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This paper addresses the problem of synchronizing a class of single-degree-of-freedom

oscillators with uncertain parameters. A modified adaptive control scheme is proposed

to achieve globally asymptotic stable synchronization between the master and slave

oscillators with arbitrary different initial conditions based on the Barbalat’s Lemma. One

may be easily designed in practical applications. On the other hand, the method can

ensure that the unknown parameters in the slave oscillator would be completely

estimated with an adaptive updating law. Numerical simulations are performed on two

examples to verify the analytical results.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Chaos synchronization, since the pioneering work of Pecora and Carroll [1], has attracted increasing interest due to its
wide application potential in many fields such as physics, chemistry, engineering and biology [2–4]. Given the conditional
Lyapunov exponents are all negative, Pecora and Carroll designed master system signals to slave the responding system to
follow the dynamics of the master system for synchronization with chaotic systems that intrinsically defy synchronization.
The condition, however, is only necessary, but not sufficient, for synchronization. In view of this, a wide variety of
approaches have been proposed for the synchronization of chaotic systems such as the linear coupling feedback scheme,
active-passive decomposition method [5], backstepping design [6], adaptive control [7–12], sliding mode control [13–17].
Among these methods, the adaptive control scheme can ensure globally asymptotically stable synchronization for almost
all continuous chaotic systems. Unfortunately, to implement synchronization, almost all of the existing methods, besides
the traditional adaptive control scheme, require several controllers that are more difficult to put into practice than a scalar
one. Moreover, in practice the effective synchronization method has to be able to identify unknown parameters admitting
environmental perturbations.

The single-degree-of-freedom (SDOF) oscillator is the simplest possible mechanical system but with very rich dynamics
and complex phenomena such as chaos [18–21]. The SDOF oscillator includes a class of well known systems such as the
Duffing oscillator, van der Pol oscillator and Ueda oscillator, and can be used to model the motion of a gyro, single
pendulum, earthquake, Josephson junction, etc. Due to its wide range of applications, the control and synchronization of
SDOF systems has been investigated by many scholars. Chen studied chaos control and synchronization of a symmetric
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nonlinear gyro with numerical methods [21]. The authors attained robust synchronization for two chaotic nonlinear gyros
by using the adaptive control scheme based on Lyapunov stability theory and Routh–Hurwitz criteria [22]. With initial
parameter mismatches, Zhang et al. designed feedback controllers to realize synchronization for parametrically excited
chaotic pendulums and at the same time to estimate unknown parameters [23]. Wu et al. proposed a linear feedback
control technique to synchronize two non-autonomous Duffing oscillators based on the Lyapunov direct method and linear
matrix inequality [24]. In most of these studies, the feedback signals require two controllers. In Ref. [25], an adaptive
sliding mode control, which is only scalar, was devised for synchronization of a class of chaotic systems with uncertainties.
When the parameters of chaotic gyros are fully unknown, Yan et al. used a simple scalar sliding mode control with adaptive
laws of parameters to achieve synchronization [26]. However, the sliding mode control would inevitably cause chattering,
which leads to difficulties in estimating unknown parameters of chaotic systems, around the synchronization manifold due
to delay in control switching.

Motivated by the discussions above, the aim of this work is to develop the adaptive control for synchronizing two
chaotic SDOF oscillators with unknown parameters. The rest of this paper is organized as follows. In Section 2, the problem
of synchronization for two chaotic SDOF oscillators is addressed at first, and then the scalar adaptive control is proposed to
establish a principle of their synchronization and parameter estimation based on the Barbalat’s Lemma. In Section 3, it is
shown that two illustrative examples, synchronizing two chaotic nonlinear gyros with unknown parameters and two
chaotic parametrically excited Duffing oscillators with unknown parameters, respectively, confirm the validity and
feasibility of the proposed method. Finally, conclusions are drawn in Section 4.
2. Problem formulation and synchronization principle

Consider the SDOF oscillator described by

€yþ f ðy; _y; tÞ ¼ 0 (1)

where y 2 R is the position variable with regard to time t, _y and €y represents the corresponding velocity and acceleration
variables, respectively, and f is a nonlinear function of y, _y and t. As stated above, one may check easily that system (1)
includes various types of systems such as the Duffing oscillator, van der Pol oscillator and Ueda oscillator.

Denoting x1 ¼ y, x2 ¼
_y, system (1) is transformed into first-order ordinary differential equations with the form

_x1 ¼ x2

_x2 ¼ f ðx; tÞ

(
(2)

where x¼ ðx1; x2Þ
T
2 R2. Here, system (1) is considered as the master system, and the slave system with the same form of

Eqs. (2) with a scalar controller u¼ uðtÞ 2 R added to its right side is introduced as follows:

_y1 ¼ y2

_y2 ¼ f ðy; tÞþuðtÞ

(
(3)

where y¼ ðy1; y2Þ
T
2 R2 denotes the slave state vector and f ðy; tÞ is a nonlinear function with the form of

f ðy; tÞ ¼ gðy; tÞþ
Pn

i ¼ 1 pihiðy; tÞ. Here, gðy; tÞ and hiðy; tÞ, i¼ 1;2; . . . ;n, are nonlinear functions, and pi, i¼ 1;2; . . . ;n, are
unknown parameters to be estimated. To investigate synchronization, we assume that the master and slave systems have
bounded unique solutions in the time interval ð�1; þ1Þ given arbitrary initial conditions xðt0Þ ¼ x0; yðt0Þ ¼ y0, and that the
master system is globally chaotic.

The synchronization problem is how to design the scalar controller uðtÞ, which is attached to the slave system, such that
the states of both the master and the slave systems are synchronized for arbitrary different initial conditions. If we define
the error vector as e¼ y� x, the dynamic equations of synchronization errors can be expressed as

_e1 ¼ e2

_e2 ¼ gðy; tÞþ
Xn

i ¼ 1

pihiðy; tÞ � f ðx; tÞþuðtÞ

8><
>: (4)

Therefore, the objective of synchronization is to make limt-þ1JeðtÞJ¼ 0 where J � J represents the Euclidean norm. In
this way, the problem of synchronization between the master and the response systems can be transformed into a problem
of how to implement asymptotical stabilization of the error system (4). Thus, the prime purpose of this study is to design a
controller uðtÞ to make the dynamical system (4) asymptotically stable at the origin.

We introduce the scalar adaptive control function uðtÞ as

uðtÞ ¼ f ðx; tÞ � gðy; tÞ �
Xn

i ¼ 1

p̂ihiðy; tÞ � e1 � ke2 (5)
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where k is a positive constant, and p̂i, i¼ 1;2; . . . ;n, are the estimates of the unknown parameters such that

_̂p i ¼ aihiðy; tÞe2 (6)

where ai, i¼ 1;2; . . . ;n, are positive constants.
Now, we give our main results in the following theorem.

Theorem 1. Suppose that the slave system (3) is driven by the master system (2) under the scalar controller (5) with the

parameters updating adaptive law (6), and the nonlinear functions hiðy; tÞ, i¼ 1;2; . . . ;n, are linearly independent and not

invariant. Then the error dynamical system (4) is globally asymptotically stable at the origin, that is limt-þ1JeðtÞJ¼ 0, and the

availability of the estimation of the unknown parameters can be guaranteed, that is limt-þ1 p̂i ¼ pi, i¼ 1;2; . . . ;n.

Proof. Combine the error system (4) between the master and slave systems and the system (6) which estimates the unknown
parameters as an augmented non-autonomous system. To achieve global synchronization between the master and slave
systems is to achieve global stability of the origin in the augmented system. Construct a non-negative function as follows:

VðtÞ ¼
1

2

X2

i ¼ 1

e2
i þ

1

2

Xn

i ¼ 1

1

ai
ðp̂i � piÞ

2 (7)

where p̂i, i¼ 1;2; . . . ;n, are the estimates of unknown parameters pi, i¼ 1;2; . . . ;n.

By differentiating VðtÞ with respect to time t along the solution of the augmented system, we have

_V ðtÞ ¼ e1 _e1þe2 _e2þ
Xn

i ¼ 1

1

ai
ðp̂i � piÞ

_̂p i ¼ e1e2þe2

�
gðy; tÞþ

Xn

i ¼ 1

pihiðy; tÞ � f ðx; tÞþuðtÞ
�

þ
Xn

i ¼ 1

ðp̂i � piÞhiðy; tÞe2 ¼ e2

�Xn

i ¼ 1

pihiðy; tÞ �
Xn

i ¼ 1

p̂ihiðy; tÞ � ke2

�

þ
Xn

i ¼ 1

ðp̂i � piÞhiðy; tÞe2 ¼ � ke2
2r0 (8)

Therefore, the non-negative function VðtÞ is monotonically non-increasing and converges as t-þ1. Consequently, we

can obtain Z t

t0

ke2
2 dt¼ �

Z t

t0

_V ðtÞdt¼ Vðt0Þ � VðtÞ

so that

lim
t-þ1

Z t

t0

ke2
2 dt

exists and is finite; besides, ke2
2 is uniformly continuous in the range ½t0; þ1Þ. Using Barbalat’s Lemma [27], it follows that

limt-þ1ke2
2 ¼ 0, which is equivalent to limt-þ1e2 ¼ 0. Note that substituting Eqs. (5) and (6) into the second equation of

system (4) yields _e2 ¼
Pn

i ¼ 1ðpi � p̂iÞhiðy; tÞ � e1 � ke2. Since hiðy; tÞ, i¼ 1;2; . . . ;n, are linearly independent and not invariant, it

follows that limt-þ1p̂i ¼ pi and limt-þ1e1 ¼ 0, i¼ 1;2; . . . ;n, by taking the limit t-þ1 of this equation. Moreover, since all

the above derivations hold globally, we can conclude that the two systems (2) and (3) are globally asymptotically synchronized

and the unknown parameters can be estimated with arbitrary initial conditions. This completes the proof. &

3. Illustrative examples

In this section, the effectiveness of the scalar adaptive control is demonstrated by two illustrative examples and
numerical simulations are carried out to verify the proposed method. Throughout the simulations, the sixth-order Runge–
Kutta method is used to solve ordinary differential equations with adaptive step-size algorithm.

Example 1. Consider an SDOF oscillator modeling the motion of gyros in which the states are described by

_x1 ¼ x2

_x2 ¼ p1x2 � p2x3
2þp3 sinð2tÞsin x1þp4 sin x1 � gðx1Þ

(
(9)

where gðx1Þ ¼ ð10� 10 cos x1Þ
2=sin3 x1 and p1; p2; p3; p4 are unknown parameters. The dynamics of this system has been

investigated by Chen [21], and it is shown that for p1 ¼ � 0:5, p2 ¼ 0:05, p3 ¼ 35:5, p4 ¼ 1, the gyro exhibits chaotic
behaviors. We select these parameters and take system (9) as the master system. Now, we introduce a gyro with identical
parameters as the slave system

_y1 ¼ y2

_y2 ¼ p1y2 � p2y3
2þp3 sinð2tÞ sin y1þp4 sin y1 � gðy1ÞþuðtÞ

(
(10)
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where uðtÞ is a scalar control to be designed. According to Eqs. (5) and (6), we choose the control as

uðtÞ ¼ f ðx; tÞþgðy1Þ � p̂1y2þ p̂2y3
2 � p̂3 sinð2tÞ sin y1 � p̂4 sin y1 � e1 � 5e2 (11)

where f ðx; tÞ ¼ p1x2 � p2x3
2þp3 sinð2tÞ sin x1þp4 sin x1 � gðx1Þ, and the estimates of the unknown parameters satisfy the

adaptive updating law as below

_̂p 1 ¼ y2e2

_̂p 2 ¼ � y3
2e2

_̂p 3 ¼ sinð2tÞ sinðy1Þe2

_̂p 4 ¼ sinðy1Þe2

8>>>>><
>>>>>:

(12)

With this choice, it follows from Theorem 1 that the two gyros (9) and (10) are globally asymptotically synchronized and

the unknown parameters can be estimated in spite of arbitrary different initial conditions. In addition, we use numerical

simulations to examine whether the method is feasible. Without loss of generality, the initial conditions for the master and

slave systems (9) and (10) and for the adaptive law of parameters updating are set as ðx1; x2; y1; y2Þ ¼ ð0:6;0:12;1:5;�1:1Þ

and p̂i ¼ 0, i¼ 1;2;3;4, respectively. Fig. 1 shows temporal evolutions of the master system (9) and the error system

between systems (9) and (10). It can be seen that the errors will converge to zero finally, thus implying that via the control

(11) the two gyros with unknown parameters for different initial conditions can indeed achieve synchronization. At the

same time, Fig. 2 shows that the unknown parameters can be dynamically estimated with the updating law (12).

Compared with Ref. [22], this study uses only one scalar adaptive controller, which improves and extends the traditional

adaptive control scheme, when synchronizing two chaotic gyros. On the other hand, compared with the sliding mode

control [26], the proposed method, which avoids chattering, can identify unknown parameters in the chaotic gyros.

Example 2. Consider a Duffing oscillator subjected to a harmonic parametric excitation as follows:

_x1 ¼ x2

_x2 ¼ � p1x2þp2 sinðotÞx1þp3x1þp4x3
1

(
(13)

where o¼ 1:0 denotes the frequency of the parametric excitation and p1; p2; p3; p4 are unknown parameters. More details
for the model can be seen in Ref. [28]. We select the parameters p1 ¼ 0:2, p2 ¼ 0:5, p3 ¼ 1:0, p4 ¼ � 1:0, with which the
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Fig. 1. Temporal evolutions of the master system (9) and the error system between systems (9) and (10), where e1 ¼ y1 � x1 and e2=y2–x2.
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Fig. 2. Temporal evolutions of the adaptive parameter estimation (12).
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system is chaotic, and take it as the master system. Correspondingly, the slave system can be written as

_y1 ¼ y2

_y2 ¼ � p1y2þp2 sinðotÞy1þp3y1þp4y3
1þuðtÞ

(
(14)

where uðtÞ is a scalar control to be designed. According to Eqs. (5) and (6), we choose the control as

uðtÞ ¼ f ðx; tÞþ p̂1y2 � p̂2 sinðotÞy1 � p̂3y1 � p̂4y3
1 � e1 � e2 (15)

where f ðx; tÞ ¼ � p1x2þp2 sinðotÞx1þp3x1þp4x3
1, and the estimates of the unknown parameters satisfy the adaptive

updating law as below

_̂p 1 ¼ � y2e2

_̂p 2 ¼ sinðotÞy1e2

_̂p 3 ¼ y1e2

_̂p 4 ¼ y3
1e2

8>>>>><
>>>>>:

(16)

With this choice, it follows from Theorem 1 that the two Duffing oscillators (13) and (14) are globally asymptotically

synchronized and the unknown parameters can be estimated in spite of arbitrary different initial conditions. In addition,

we use numerical simulations to examine whether the method is feasible. Without losing any generality, the initial

conditions for systems (13) and (14) and for the parameters updating law are set as ðx1; x2; y1; y2Þ ¼ ð2:0;�1:2;0:5;0:2Þ and

p̂i ¼ 0, i¼ 1;2;3;4, respectively. Fig. 3 shows that for these initial conditions the master and slave systems (13) and (14)

have been synchronized by the control (15); while, Fig. 4 shows that the unknown parameters have been simultaneously

identified by the updating law (16).

4. Conclusions

In this paper, a modified adaptive controller, which requires only a scalar driving signal and could be easily designed in
practical applications, is proposed for globally synchronizing two chaotic SDOF oscillators with uncertain parameters,
based on the Barbalat’s Lemma. Compared with the traditional sliding mode control, the proposed method avoids
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chattering and can dynamically estimate the unknown parameters in the slave system with the adaptive law for
parameters updating. Two examples have been used to demonstrate how to apply the proposed controller and numerical
simulations, and further verified the feasibility and effectiveness of the proposed method.
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