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A new analytical method is developed for transient vibration analysis of stepped

systems composed of distributed components like elastic bars, flexible shafts and taut

strings, and lumped masses. The method, with a distributed transfer function

formulation and a residue formula for inverse Laplace transform, gives the exact

arbitrary external, boundary and initial excitations. The proposed method does not

depend on system eigenfunctions, is able to accurately predict jumps in stress and

strain distributions, and is numerically efficient as its utility only requires simple

operations of two-by-two matrices.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration of stepped distributed dynamic systems is important in many engineering applications, such as buildings,
bridges, rotating machines, turbines, helicopters and aerospace structures, and hence has been extensively studied [1–3].
This paper is concerned with stepped systems that are assemblages of one-dimensional distributed components (like
elastic bars, torsional shafts and taut strings), and lumped masses. Previous investigations on this type of vibrating systems
have been focused on free vibration, forced response to sinusoidal excitations and wave propagation, and analytical
solutions have been derived for these problems [4–9]. Determination of transient vibration of stepped distributed systems,
however, has mainly replied on numerical methods, although certain analytical results can be obtained by eigenfunction
expansion [10–12], and by a time-domain receptence method that is valid for stepped systems with lumped parameter
components [13,14].

There are several issues that restrict the utility of the existing analytical techniques in transient analysis of stepped
systems. First, conventional eigenfunction expansion or modal analysis, while being able to give transient solutions of
stepped systems under external loads, is not directly applicable to stepped systems subject to boundary excitations,
settlement of foundation, and motions of spring constraint supports. Handling these inhomogeneous terms in the
boundary and matching conditions is not trivial in a modal analysis. Second, in transient analysis Laplace transform
method and transfer matrix method are crippled by complicated s-domain expressions whose inverse Laplace transforms
have to be found. In fact, exact transient solutions via inverse Laplace transform become difficult if a stepped system with
three or more distributed components is considered. Third, solution by most analytical techniques is problem-dependent,
requesting different derivations and algorithms for different system configurations (number of components, boundary
ll rights reserved.
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conditions, constraints and lumped masses, etc.). This inflexibility in treating stepped systems makes analytical techniques
less user-friendly, compared to numerical methods, such as the finite element method.

In this work, a new analytical technique is developed for exact solution of transient vibration problems of stepped
distributed systems. By exact solution, we mean that the response of a stepped distributed system can be expressed by an
infinite series, with each term individually determined in exact and closed form. The new technique is an extension of the
distributed transfer function method (DTFM) [15–18]. The DTFM was developed for vibration analysis and feedback control
of elastic continua, but it has not been applied to transient vibration problems of stepped systems. The proposed DTFM is
capable of obtaining exact transient solutions for a stepped system with any number of components and arbitrary
boundary conditions, and at the same time avoids the aforementioned issues of the existing analytical techniques. The
DTFM, with a spatial state formulation and a formula for evaluation of transfer function residues, obtains transient
solutions in a symbolic manner. As shall be seen, this new method is numerically efficient because its utility only involves
simple operations of two-by-two matrices.

The remainder of the paper is arranged as follows. The vibration problem of stepped distributed systems is described in
Section 2. A distributed transfer function formulation is derived in Section 3, and based on this formulation system
eigensolutions are determined in Sections 4. In Section 5, a Green’s function integral and a formula for precise evaluation of
transfer function residues are obtained which eventually leads to exact transient solutions of stepped systems. The
proposed method is illustrated on two examples in Section 6.

2. Statement of problem

The stepped distributed system in consideration is an assembly of n one-dimensional, serially connected, elastic
components; see Fig. 1, where xi, i¼ 1;2; . . . ;n� 1, are the interior nodes at which adjacent components are
interconnected, x0 and xn are the boundary nodes representing the ends of the system, and li ¼ xiþ1 � xi is the length of
the ith component. Set x0 ¼ 0, so that xi ¼ l1þ l2þ � � � þ li for i¼ 1;2; . . . ;n. The vibration of the ith component is governed by
the wave equation

ri

q2wiðx; tÞ

qt2
� aST

i

q2wiðx; tÞ

qx2
¼ fiðx; tÞ; x 2 ðxi�1; xiÞ (1)

where wiðx; tÞ is the displacement of the component, ri an inertia parameter, aST
i a stiffness parameter, and fiðx; tÞ an

external load. Eq. (1) is a model for elastic bars in longitudinal vibration, circular shafts in torsional vibration, and taut
strings in transverse vibration; see Table 1 for the physical meaning of related parameters. At the nodes of the stepped
system there may be spring constrains and mounted lumped masses. The interface between the ith and (i+1)th
components at node xi is described by the matching conditions

wiðxi; tÞ ¼wiþ1ðxi; tÞ

mi
q2wiðxi; tÞ

qt2
þaST

i

qwiðxi; tÞ

qx
þkiwiðxi; tÞ ¼ aST

iþ1

qwiþ1ðxi; tÞ

qx
þqiðtÞþkiziðtÞ (2)

for i¼ 1;2; . . . ;n� 1, where mi is a lumped mass or a rigid disk, ki the coefficient of a spring; qiðtÞ an external force load
applied at the lumped mass, and ziðtÞ a foundation motion of the node. The boundary conditions of the stepped system are
of the general form

at x¼ x0 : mL
q2w1

qt2
þa1

qw1

qx
þa0w1 ¼ gLðtÞ

at x¼ xn : mR
q2wn

qt2
þb1

qwn

qx
þb0wn ¼ gRðtÞ (3)
Fig. 1. Schematic of an n-component stepped distributed dynamic system.
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Table 1
Parameters of distributed components.

Displacement w(x, t) Inertia parameter r Stiffness parameter aST

Elastic bar Longitudinal displacement u(x, t) Linear density rvA Longitudinal rigidity EA

Circular shaft Rotation (twist) y(x, t) Polar mass moment of inertia rvJ Torsional rigidity GJ

Taut string Transverse displacement y(x, t) Linear density rvA Tension T

rv—mass per unit volume, A—cross-section area, J—moment of inertia.
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where a0, a1, b0 and b1 are constants that are properly assigned to characterize different types of boundaries; mL and mR are
end masses; and gLðtÞ and gRðtÞ are related to prescribed boundary excitations (external load or possible foundation
motion). In addition, the system is subject to the initial conditions

wiðx;0Þ ¼ u0;iðxÞ;
qwiðx;0Þ

qt
¼ v0;iðxÞ; x 2 ðxi�1; xiÞ (4)

for i¼ 1;2; . . . ;n, where u0;iðxÞ and v0;iðxÞ are given profiles of initial displacement and velocity of the ith component.
In this work, we shall obtain analytical solutions of the boundary-initial value problem formed by Eqs. (1)–(4). A Laplace

transform method is developed to obtain exact transient response of the stepped system subject to arbitrary external loads,
boundary excitations, and initial disturbances.

3. Distributed transfer function formulation

The s-domain solution of the stepped distributed system is first devised by the distributed transfer function method
[15–18]. To this end, take Laplace transform of Eqs. (1)–(3) with respect to time, which gives

q2wiðx; sÞ

qx2
¼

s2

c2
i

wiðx; sÞ �
1

aST
i

ðf iðx; sÞþsu0;iðxÞþv0;iðxÞÞ; x 2 ðxi�1; xiÞ (5)

for i¼ 1;2; . . . ;n,

wiþ1ðxi; sÞ ¼wiðxi; sÞ

aST
iþ1

qwiþ1ðxi; sÞ

qx
¼ aST

i

qwiðxi; sÞ

qx
þðmis

2þkiÞwiðxi; sÞ � q̂e0;iðsÞ (6a)

for 1rirn� 1, and

a1
qw1ðx0; sÞ

qx
þðmLs2þa0Þw1ðx0; sÞ ¼ gLðsÞþmLðsu0;1ðx0Þþv0;1ðx0ÞÞ

b1
qwnðxn; sÞ

qx
þðmRs2þb0Þwnðxn; sÞ ¼ gRðsÞþmRðsu0;nðxnÞþv0;nðxnÞÞ (6b)

where the over-bar stands for Laplace transform, s is the Laplace transform parameter, ci ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aST

i =ri

q
, and

q̂e0;iðsÞ ¼ qiðsÞþkiziðsÞþmiðsu0;iðxiÞþv0;iðxiÞÞ (7)

The initial conditions (4) are embedded in Eqs. (5) and (6). By defining the spatial state vector

ĝ iðx; sÞ ¼

wiðx; sÞ

qwiðx; sÞ

qx

0
@

1
A; x 2 ðxi�1; xiÞ (8)

Eq. (5) is rewritten in a first-order state form

q
qx

ĝ iðx; sÞ ¼ F iðsÞĝ iðx; sÞþ p̂iðx; sÞ; x 2 ðxi�1; xiÞ; i¼ 1;2; . . . ;n (9)

where

F iðsÞ ¼
0 1

s2=c2
i 0

" #
; p̂iðx; sÞ ¼ �

1

aST
i

ðf iðx; sÞþsriu0;iðxÞþriv0;iðxÞÞ
0

1

� �
(10)

For convenience of analysis, define a global domain O¼ ðx0; x1Þ [ ðx1; x2Þ [ � � � [ ðxn�1; xnÞ and convert Eq. (9) to a global
state equation

q
qx

ĝðx; sÞ ¼ Fðx; sÞĝðx; sÞþ p̂ðx; sÞ; x 2 O (11)
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where the global quantities

ĝðx; sÞ ¼ ĝ iðx; sÞ; Fðx; sÞ ¼ F iðsÞ; p̂ðx; sÞ ¼ p̂iðx; sÞ (12)

for x 2 ðxi�1; xiÞ, i¼ 1;2; . . . ;n. The matching and boundary conditions (6) are also cast into a global state form

ĝðxiþ ; sÞ ¼ T iĝðxi�; sÞ � miðsÞ; i¼ 1;2; . . . ;n� 1 (13)

Mbĝðx0; sÞþNbĝðxn; sÞ ¼ cbðsÞ (14)

where

T i ¼

1 0
mis

2þki

aST
iþ1

aST
i

aST
iþ1

2
64

3
75; miðsÞ ¼

1

aST
iþ1

q̂e0;iðsÞ
0

1

� �

Mb ¼
mLs2þa0 a1

0 0

" #
; Nb ¼

0 0

mRs2þb0 b1

" #

cbðsÞ ¼
gLðsÞ

gRðsÞ

 !
þ

mLðsu0;1ðx0Þþv0;1ðx0ÞÞ

mRðsu0;nðxnÞþv0;nðxnÞÞ

 !
(15)

Hence, the s-domain response of the stepped system is governed by the global state Eq. (11), along with the matching
conditions (13) and boundary condition (14).

In this study, the state Eq. (11) is solved through use of state transition matrix. The state transition matrix of the
stepped system is the unique solution of [19]

q
qx

Uðx; x; sÞ ¼ Fðx; sÞUðx; x; sÞ; x;x 2 O (16)

that satisfies conditions

Uðx; x; sÞ ¼ I

Uðxiþ ; x; sÞ ¼ T iUðxi�; x; sÞ; x 2 O; i¼ 1;2; . . . ;n� 1 (17)

where I is the identity matrix. The state transition matrix has the properties

U�1
ðx; x; sÞ ¼Uðx; x; sÞ

Uðx; z; sÞ ¼Uðx; y; sÞUðy; z; sÞ (18)

Furthermore, the state transition matrix can be written as

Uðx;x; sÞ ¼Uðx; sÞU�1
ðx; sÞ (19)

where Uðx; sÞ is any fundamental matrix that is a nonsingular solution of

q
qx

Uðx; sÞ ¼ Fðx; sÞUðx; sÞ; x 2 O (20)

subject to the condition Uðxiþ ; sÞ ¼ T iUðxi�; sÞ, i¼ 1;2; . . . ;n� 1. It can be shown that a fundamental matrix for the stepped
system is

Uðx; sÞ ¼
eF1ðsÞðx�x0Þ; x 2 ðx0; x1Þ

eF iðsÞðx�xi�1ÞT i�1eF i�1ðsÞli�1 � � �T1eF1ðsÞl1 ; x 2 ðxi�1; xiÞ; 2rirn

(
(21)

where eF iðsÞx are exponential matrices [19], and from Eq. (9) they are derived as

eF iðsÞx ¼

cosh
s

ci
x

� �
ci

s
sinh

s

ci
x

� �
s

ci
sinh

s

ci
x

� �
cosh

s

ci
x

� �
2
6664

3
7775 (22)

By Eq. (21), U=(x0, s)=I, and as a result

Uðx; x0; sÞ ¼Uðx; sÞ (23)

With the state transition matrix given in Eqs. (19) and (21), the s-domain response of the stepped system is taken as

ĝðx; sÞ ¼
Z xn

x0

Ĝðx; x; sÞp̂ðx; sÞdxþĤðx; sÞcbðsÞ �
Xn�1

i ¼ 1

Ĝðx; xiþ ; sÞmiðsÞ (24)
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where

Ĝðx; x; sÞ ¼
Ĥ ðx; sÞMbUðx0; x; sÞ; xrx

�Ĥ ðx; sÞNbUðxn; x; sÞ; x4x

(
(25)

Ĥðx; sÞ ¼Uðx; x0; sÞZ
�1
ðsÞ

with

ZðsÞ ¼MbþNbUðxn; x0; sÞ (26)

The matrices Ĝ and Ĥ are called the distributed transfer functions of the stepped system, and ZðsÞ the boundary impedance
matrix. See Appendix A for the proof of Eq. (24).

The spatial state Eq. (11) and the transfer function formulation (24) lay out a foundation for determination of the
eigensolutions and transient response of the stepped system, as shall be seen in the subsequent sections.

4. Eigensolutions

Define the eigenvalue problem of the stepped distributed system by vanishing the excitation terms in Eqs. (11), (13) and
(14):

q
qx

wðxÞ ¼ Fðx; sÞwðxÞ; x 2 O (27)

subject to the conditions

wðxiþÞ¼ T iwðxi�Þ; i¼ 1;2; . . . ;n� 1 (28a)

Mbwðx0ÞþNbwðxnÞ ¼ 0 (28b)

where s is an eigenvalue, and wðxÞ the eigenfunction associated with s. Write

wðxÞ ¼Uðx; x0; sÞa (29)

with a being a vector to be determined, which satisfies Eqs. (27) and (28a). Plugging Eq. (29) into the boundary condition
(28b) gives

ðMbþNbUðxn; x0; sÞÞa¼ 0 (30)

The characteristic equation of the stepped system then is

det ZðsÞ ¼ detðMbþNbUðxn; x0; sÞÞ ¼ 0 (31)

The roots of Eq. (31) can be written as sk ¼ jok, j¼
ffiffiffiffiffiffiffi
�1
p

, k¼ 1;2; . . ., where ok is the kth natural frequency of the system.
From Eqs. (31) and (23), the natural frequencies are the nonnegative roots of the real-valued transcendental equation

DðoÞ � detðMbþNbWðoÞÞ ¼ 0 (32)

where

WðoÞ � Uðxn; joÞ ¼ eFnðjoÞln Tn�1eFn�1ðjoÞln�1 � � �T1eF1ðjoÞl1 (33)

with

eF iðjoÞx ¼

cos
o
ci

x

� �
ci

o
sin

o
ci

x

� �

�
o
ci

sin
o
ci

x

� �
cos

o
ci

x

� �
2
6664

3
7775; i¼ 1;2; . . . ;n (34)

The characteristic function DðoÞ has the following two properties:
(i)
 The function is finite at o¼ 0

Dð0Þ ¼ det MbþNb

1 ln

0 1

� �
Tn�1

1 ln�1

0 1

� �
. . .T1

1 l1

0 1

� �� �
(35)

For the stepped system carrying m lumped masses ð0rmrnþ1Þ
(ii)
DðoÞ ¼
Xn1

j ¼ �n2

ojfjðoÞ (36)

where 0rn1rmþ1, n2Z1, and fjðoÞ are functions that only contain sinusoidal components like sin ðoli=ciÞ and
cos ðoli=ciÞ.
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According to these properties, DðoÞ is well-behaved. With proper scaling, such as DðoÞ=ð1þo Þ, the function is
bounded for any oZ0. Therefore, standard root-searching techniques are directly applicable to Eq. (32) for accurate
n1

eigenvalue solutions.
Although eigenfunctions are not needed in the proposed transient analysis, they are useful in free vibration analysis.

The eigenfunction (mode shape) associated with jok is given by

wkðxÞ ¼Uðx; x0; jokÞak (37)

where ak is a nonzero solution of the homogeneous equation Z(jok)a=0.
5. Transient response

In this study, exact transient solutions are obtained by the distributed transfer function formulation obtained in
Section 3 and by a new residue formula for inverse Laplace transform.
5.1. Green’s function formula

Inverse Laplace transform of Eq. (24) yields Green’s function formula

gðx; tÞ ¼ �
Xn

i ¼ 1

1

aST
i

Z t

0

Z xi

xi�1

Gðx; x; t � tÞfiðx; tÞdxdt
0

1

� �
�
Xn�1

i ¼ 1

1

aST
i

Z t

0
Gðx; xiþ ; tÞðqiðtÞþkiziðtÞÞdt

0

1

� �

þ

Z t

0
Hðx; t � tÞ

gLðtÞ

gRðtÞ

 !
dt�

Xn

i ¼ 1

ri

aST
i

Z xi

xi�1

q
qt

Gðx; x; tÞu0;iðxÞþGðx; x; tÞv0;iðxÞ
� �

dx
0

1

� �

�
Xn�1

i ¼ 1

mi

aST
iþ1

q
qt

Gðx; xiþ ; tÞu0;iðxiÞþGðx; xiþ ; tÞv0;iðxiÞ

� �
0

1

� �

þ
q
qt

Hðx; tÞ
mLu0;1ðx0Þ

mRu0;nðxnÞ

 !
þHðx; tÞ

mLv0;1ðx0Þ

mRv0;nðxnÞ

 !
(38)

for x 2 O, where gðx; tÞ is the inverse Laplace transform of ĝðx; sÞ; and the matrix Green’s functions G and H are the inverse
Laplace transforms of the transfer functions Ĝ and Ĥ , respectively. The first four terms on the right-hand side of Eq. (38)
represent the effects of external loads, boundary excitations and initial disturbances, and determination of the transient
response of a stepped distributed system are the contributions of the lumped masses due to the initial disturbances.
According to Eqs. (25), (26) and (31), the distributed transfer functions have an infinite number of poles, 7jok, k¼ 1;2; . . .
By the theorem of residues [20], Green’s functions are of the form

Gðx;x; tÞ ¼
X1
k ¼ 1

fUðx; jokÞRkDðx; x; jokÞe
joktþUðx;�jokÞR�kDðx; x;�jokÞe

�joktg (39a)

Hðx; tÞ ¼
X1
k ¼ 1

fUðx; jokÞRkejoktþUðx;�jokÞR�ke�joktg (39b)

where

Dðx; x; sÞ ¼
MbUðx0; x; sÞ; xrx

�NbUðxn;x; sÞ; x4x

(
(40)

and Eq. (23) has been used. The matrices Rk and R�k, which shall be called the residues of the distributed transfer functions,
are defined as

R7k ¼ Res
s ¼7jok

ðZðsÞ�1
Þ (41)

The transient response of the stepped distributed system can be determined by Eq. (38) if the transfer function residues are
known.
5.2. Transfer function residues

The transfer function residues can be expressed as [20]

R7k ¼
adj Zð7jokÞ

d

ds
jZðsÞjs ¼ 7jok

(42)
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where adj ZðsÞ and jZðsÞj are the adjoint and determinant of ZðsÞ. As shown in Appendix B:

d

ds
jZðsÞjs ¼7jok

¼7jZDðokÞ (43)

where ZDðokÞ is a real number given by

ZDðokÞ ¼ detðMkþNkdW ðokÞÞþdetðdM;kþNkWðokÞÞþdetðMkþdN;kWðokÞÞ (44)

Here WðokÞ is given in Eq. (33), and

Mk ¼
�mLo2

kþa0 a1

0 0

" #
; Nk ¼

0 0

�mRo2
kþb0 b1

" #

dM;k ¼
2mLok 0

0 0

� �
; dN;k ¼

0 0

2mRok 0

" #
(45)

dW ðokÞ ¼ EnðokÞTn�1ðokÞe
Fn�1ðjokÞln�1 � � �T1ðokÞe

½F1ðjokÞ�l1þeFnðjokÞlndTn�1ðokÞe
Fn�1ðjokÞln�1 � � �T1ðokÞe

F1ðjokÞl1

þ � � � þeFnðjokÞln Tn�1ðokÞe
Fn�1ðjokÞln�1 � � �T1ðokÞE1ðokÞ

where

T iðokÞ ¼

1 0
�mio2

kþki

aST
iþ1

aST
i

aST
iþ1

2
64

3
75; dT iðokÞ ¼

0 0
2miok

aST
iþ1

0

2
64

3
75

EiðokÞ ¼

li
ci

Sik �
li
ok

Cikþ
ci

o2
k

Sik

okli
c2

i

Cikþ
1

ci
Sik

li
ci

Sik

2
66664

3
77775 (46)

with Sik ¼ sin ðokli=ciÞ and Cik ¼ cos ðokli=ciÞ.
Because ZðjokÞ is real, so is adj ZðjokÞ. Thus, the transfer function residues are given by

Rk ¼ � jQ k; R�k ¼ jQ k; j¼
ffiffiffiffiffiffiffi
�1
p

(47)

where Q k is a real matrix given by

Q k ¼
adj ZðjokÞ

ZDðokÞ
(48)

5.3. Exact transient solution

According to matrix theory, adj ZðjokÞZðjokÞ ¼ detZðjokÞI ¼ 0. This implies that

RkZðjokÞ ¼ 0: (49)

It follows from Eqs. (23), (40) and (49) that

R7kDðx;x;7jokÞ ¼8jQ kMbU�1
ðx; jokÞ (50)

It is easy to see that Uðx; jokÞ and Uðx;�jokÞ are real and that Uðx; jokÞ ¼Uðx;�jokÞ. So Green’s functions in Eq. (39) can be
written as

Gðx; x; tÞ ¼ 2
X1
k ¼ 1

Uðx; jokÞQ kMbU�1
ðx; jokÞsinokt

Hðx; tÞ ¼ 2
X1
k ¼ 1

Uðx; jokÞQ k sinokt (51)

Finally, by substituting Eq. (51) into Eq. (38), the transient response of the stepped system is obtained as follows:

gðx; tÞ ¼ 2
X1
k ¼ 1

Uðx; jokÞQ kfIf ;kðtÞþIb;kðtÞþIo;kðtÞg (52)
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where

If ;kðtÞ ¼ �Mb

Xn

i ¼ 1

1

aST
i

U�1
ðxi�1þ ; jokÞ

Z t

0

Z xi

xi�1

e�F iðjokÞðx�xi�1Þ sinokðt � tÞfiðx; tÞdxdt
0

1

� �

Ib;kðtÞ ¼

Z t

0
sinokðt � tÞ

gLðtÞ
gRðtÞ

 !
dt�Mb

Xn�1

i ¼ 1

1

aST
i

U�1
ðxiþ ; jokÞ

Z t

0
sinokðt � tÞðqiðtÞþkiziðtÞÞdt

0

1

� �
(53)

Io;kðtÞ ¼ �Mb

Xn

i ¼ 1

ri

aST
i

U�1
ðxi�1þ ; jokÞ

Z xi

xi�1

e�F iðjokÞðx�xi�1Þðu0;iðxÞok cosoktþv0;iðxÞ sinoktÞdx
0

1

� �

�Mb

Xn�1

i ¼ 1

mi

aST
iþ1

U�1
ðxiþ ; jokÞðu0;iðxiÞok cosoktþv0;iðxiÞ sinoktÞ

0

1

� �

þ
mLu0;1ðx0Þ

mRu0;nðxnÞ

 !
ok cosoktþ

mLv0;1ðx0Þ

mRv0;nðxnÞ

 !
sinokt

The vectors If ;kðtÞ, Ib;kðtÞ, and Io;kðtÞ represent the contributions of external loads, boundary excitations and initial
disturbances, respectively.

In summary of the above derivation, the remaining three terms takes the following three steps:
Step 1: Determine the natural frequencies of the stepped system by Eq. (32);
Step 2: Obtain the transfer function residues by Eqs. (47) and (48); and
Step 3: Compute the transient response by Eqs. (52) and (53).
The above transient solution is of exact form; no discretization or approximation has been made. This DTFM-based

analysis is numerically efficient because it only involves operations of two-by-two matrices, regardless of the number of
components. Furthermore, the method treats different system configurations (number of components, physical
parameters, constraints, lumped masses, and boundary conditions) in a symbolic manner, and avoids tedious derivations
and messy expressions that are encountered in many analytical methods.

6. Examples

The DTFM-based transient analysis is demonstrated in two examples: a single-body elastic bar in longitudinal vibration
and a three-segment shaft in torsional vibration.

6.1. Example 1: An elastic bar in longitudinal vibration

In this example, we show that exact transient solutions obtained by the DTFM are equivalent to those by standard
eigenfunction expansion. Consider a clamped-free single-body elastic bar whose longitudinal vibration is governed by

Governing equation : r q2uðx; tÞ

qt2
� EA

q2uðx; tÞ

qx2
¼ qðx; tÞ; x 2 ð0; LÞ (54a)

Boundary conditions : uð0; tÞ ¼ 0; EA
quðL; tÞ

qx
¼ pbðtÞ (54b)

Initial conditions : uðx;0Þ ¼ u0ðxÞ;
quðx;0Þ

qt
¼ v0ðxÞ; x 2 ð0; LÞ (54c)

where qðx; tÞ is an external force applied at the interior points of the bar, pbðtÞ is a boundary load, and u0ðxÞ, v0ðxÞ are the
initial displacement and velocity of the bar.

First obtain the transient response of the bar by eigenfunction expansion. The displacement of the bar is expressed as
[21]

uðx; tÞ ¼

Z t

0

Z t

0
gðx; x; t � tÞqðx; tÞdxdtþ

Z L

0

q
qt

gðx; x; tÞru0ðxÞþgðx; x; tÞrv0ðxÞ
� �

dxþ
Z t

0
gðx; L; t � tÞpbðtÞdt (55)

where gðx; x; tÞ is Green’s function of the bar, and it is obtained in an eigenfunction series:

gðx; x; tÞ ¼
X1
k ¼ 1

1

ok
vkðxÞvkðxÞ sinokt (56)

with ok and vkðxÞ being the kth natural frequency and normalized eigenfunction of the bar. The system eigensolutions are
found as

ok ¼ k�
1

2

� �
p c

L
; vkðxÞ ¼

ffiffiffiffiffiffi
2

rL

s
sin

okx

c

� �
(57)
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with c¼
ffiffiffiffiffiffiffiffiffiffiffiffi
EA=r

p
. Substituting Eqs. (56) and (57) into Eq. (55) to get the transient response

uðx; tÞ ¼
2

rL

X1
k ¼ 1

1

ok
sin

okx

c

Z t

0

Z L

0
sin

okx
c

sinokðt � tÞqðx; tÞdxdtþ
Z L

0
sin

ok

c
x

� �
ðru0ðxÞok cosokt

	

þrv0ðxÞ sinoktÞdxþð�1Þkþ1
Z L

0
sinokðt � tÞpbðtÞdt



(58)

Next determine the bar response by the DTFM. The matrices in Eqs. (11), (13) and (14) are

FðsÞ ¼
0 1

rs2=EA 0

" #
; Mb ¼

1 0

0 0

� �
; Nb ¼

0 0

0 EA

� �
(59)

The boundary impedance matrix in Eq. (26) is

ZðsÞ ¼

1 0
EAs

c
sinh

sL

c

� �
EAcosh

sL

c

� �2
4

3
5 (60)

The characteristic equation then is

det ZðsÞ ¼ EA cosh
sL

c

� �
¼ 0 (61)

which has the roots sk ¼ jok, with j¼
ffiffiffiffiffiffiffi
�1
p

and ok being the same as in Eq. (57). By Eq. (47), the transfer function residues
are obtained as

Rk ¼ � j

0 0

ok

L

ð�1Þkþ1c

EAL

2
4

3
5; k¼ 1;2; . . . (62)

With Eqs. (52) and (53), the displacement of the bar is given by

uðx; tÞ ¼
2c2

EAL

X1
k ¼ 1

1

ok
sin

okx

c
Ek If ;kðtÞþIb;kðtÞþIo;kðtÞ
� �

(63)

where

Ek ¼
EAok

c
ð�1Þkþ1

� �

If ;kðtÞ ¼ �
1

EA
Mb

Z t

0

Z L

0
e�FðjokÞx sinokðt � tÞqðx; tÞdxdt

0

1

� �

Ib;kðtÞ ¼

Z t

0
sinokðt � tÞpbðtÞdt

0

1

� �

Io;kðtÞ ¼ �
1

EA
Mb

Z L

0
e�FðjokÞx ru0ðxÞok cosoktþrv0ðxÞ sinokt

� �
dx

0

1

� �
(64)

From Eqs. (34) and (59), it is easy to show that

Ek

0

1

� �
¼ ð�1Þkþ1; EkMb ¼

EAok

c
0

� �
; e�FðjokÞx

0

1

� �
¼

�
c

ok
sin

okx
c

cos
okx

c

0
BBB@

1
CCCA

As a result

EkIf ;kðtÞ ¼

Z t

0

Z L

0
sin

okx
c

sinokðt � tÞqðx; tÞdxdt

EkIb;kðtÞ ¼ ð�1Þkþ1
Z t

0
sinokðt � tÞpbðtÞdt

EkIo;kðtÞ ¼

Z L

0
sin

okx
c

ru0ðxÞok cosoktþrv0ðxÞsinokt
� �

dx

Substitution of the previous equations into Eq. (63) and use of c2 ¼ EA=r yield the same result as given in Eq. (58), although
no eigenfunctions have been used in this DTFM-based analysis.

It should be pointed out that the expressions of ZðsÞ and Rk are shown in Eqs. (60) and (62) for demonstrative purposes.
The derivation of these analytical expressions is not needed in the DTFM-based computation.
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Fig. 2. A three-segment circular shaft in torsional vibration.

Fig. 3. Characteristic function of the stepped shaft.
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6.2. Example 2: A three-segment shaft in torsional vibration

In Fig. 2a three-segment circular shaft in torsional vibration is fixed at the left end, is constrained by two springs (k1 and
kb), and carries a rigid disk with mass moment of inertia ID. For numerical simulation, the physical parameters of the
system are assigned as follows:

Segment 1 : rvJ1 ¼ 2:0 kg m; GJ1 ¼ 400 N m2; l1 ¼ 1:0 m
Segment 2 : rvJ2 ¼ 1:5 kg m; GJ2 ¼ 300 N m2; l2 ¼ 0:7 m
Segment 3 : rvJ3 ¼ 1:2 kg m; GJ3 ¼ 250 N m2; l3 ¼ 1:3 m

k1 ¼ 50 N m; kb ¼ 100 N m; ID ¼ 25 kg m2 (65)

The natural frequencies of the shaft are determined through the solution of Eq. (32) by the bisection method. The
transcendental characteristic function DðoÞ is plotted against o in Fig. 3. Table 2 gives the first 20 natural frequencies and
several higher-mode frequencies of the shaft, which are computed by the proposed DTFM and a finite element method
(FEM) that uses linear shape functions. As the number of elements increases, the FEM solutions converge to the exact
solutions provided by the DTFM. The FEM with 150 and 300 elements gives good results on the first 20 natural frequencies,
with maximum errors of 0.69% and 0.17%, respectively. However, errors in the FEM predictions grow when higher-mode
natural frequencies are computed. With 300 elements, the FEM has a 4.43% error in estimating the 100th natural
frequency, and a 16.72% error in estimating the 200th natural frequency. As found out in a further comparison, to match
the accuracy of the DTFM solutions (with the maximum error less than 0.4%), 1200 finite elements are needed to predict
the first 100 natural frequencies and at least 2000 finite elements are needed to estimate the first 200 natural frequencies.
The enlarged number of elements translates into significant demand for computation time by the FEM.
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Table 2
The natural frequencies ok of the stepped shaft (in rad/s).

k DTFM Finite element method

30 elements 150 elements 300 elements

1 3.25798 3.25799 3.25798 3.25798

2 20.80147 20.81898 20.80217 20.80165

3 26.33416 26.37154 26.33565 26.33453

4 53.47210 53.78622 53.48464 53.47523

5 53.76396 54.07707 53.77646 53.76709

6 77.40565 78.37285 77.44421 77.41529

7 88.01690 89.38396 88.07135 88.03051

8 105.66194 108.13073 105.76016 105.68649

9 122.66715 126.38157 122.81472 122.70403

10 130.30087 134.93928 130.48513 130.34692

11 156.73334 164.81820 157.05419 156.81351

12 157.42196 165.29005 157.73408 157.49995

13 183.81502 196.84198 184.33276 183.94438

14 192.21769 206.52036 192.78611 192.35970

15 208.02260 226.82940 208.77331 208.21013

16 227.04101 250.41870 227.97814 227.27508

17 236.42430 263.72538 237.52678 236.69964

18 260.56758 296.46058 262.04388 260.93621

19 261.88047 297.02135 263.31926 262.23974

20 287.77085 334.51074 289.76037 288.26751

25 366.44324 440.38406 370.39112 367.42808

30 436.17403 497.67631 442.83877 437.83536

50 732.01238 764.96904 740.20894

100 1482.48060 1726.74748 1548.17924

200 2979.78780 3478.02958
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Although system eigenfunctions are not required in the DTFM-based transient analysis, they are often examined for free
vibration analysis and for understanding of system dynamic characteristics. By Eq. (37), the first five mode shapes and the
17th mode shape of the stepped shaft are plotted in Fig. 4, where a kink at the disk location ðx2 ¼ 1:7 mÞ is seen in some
mode shapes. The 17th mode shape shall be used for comparison with the shaft response subject to a boundary excitation.

In what follows, we consider two cases of transient response: response to an external torque, and response to a
boundary excitation. A precursor convergence study shows that the transient responses computed with 100 terms or more
from the series (52) are not much different from those obtained with 50 terms. For this reason, only the first 50 terms in
the series are used to present the transient solutions.

Response to external torque: Consider a toque TðtÞ that is uniformly applied to the second shaft segment (see Fig. 2)

f2ðx; tÞ ¼ T0ð1� e�stÞ; x 2 ðx1; x2Þ (66)

where T0 and s are positive constants. Assume zero initial disturbances. The transient response of the shaft, by Eqs. (52)
and (53), is

gðx; tÞ ¼
2

GJ2

X1
k ¼ 1

qkðtÞUðx; jokÞQ kMbU�1
ðx1þ ; jokÞ

l2
k ½1� cosðl2=lkÞ�

�lk sinðl2=lkÞ

 !
(67)

where lk ¼ c2=ok, and

qkðtÞ ¼ T0
1

ok
ð1� cosoktÞþ

1

o2
kþs2

ðok cosokt � s sinokt �oke�stÞ

( )
(68)

Select T0 ¼ 2:5 N and s¼ 10 s�1. The rotation y and shear strain qy=qx of the stepped shaft at times t=0, 0.1, 0.3, 0.5, 0.7 and
1 s are plotted in Fig. 5. Note that the shear strain profile in Fig. 5b has jumps, which are caused by nonuniform distribution
of geometric and material properties, the spring constraint at node x1, and the rigid disk at node x2.

It is worthy of pointing out that conventional series solution methods, such as Galerkin method and Rayleigh–Ritz
method, are inefficient in portraying the discontinuities in strain as seen in Fig. 5b. These methods represent the solution
by a sequence of functions whose spatial derivatives are continuous over the entire domain. As such, many terms are
required to describe the abrupt changes in qy=qx and the results still may not be satisfactory due to issues like Gibbs
phenomenon. The proposed DTFM automatically produces piecewise-continuous spatial derivatives in the solution, which
is facilitated by matrices T i in the matching conditions (13). And this is done without the need for a large number of terms.
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Fig. 4. Mode shapes of the stepped shaft: (a) mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5; and (f) mode 17.
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In fact, 10 terms are good enough to present the spatial discontinuities of the current problem; see Fig. 6 where qy=qx at
t=1 s is plotted by using 10, 20 and 50 terms from Eq. (67).

Response to boundary excitation: The shaft is subject to a sinusoidal boundary displacement at its left end (see Fig. 2)

y1ð0; tÞ ¼ ybðtÞ ¼Y0 sinot (69)

The transient response of the stepped system is

gðx; tÞ ¼ 2
X1
k ¼ 1

qkðtÞUðx; jokÞQ k

1

0

� �
(70)

where

qkðtÞ ¼

Y0

o2
k �o2

ðok sinot �o sinoktÞ; for oaok

Y0

2ok
ðsinokt �okt cosoktÞ; for o¼ok

8>>><
>>>:

(71)
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Fig. 5. Transient response of the stepped shaft subject to the uniform torque given by Eq. (65): (a) rotation distributions in rad; (b) shear strain

distributions in rad/m.
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Choose Y0 ¼ 0:005 rad and o¼ 236 rad=s. By Eqs. (70) and (71), the rotation profiles of the shaft at times t=0.05, 0.1, 0.15,
0.2 and 4 s are plotted in Fig. 7. The vibration of the shaft at early times can be viewed as waves traveling rightward on the
shaft, as shown in Figs. 7(a) and (b). The time for the boundary disturbances to reach the rigid disk (at x2 ¼ 1:7 m) can be
approximately estimated as

l1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ1=rvJ1

q
þ l2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GJ2=rvJ2

q
¼ 0:1202 s (72)

Shortly after the initial disturbances arrive at the disk location (x=1.7 m), some of the waves are transmitted to the third
segment and continue traveling rightward; others are reflected back to the second segment and move leftward. This is seen
in Figs. 7(c) and (d). Before soon, the vibration of the shaft becomes a mixture of incoming waves (disturbances from x=0),
transmitted waves and reflected waves; for instance see Fig. 7(e). After a long enough time, the vibration settles in a
specific pattern; see Fig. 7(f), where the vibration amplitude of the first and second shaft segments is significantly larger
than that of the third segment. This is because the excitation frequency is near the 17th natural frequency of the shaft,
o17=236.4243 rad/s. For comparison, see the 17th mode shape in Fig. 4(f). Therefore, the pattern in Fig. 7(f) is a reflection
of dominancy of the 17th mode shape in the shaft vibration.
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Fig. 6. Distribution of shear strain qy=qx (in rad/m) of the shaft subject to the uniform torque at time t=1 s, computed with first 10, 20 and 50 terms from

series (67).
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7. Conclusions

The distributed transfer function method developed for transient analysis of stepped distributed systems has the
following features.
(a)
 The DTFM is the first Laplace-transform-based analytical method that delivers exact transient solutions for stepped
systems of any number of distributed components and lumped masses, and subject to combined external, boundary
and initial disturbances. The highlight of the method is that it in transient analysis gives exact transfer function
residues, without having to deal with tedious derivations and possible errors caused by singularities of system transfer
functions.
(b)
 The DTFM describes stepped distributed systems with a compact spatial state formulation. Nonuniform distribution of
physical parameters and general boundary conditions are systematically treated through easy assignment of state
matrices F j, boundary matrices Mb and Nb, and constraint matrices T i. The solution procedure is the same for different
system configurations and various excitations. Furthermore, the DTFM-based computation only requests simple
operations of two-by-two matrices. The symbolic feature and low-order matrix manipulation make the DTFM highly
efficient in numerical simulation, as has been shown in Section 6.
(c)
 The DTFM is different from existing series solution methods in two major aspects. First, unlike eigenfunction expansion
technique, the DTFM in transient analysis does not use system eigenfunctions, and in computation does not need to
deal with spatial integrals for normalization of system eigenfunctions. Second, many series solution methods require
different derivations for different system configurations (number of components, boundary conditions, constraints and
lumped masses, etc.). The DTFM adopts a symbolic formulation, Eqs. (9), (13) and (14), which systematically treats
different configurations by formula (52). This symbolic manipulation feature renders the DTFM user-friendly.
(d)
 Facilitated by matrices T i in the fundamental matrix of Eq. (21), the DTFM is capable of producing piecewise-
continuous spatial derivatives in a solution, as demonstrated in Fig. 5. Piecewise-continuous spatial derivatives are
required to portrait jumps in stress or strain for continua with nonuniform geometric and material properties.
Conventional series methods, such as Rayleigh–Ritz method and Galerkin method, do not have this capability as they
employ a sequence of functions whose spatial derivatives are continuous in the entire domain. This feature makes the
DTFM quite useful for dynamic analysis of continua with geometric and material discontinuities.
While only uniform distributed components are considered in this work, the proposed transient analysis can be
generalized to include certain nonuniform components whose inertia and stiffness parameters are functions of spatial
coordinate x. For instance, exact transient solutions of shafts and bars with tapered, conical, and exponential cross sections
may be obtained by the DTFM. One key in this generalization is to replace exponential matrices eFiðsÞx by appropriate state
transition matrices for the related nonuniform components. An investigation on this subject is underway.
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Fig. 7. Transient displacement profiles of the shaft subject to the sinusoidal boundary excitation ybðtÞ ¼Y0 sinot, with Y0 ¼ 0:05 rad, o=236 rad/s: (a)

t=0.05 s; (b) t=0.1 s; (c) t=0.15 s; (d) t=0.2 s; (e) t=0.5 s; and (f) t=4 s.
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Appendix A. Proof of Eq. (24)

By Eqs. (24) and (25)

ĝðx; sÞ ¼Uðx; x0; sÞZ
�1
ðsÞ Mb

Z x

x0

Uðx0;x; sÞp̂ðx; sÞdx� Nb

Z xn

x
Uðxn; x; sÞp̂ðx; sÞdxþcbðsÞ

	 

�Uðx; x0; sÞZ

�1
ðsÞ
Xn�1

i ¼ 1

Dðx; xiþ ; sÞmiðsÞ

(A.1)
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where

Dðx; xiþ ; sÞ ¼
MbUðx0; xiþ ; sÞ for xiþrx

�NbUðxn; xiþ ; sÞ for xiþ4x

(
(A.2)

Differentiate the both sides of Eq. (A.1) and use the properties (18), to obtain

q
qx

ĝðx; sÞ ¼ Fðx; sÞĝðx; sÞþUðx; x0; sÞZ
�1
ðsÞðMbUðx0; x; sÞþNbUðxn; x; sÞÞp̂ðx; sÞ

¼ Fðx; sÞĝðx; sÞþUðx; x0; sÞZ
�1
ðsÞZðsÞUðx0; x; sÞp̂ðx; sÞ ¼ Fðx; sÞĝðx; sÞþ p̂ðx; sÞ

This means that Eq. (A.1) satisfies the state Eq. (11). Now, use Eq. (A.1) to compute

Mbĝðx0; sÞþNbĝðxn; sÞ ¼MbZ�1
ðsÞ gbðsÞ � NbUðxn; x0; sÞ

Z xn

x0

Uðx0; x; sÞp̂ðx; sÞdx
� �

þNbUðxn; x0; sÞZ
�1
ðsÞ gbðsÞþMb

Z xn

x0

Uðx0;x; sÞp̂ðx; sÞdx
� �

þ
Xn�1

i ¼ 1

fMbUðx0; x0; sÞZ
�1
ðsÞNbUðxn; xiþ ; sÞ � NbUðxn; x0; sÞ

�Z�1
ðsÞMbUðx0; xiþ ; sÞmiðsÞg

¼MbZ�1
ðsÞ cbðsÞþðMb � ZðsÞÞ

Z xn

x0

Uðx0; x; sÞp̂ðx; sÞdx
� �

þðZðsÞ �MbÞZ
�1
ðsÞ � cbðsÞþMb

Z xn

x0

Uðx0; x; sÞp̂ðx; sÞdx
� �

þ
Xn�1

i ¼ 1

fMbZ�1
ðsÞðZðsÞ �Mb � ðZðsÞ �MbÞZ

�1
ðsÞMbgUðx0; xiþ ; sÞmiðsÞ

¼ cbðsÞ

where NbUðxn; x0; sÞ ¼ ZðsÞ �Mb and Eq. (18) have been used. So, Eq. (A.1) satisfies the boundary condition (14). Finally, by
Eqs. (A.1), (A.2) and (17),

ĝðxjþ ; sÞ ¼ T jUðxj�; x0; sÞZ
�1
ðsÞfMb

Z xj�

x0

Uðx0; x; sÞp̂ðx; sÞdx� Nb

Z xn

xj�

Uðxn; x; sÞp̂ðx; sÞdx

þcbðsÞg � T jUðxj�; x0; sÞZ
�1
ðsÞ
Xn�1

i ¼ 1

Dðxj�; xiþ ; sÞmiðsÞ

�T jUðxj�; x0; sÞZ
�1
ðsÞZðsÞUðx0; xj�; sÞT

�1
j miðsÞ ¼ T jĝðxj�; sÞ � miðsÞ

This shows that Eq. (A.1) also satisfies the matching condition (13). Therefore, Eqs. (24) and (25) provide the unique
solution of Eq. (11) subject to conditions (13) and (14).

Appendix B. Proof of Eq. (43)

It is easy to show that

d

ds
jZðsÞj ¼ det MbþNb

dUðxn; sÞ

ds

� �
þdet

dMb

ds
þNbUðxn; sÞ

� �
þdet Mbþ

dNb

ds
Uðxn; sÞ

� �
(B.1)

By Eq. (21)

dUðxn; sÞ

ds
¼

d

ds
ðeFnðsÞln Tn�1eFn�1ðsÞln�1 � � �T1eF1ðsÞl1 Þ (B.2)

and with Eq. (22)

d

ds
ðeF iðsÞli Þs ¼ jok

¼ jEiðokÞ (B.3)

where EiðokÞ is given in Eq. (46). Note that eF iðjokÞli , Mbjs ¼ jok
and Nbjs ¼ jok

all are real matrices. Substituting Eqs. (B.2) to
(B.3) into Eq. (B.1) yields Eq. (43).
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