼ ~P ½tjt� þ A½t�ð ~P ½t þ 1jN� � ~P ½t þ 1jt�ÞAT

½t�

~P ½tjt�9
P½tjt�

s2
e ½t�

; ~P ½tjt � 1�9
P½tjt � 1�

s2
e ½t�

; ~Q ½t�9
Q ½t�

s2
e ½t�
¼
s2

w½t�

s2
e ½t�|fflffl{zfflffl}
n½t�

Inaþnc

Initialization: ẑ ½0j0� ¼ 0, ~P ½0j0� ¼ aI with a designating a ‘‘large’’ positive number.
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Fig. 1. Two multistage methods for FS-TARMA model identification.
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respectively, with

a9½a1;1 . . . a1;pa
^ . . . ^ana ;1 . . . ana ;pa �

T
ðnapaÞ�1; c9½c1;1 . . . c1;pc

^ . . . ^cnc ;1 . . . cnc ;pc �
T
ðncpc Þ�1

Estimation of the parameter vector ! may be based on a prediction error criterion consisting of the sum of squares of the
model’s one-step-ahead prediction errors (RSS):

!̂ ¼ argmin
!

XN

t¼1

e2½t;!� (18)

It is obvious, that the residual e½t;!� depends nonlinearly on the MA projection coefficient vector c, implying that
minimization of a prediction error criterion constitutes a nonquadratic problem that has to be tackled through nonlinear
optimization techniques. This necessitates the use of rather accurate initial parameter values, which may be obtained
through linear multistage methods (recursive methods may be also used).

Linear multistage methods attempt to approximate the original prediction error problem by a sequence of subproblems
that may be tackled by means of linear techniques. Two such methods, the two stage least squares (2SLS) method [2,36] and
the polynomial-algebraic (P-A) method [30] are outlined in Fig. 1.

Finally, the estimation of the innovations variance projection coefficients may be achieved by the following procedure.
An initial, nonparametric, estimate of the innovations variance may be based on a sliding time window that uses the
estimated residual series e½t; !̂ � [as in Eq. (14)], and an estimate of the projection coefficient vector s may be subsequently
obtained by fitting the estimated variance ŝ2

e ½t� to a selected functional subspace Fs2
e
. This leads to the overdetermined set
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of equations

ŝ2
e ½t� ¼

Xps

j¼1

sjGbsðjÞ½t� ¼ gT½t�s (19)

with g½t�9½Gbsð1Þ½t� Gbsð2Þ½t� . . .GbsðpsÞ
½t��Tps�1, which is then solved in a least squares sense.

4.2. Model structure selection

Model structure selection refers to the estimation of the proper model structure within a selected model class. The
model structure includes the AR and MA orders na and nc , respectively, as well as additional structural parameters that
depend on the particular model class considered [see Eqs. (6), (8), and (9) that define the model structureMUPE=MSP=MFS

for each class].
A search scheme for locating the best ‘‘fitness’’ model, is subsequently discussed for the most general case of FS-TARMA

models which have the ‘‘richest’’ structure and are characterized by the maximum number of ‘‘structural’’ parameters. The
key characteristic of this scheme is the approximate decomposition of the ‘‘structure’’ selection problem into two
subproblems: (i) model order ðna;ncÞ selection and (ii) functional subspace ½pa; pc ; ps;baðjÞ;bcðjÞ; bsðjÞ� selection.

Phase I: model order selection: In order to ‘‘decouple’’ the selection of the model orders from that of functional
subspaces, their interaction has to be minimized. This may be achieved by ensuring functional subspace adequacy by
initially adopting an ‘‘extended’’ (high dimensionality) and ‘‘complete’’ (in the sense of including all consecutive functions
up to the subspace dimensionality) functional subspaces. Using them, model order selection may be achieved through trial
and error techniques based on the optimization of the fitness function.

Phase II: functional subspace selection: The aim of this phase is the optimization of the functional subspaces, in the
sense of increasing the representation parsimony without significantly reducing model accuracy. This may be
accomplished through trial and error techniques detecting ‘‘excess’’ basis functions by using either the fitness function
or the aggregate parameter deviation (APD). The latter constitutes a measure for the aggregate deviation of the parameter
trajectories of the current model from those of the initial (phase I) model

APD9
Xna

i¼1

Dai þ
Xnc

i¼1

Dci þDs (20)

with

Dqi9

PN
t¼1 jq

3

i ½t� � qi½t�jPN
t¼1 jq

3

i ½t�j

in which q3

i ½t� designates the initial model AR/MA/innovations variance parameter trajectories and qi½t� the respective
trajectories of the currently considered model. Basis functions may be thus successively dropped (one at a time) as long as
no significant changes in the fitness function or in the APD are produced.

A specific basis function family (such as a proper polynomial or trigonometric family) is generally pre-selected
(although not the specific functions that define the model’s functional subspaces). This pre-selection may be based on
various factors, including physical insight, prior knowledge, or experience. Yet, it should be stressed that, although the pre-
selection does affect the final identified model structure (thus the model ‘‘size’’) and parameters, it does not critically affect
model accuracy (also see [37] in this context). The reason is that essentially any functional family may be used for
approximating any given curve with arbitrary accuracy as long as a sufficient number of functions is used [38, p. 77]. In
practice a good strategy is to use two or more families, obtain the best (according to the selected ‘‘fitness’’ function) under
each one, have them properly validated, and finally select the globally optimum (best) model.

A few words are finally in order regarding model validation: any identified model should be normally validated.
Although such validation may be based on various criteria, which may generally depend on the model’s intended use, the
Gaussianity and, in particular, the whiteness of the identified model’s one-step-ahead prediction error (residual) sequence
are parts of standard validation procedures. Due to the TV nature of the model residual variance, the usual residual
whiteness tests are not applicable in the present case. Yet, a simple test that may be applied is the residual sign test—see
Refs. [2,39, pp. 192–198].

5. The laboratory time-varying structure and preliminary analysis

The laboratory TV structure is shown in Fig. 2. It is a bridge with heavy vehicle type structure consisting of a steel beam
of dimensions 2670� 50� 12 mm ðL�W � HÞ, clamped close to its both ends on vertical stands, and a steel cylindrical
mass of dimension 52:5� 75:0 mm ðR� HÞ sliding on it (being pulled by a DC motor with constant speed u). As the ratio of
the two masses is significant ðm=M � 0:4Þ, the structure is clearly TV, with the rate of variation depending on the selected
speed u. Evidently, the structure belongs to the subclass of continuously variable configuration structures, and the
configuration vector may be defined as pointing at the moving mass position. This structure has been used in a previous
study by employing FS-TARMA models [11].
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moving mass 2670 mm

(u ~ 33.4 mm/s)

DC motor

accelerometer

321

Exciter

Conditioner DAQ PC

Fig. 2. The laboratory TV structure. A bridge with heavy vehicle type structure consisting of a steel beam, clamped close to its both ends on vertical

stands, and a cylindrical mass sliding on it at a selected speed: (a) schematic diagram and (b) photo of the experimental setup [11].
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The beam is subject to zero-mean, Gaussian, random force excitation vertically exerted through an electromechanical
shaker (MB Dynamics Modal Exciter 50A, max load 225 N) equipped with a stinger. The resulting beam vibration is
measured at three selected locations [Fig. 2(a); locations 1–3] by piezoelectric accelerometers (PCB 352A10 ICP
accelerometers, frequency range 0.003–10 kHz, sensitivity �1:052 mV=m=s2), although only that at location 3 is presently
used. The measured vibration signals are conditioned and subsequently driven into a 20–42 SigLab data acquisition module
(featuring four 20-bit simultaneously sampled A/D, two 16-bit D/A channels, and analog anti-aliasing filters).

In a single experiment the cylindrical mass traverses the beam (from left to right) once, at a constant speed of
u ¼ 33:4 mm=s. At this speed the structure may be characterized as relatively slowly TV. The vertical vibration
(acceleration) signal is sampled at fs ¼ 128 Hz and is N ¼ 10;113 samples (79.0078 s) long. The study focuses on the
4–60 Hz frequency range, hence the signal is digitally bandpass filtered.

The obtained response signal is shown in Fig. 3(a) and is evidently variance nonstationary. Nonparametric
time–frequency analysis based on the short-time Fourier transform (STFT; 512-sample-long moving Hamming data
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Fig. 3. The nonstationary vibration response and preliminary analysis: (a) the vibration response signal (sampling frequency fs ¼ 128 Hz, signal length

N ¼ 10;113 samples or 79.0078 s), (b) 2D plot of the non-parametrically obtained TV PSD estimate (STFT employing a 512-sample-long moving Hamming

data window advanced by one sample each time), and (c) 3D plot of the non-parametrically obtained TV PSD estimate.
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window advanced by one sample each time) yields the TV power spectral density (PSD) function of Figs. 3(b) and (c).
Evidently, the structure is characterized by three TV vibration modes (three natural frequencies) and the response signal is
nonstationary in terms of its spectral content as well.
6. Output-only identification results

Model order estimation, which is the part of model structure selection shared by all parametric methods, is based on the
successive identification of TARMAðn;nÞ models of orders n ¼ 2; . . . ;12 and the optimization of a proper ‘‘fitness’’
function—specifically the RSS in the RML-TARMA and SP-TARMA cases, and the BIC in the FS-TARMA case.

In the RML-TARMA case the RSS leads to a UPE-TARMA(8,8) model estimated with forgetting factor l ¼ 0:9905 and
initial covariance matrix 104I. Note that this result is optimized with respect to the forgetting factor (an exhaustive search
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has been implemented). Furthermore, in order to reduce the effects of arbitrary initial conditions in the estimation, three
sequential passes (forward, backward, and final forward) are executed over the entire data record.

In the SP-TARMA case and for each estimated model, three possible orders are considered for the smoothness priors
constraints, namely k ¼ 1;2;3, while optimization (of the RSS) with respect to ratio of the smoothness priors constraints
innovations variance over the residual variance n is also carried out. Like in the RML-TARMA case, three sequential passes
(forward, backward, and a final forward) are executed over the entire data record, while a final backward smoothing
algorithm is also applied. For the initialization of the KF algorithm the covariance matrix is set to 104I. The k ¼ 1;2
selections provide reasonable results, with almost identical RSS values for large model orders (na;nc47; see Fig. 4). Yet, the
k ¼ 1 selection leads to somewhat increased variability in the TV natural frequency and PSD estimates. The k ¼ 3 selection
leads to numerical problems as the obtained n is very small ð10�16

Þ. Based on the above, the selected model is
SP-TARMA(8,8) with k ¼ 2 and n̂ ¼ 2:757� 10�11.

In the FS-TARMA case functional bases spanned by trigonometric functions of the form

G0½t� ¼ 1; G2k�1½t� ¼ sin
kpðt � 1Þ

N � 1

� �
; G2k½t� ¼ cos

kpðt � 1Þ

N � 1

� �
with t ¼ 1; . . . ;N and k ¼ 1;2; . . . are employed. Their selection is motivated by the nonparametric estimates of Figs. 3(b)
and (c). Model order selection is achieved using phase I of the search scheme described in Section 4.2, the BIC, and an
extended and complete functional subspace of dimensionality 21 ðpa ¼ pc ¼ ps ¼ 21Þ. An FS-TARMA ð8;8Þ½21;21;21� model is
thus initially selected as adequate [see Fig. 5(a)]. Functional subspace selection is subsequently pursued based on phase II
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Fig. 5. FS-TARMA model structure selection: (a) AR/MA order selection based on the BIC using an extended and complete functional subspace
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Fig. 4. SP-TARMA model structure selection. AR/MA order and smoothness constraints order selection based on the RSS/SSS function.
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and the APD criterion combined with the backward procedure. This leads to the AR/MA functional subspaces [Fig. 5(b)]

FAR ¼ fG0½t�; . . . ;G10½t�g; FMA ¼ fG0½t�; . . . ;G14½t�g

and, similarly, to the innovations variance subspace

Fs2
e
¼ fG0½t�; . . . ;G6½t�;G8½t�;G9½t�;G10½t�;G12½t�;G13½t�;G14½t�;G17½t�;G19½t�g:

Hence an FS-TARMA ð8;8Þ½11;15;15� model is finally selected (further details in [11]).
The three identified TARMA models are validated, whereas their characteristics are summarized in Table 3.
The obtained RSS normalized by the series sum of squares (RSS/SSS) and the negative log-likelihood function of the

estimated TARMA models are depicted in Fig. 6(a). Indicative one-step-ahead signal predictions obtained by the estimated
Table 3
Identification methods, their characteristics, and the identified models.

Model class Identification method Method characteristics Identified model

Unstructured RML-TARMA l ¼ 0:9905 UPE-TARMA(8,8)

parameter evolution a ¼ 104

Stochastic SP-TARMA n ¼ 2:757� 10�11 SP-TARMAð8;8Þk¼2

parameter evolution a ¼ 104

Deterministic FS-TARMA Prediction error method FS-TARMAð8;8Þ½11;15;15�

parameter evolution Gauss–Newton optimization
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Fig. 6. Comparative TARMA identification results: (a) the RSS/SSS and the negative log-likelihood function for the estimated TARMA models, (b) segment

of the vibration response signal and TARMA-based one-step-ahead predictions, and (c) the residual variance for the estimated TARMA models (although

not directly comparable, the ‘‘frozen-configuration’’ innovations variance is also provided).
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TARMA models are (for a short time segment of the signal) compared to the actual signal values in Fig. 6(b). It is observed
that all methods provide more or less good predictions, with the FS-TARMA model achieving the best prediction accuracy
ðRSS=SSS ¼ 3:255%Þ, followed by the RML-estimated UPE-TARMA model, and, finally, the SP-TARMA model. It should be
mentioned that the RSS/SSS and negative log-likelihood function for the SP-TARMA(8,8) model may be reduced somewhat
(to 4.893 and 2:336� 104, respectively) when using first order ðk ¼ 1Þ smoothness priors constraints. As already
mentioned, this model is nevertheless not selected, as the corresponding natural frequency estimates and the TV PSD
exhibit higher variability.

The residual variance estimates for the three TARMA models are compared in Fig. 6(c), in which the baseline model
innovations variance (although not directly comparable; description in the next paragraph) is presented as well. As it may
observed, the FS-TARMA model provides, almost uniformly, the lowest variance, followed by the UPE-TARMA, and finally
the SP-TARMA model.

Frozen-configuration baseline identification: In order to establish an additional basis for judging identification
accuracy, a space-discretized version of the structure’s frozen-configuration representation is obtained by ‘‘freezing’’ the
mass at M ¼ 120 equispaced locations and performing an equal number of stationary experiments. The stationary vibration
response at location 3 on the beam is, in each case, obtained (fs ¼ 128 Hz, signal length N ¼ 3962 samples) and a
conventional (stationary) ARMA model is identified by using the linear multi stage (LMS) estimation method [40] and
maximum-likelihood (ML) refinement [33, pp. 216–217]. This leads to M ¼ 120 ARMA(8,8) models which constitute what is
henceforth referred to as the baseline (frozen-configuration) representation of the structure.
7. Model-based dynamic analysis results

The TV structural dynamics are now recovered based on the identified models. The vibration response signal’s frozen-
time PSD is obtained as

Sðo; tÞ ¼
1þ

Pnc

i¼1 ci½t�e
�joTsi

1þ
Pna

i¼1 ai½t�e�joTsi

�����
�����
2

s2
e ½t� (21)

with the model parameters and innovations variance being replaced by their respective estimates, o designating frequency
in rad/s, Ts the sampling period in s, and j the imaginary unit. The system’s frozen-time natural frequencies and damping
ratios are computed as

oni½t� ¼
jlnli½t�j

Ts
ðrad=sÞ and zi½t� ¼ �cosðargðlnli½t�ÞÞ (22)
Fig. 7. Comparison of TV PSD estimates: (a) the ‘‘frozen-configuration’’ baseline estimate, (b) the UPE-TARMA(8,8) estimate, (c) the SP-TARMAð8;8Þk¼2

estimate, and (d) the FS-TARMAð8;8Þ½11;15;15� estimate.
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respectively, with li½t� designating the i-th TV frozen model pole. The antiresonance natural frequencies and damping ratios
are similarly obtained from the frozen model zeros.

The frozen-time PSD estimates corresponding to the three estimated TARMA(8,8) models are contrasted to that
obtained from the frozen-configuration baseline modelling in Fig. 7. Obviously, all TARMA PSD estimates are in good overall
agreement with their baseline counterpart. Yet, smoother, and also clear and informative, estimates are obtained based on
the FS-TARMA and SP-TARMA models. On the other hand, the estimate obtained based on the UPE-TARMA model exhibits
significantly more scatter.

Fig. 8 depicts the structure’s TV natural frequency estimates along with their baseline model counterparts. Note that
nonparametric PSD estimates (Welch-based; 512-sample-long Hamming data window) obtained during baseline
identification by using the 120 measured signals are also shown in the background.
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The UPE-TARMA estimates track their baseline counterparts adequately well, although with some scatter observed for
the second and third natural frequency trajectories. On the other hand, the SP-TARMA estimates appear unable of tracking
the second natural frequency during the last 30 s. This is probably due to pole-zero cancellations occurring. A possible
remedy could be the increase of the model order to 10 or higher. Such an action, though, introduces false (computational)
modes in the time–frequency plane (see Fig. 9) which are characterized by damping ratios smaller than 10 percent and
being difficult to distinguish from the true modes. Finally, the excellent tracking of the natural frequencies achieved by the
FS-TARMA estimates is certainly worth noting.

Similar comments may be made for the estimated frozen-time antiresonance natural frequencies (Fig. 10).
The SP-TARMA based estimates seem unable of tracking the evolution of their baseline counterparts for significant
periods of time, in contrast to the UPE-TARMA based estimates which exhibit a good overall agreement with them,
but also significant scatter. On the other hand, the FS-TARMA based estimates clearly exhibit the best performance
(Welch-based nonparametric PSD estimates obtained during baseline identification are also shown in the background).

8. Conclusions

An overview and comparative assessment of parametric TARMA methods for the identification and model-based
analysis of TV structures under unobservable excitation was presented. The methods were classified according to the
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mathematical structure imposed on the TV parameter evolution as unstructured parameter evolution, stochastic parameter
evolution, and deterministic parameter evolution. A representative identification method (RML-TARMA, SP-TARMA,
FS-TARMA) from each class was outlined.

The performance characteristics of the three classes of methods were examined through their application to the
problem of identification and model-based dynamic analysis of a laboratory TV (continuously variable configuration)
structure consisting of a beam with a mass moving on it. The frozen-configuration (baseline) characteristics of the structure
were also extracted and used as an additional basis of comparison.

The three methods were compared to each other in terms of achievable prediction accuracy and model-based analysis.
Although the TV structure used is characterized by relatively slowly varying dynamics, the best performance characteristics
were achieved by the FS-TARMA method, followed by the RML-TARMA and, finally, the SP-TARMA method. This is also true
for the model-based dynamics, including the resonance and antiresonance natural frequencies and the TV PSD of the
vibration response, that were most accurately captured by the FS-TARMA method. These results came as no surprise, and,
reveal good identification performance, owing to the deterministic nature of the time variation in the structural dynamics
which is best reflected in the FS-TARMA models. Overall, the results demonstrate the parametric methods’ applicability,
effectiveness, and high potential for parsimonious and accurate identification and dynamic analysis of TV structures under
unobservable excitation.
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