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This paper investigates the linear response of an archetypal energy harvester that uses

electromagnetic induction to convert ambient vibration into electrical energy.

In contrast with most prior works, the influence of the circuit inductance is not

assumed negligible. Instead, we highlight parameter regimes where the inductance can

The governing equations consider the case of a vibratory generator directly

powering a resistive load. These equations are non-dimensionalized and analytical

solutions are obtained for the system’s response to single harmonic, periodic, and

stochastic environmental excitations. The presented analytical solutions are then used

to study the power delivered to an electrical load.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Energy harvesting devices scavenge energy from the environment. The simplest type of device uses environmental
disturbances to excite an inertial generator; inertial generators contain a moving mass, sometimes called a proof mass, that
is suspended in reference to the generator frame by a compliant mechanism—such as springs or magnets [1,2]. When the
generator frame is accelerated, the inertial mass begins to oscillate and convert environmental disturbances into
mechanical energy. Transduction methods, such as electromagnetic inductance, capacitance, or piezoelectric elements, are
then used to couple the oscillator with an electrical circuit for mechanical to electrical energy transfer [3–7]. A side effect of
this energy transfer is an increase in the mechanical oscillator energy dissipation. The transferred electrical energy is then
used directly, as studied in the present manuscript, or stored for future applications [8].

Starting with the work of Williams et al. [9], the focus has primarily been on inertial generators with linear behavior.
A primary limitation of inertial generators with linear performance is that they only perform well for a narrow band of
frequencies; any variation in the excitation frequency or frequencies will greatly reduce device’s ability to harvest energy.
This also provides an implementation challenge, since it is typically difficult to match the linear resonance of a fabricated
device to an environmental frequency [2]. Recent efforts have attempted to overcome the shortcomings of linear devices
by: (1) taking advantage of nonlinear phenomena to broaden the frequency response [2,10–12]; (2) adding many
oscillators with staggered resonances to broaden the systems frequency response [8,13,14]; or (3) through passive or
active methods to tune the device’s resonance [15]. The present article contributes to the last of these strategies by
ll rights reserved.
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providing an exact expression for the harvester’s resonance in terms of the physical parameters for the inertial generator
and accompanying electrical circuit.

The objective of this paper is to provide analytical solutions for the linear response of an archetypal harvester. More
specifically, we investigate analytical solutions for devices that use electromagnetic induction to transfer energy between
the mechanical and electrical domains. In contrast with several recent works [2,3,16–19], the present study does not
neglect the influence of the circuit inductance. Thus the presented closed-form solutions can be applied to elucidate the
influence of additional design choices on device performance. Another difference in the present work is that analytical
solutions were obtained for several types of ambient excitation (i.e. single-harmonic, periodic, and narrow-band white
noise excitations). In contrast, most prior works only consider single-harmonic excitation [8,20–23].

The content of this paper is organized as follows. The next section derives the governing equations for an archetypal
harvester that uses electromagnetic induction. The governing equations have been non-dimensionalized and analytical
solutions were obtained for single-harmonic, periodic, and stochastic environmental excitations. The analytical solutions
were then used to study the power delivered to an electrical load before discussing general conclusions in the final section
of the paper.

2. Energy harvester model

This section describes a model for the base excitation of an inertial generator that converts mechanical energy into
electrical energy via electromagnetic inductance. The section is organized into a presentation of the relationships
governing the energy conversion process and a formulation of the non-dimensionalized governing equations. Although an
archetypal electromagnetic harvester is considered, for the case of directly powering an electrical load [9,16], the
governing equations are presented for completeness.

2.1. Electromechanical coupling and energy conversion

This section describes the relationships governing the energy flow from the mechanical system to the electrical circuit
(see Fig. 1). To describe the motion of the system, two reference frames were applied. The first reference frame, designated
as ẑ, tracks the housing translation; the second reference frame, designated as x̂, is used to track the motion of the magnet.
Using ŷ ¼ x̂ � ẑ as the relative displacement between the magnet and coil, the electromechanical coupling can be written in
terms of the instantaneous power

Fe
dŷ

dt
¼ iV ; (1)

where Fe is the electrical damping force, V is the induced voltage across the coil, and i is the current in the electrical circuit
of Fig. 1 b. The magnitude of the voltage induced across the coil, as described by Faraday’s law of induction, is equal to the
time rate of change in the magnetic flux

V ¼
dF
dt
¼

dF
dŷ

dŷ

dt
; (2)

where F is the magnetic flux. Since F is a function of the spatial magnetic field (typically defined as B), the coil geometry,
number of windings, construction, and the coil location within the magnetic field, we have chosen to omit a specific
Fig. 1. Schematic diagram of an inertial energy generator that uses induction to transfer the mechanical energy of an oscillating magnet into electrical

energy is shown in (a). The schematic of graph (b) shows the accompanying electrical circuit that uses the electrical energy.
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expression thereby keeping the analysis that follows general. While Eq. (2) gives the voltage drop across the coil,
substituting Eq. (2) into Eq. (1) gives an equation for the force that opposes the motion of the oscillating magnet

Fe ¼ i
dF
dŷ

: (3)

While the flux gradient is generally a function of space, we have assumed it to be constant over the range of interest—thus
keeping the governing equations linear. Before implementing these expressions in the governing equations, we note that
dF=dŷ provides the electromechanical coupling between the mechanical and electrical system.

2.2. Harvester model

An equation for the electrical circuit was obtained by applying Kirchoff’s voltage law to the electrical circuit of Fig. 1 b,

L
di

dt
þ iðRLþRiÞ ¼

dF
dŷ

dŷ

dt
; (4)

where L is the inductance, Ri is the internal resistance of the coil and RL is the resistance of the external load. The equation
for the mechanical system was obtained from a summation of forces in the vertical direction

m
d2ŷ

dt2
þc

dŷ

dt
þkŷþ i

dF
dŷ
¼ �m

d2ẑ

dt2
; (5)

where m is the inertial mass, k is the spring stiffness, c is a constant used to described the mechanical damping and d2ẑ=dt2

is the base acceleration. For the sake of analytical convenience, Eqs. (4) and (5) were non-dimensionalized using the
following substitutions:

2zo¼ c

m
; o2 ¼

k

m
; t¼ot; y¼

ŷ

l
; z¼

ẑ

l
and I¼

i

im
; (6)

where z is the damping ratio, o is the natural frequency, t is dimensionless time, l is the maximum displacement
allowed by physical constraints, and im is a threshold or reference current. The resulting non-dimensional
equations are

_IþaI¼ b _y; (7a)

€yþ2z _yþyþgI¼ � €z; (7b)

where a dot denotes a derivative with respect to dimensionless time and the dimensionless constants,

a¼ RLþRi

oL
; b¼

1

imL

dF
dy

and g¼ im
mo2l2

dF
dy

(8)

have been defined in terms of the original physical parameters. For the purposes of clarifying the results that follow, we
note that both a and b contain L. This means that multiplying a and b by a constant is identical to changing in L while
holding all other parameters constant. Similarly, a change in RL would only alter a, again assuming all other parameters
remained unchanged.

3. Response to various types of ambient vibration

This section investigates the response behavior of the electromagnetic harvester model to different types of ambient
vibration. Investigations first consider a simple input—in the form of harmonic base excitation—before investigating more
complex excitations. The single-harmonic results are followed by the investigation of periodic-base excitation and
predictions for narrow-band white noise.

3.1. Single-frequency base excitation

This section derives the harvester’s response when subjected to single-frequency base excitation. A base excitation was
assumed in the form, ÂcosOt, where O represents the excitation frequency and Â the acceleration amplitude.
A dimensionless form for the base excitation, €z ¼ AcosZt, was obtained by defining Z¼O=o and A¼ Â=lo2. Inserting
this excitation into Eq. (7b) gives

_IþaI¼ b _y; (9a)

€yþ2z _yþyþgI¼ AcosZt: (9b)
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The steady-state response of the system was determined by applying the method of undetermined coefficients. The
assumed form for the steady-state response is

yðtÞ ¼ acosðZtþfÞ ¼ 1
2aðejðZtþfÞ þe�jðZtþfÞÞ; (10a)

IðtÞ ¼ bcosðZtþcÞ ¼ 1
2bðejðZtþcÞ þe�jðZtþcÞÞ; (10b)

where j¼
ffiffiffiffiffiffiffi
�1
p

, a is the response amplitude of the mass and f is the phase response relative to the input excitation; the
parameters b and c represent the response amplitude and phase of the electrical current. The following two equations
were obtained after substituting Eqs. (10a) and (10b) into Eqs. (9a) and (9b) and collecting the coefficients of ejZt,

ðjZþaÞb¼ jbZaejðf�cÞ; (11a)

ð1� Z2þ2jzZÞaejðf�cÞ þgb¼ Ae�jc: (11b)

The second of these two equations was separated into real and imaginary terms to obtain

Acosc¼ ð1� Z2Þacosðf� cÞ � ð2zZÞasinðf�cÞþgb; (12a)

�Asinc¼ ð1� Z2Þasinðf� cÞþð2zZÞacosðf� cÞ: (12b)

Eq. (11a) was also separated into real and imaginary terms to obtain Eqs. (13a) and (13b). Squaring and adding these two
equations gives the relationship of Eq. (13c),

asinðf� cÞ ¼ �
ba
bZ ; (13a)

acosðf� cÞ ¼
b

b
; (13b)

b¼ a
bZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þZ2

p : (13c)

The steady-state amplitude of the dimensionless electrical circuit was found by substituting Eqs. (13a)–(13c) into
Eqs. (12a) and (12b). After squaring and summing the resultant equations, the following solution was obtained for the
response of the electrical circuit

b¼
AbZ

½ða2þZ2Þðð1� Z2Þ
2
þð2zZÞ2Þþ2bgZ2ð1þ2az� Z2ÞþðgbZÞ2�1=2

: (14)

The response amplitude of the mass was obtained by combining Eqs. (13c) and (14) to formulate the following expression:

a¼
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þZ2

p
½ða2þZ2Þðð1� Z2Þ

2
þð2zZÞ2Þþ2bgZ2ð1þ2az� Z2ÞþðgbZÞ2�1=2

: (15)

The above result is rather instructive since removing the coupling between the mechanical and electrical systems, by
setting b¼ g¼ 0, returns the exact response for the linear harmonic oscillator.

The steady-state phase response can also be determined from the results of this section. Specifically, Eqs. (12a)–(13c)
were used to determine the phase response of the electrical circuit,

c¼ tan�1 2zþaðZ2 � 1Þ

ZðZ2 � 1� 2az� gbÞ

� �
; (16)

along with the corresponding phase response for the oscillating magnet

f¼c� sin�1 affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þZ2

p
 !

: (17)

The analytical solutions of Eqs. (14)–(17) were used to study the response behavior for several parameter combinations.
The primary observations from our studies have been summarized in the graphs of Figs. 2–4. Focusing on the reference

case of Fig. 2, the predictions show prototypical behavior for the response amplitudes and phase. More specifically, the
peak response or resonance occurs near Z¼ 1 for both the mass and circuit—a result that is in agreement with the findings
of several prior works [8,9,22]. The first contrasting case is shown in Fig. 3; notice that the resonance for the mass is no
longer near Z¼ 1, although the maximum current still occurs near Z¼ 1. These counter-intuitive analytical predictions,
results that mimic a resistive load change from the results of Fig. 2, were confirmed with simulation (see markers from
simulated results in Fig. 3). Perhaps the most interesting case is shown in Fig. 4, where the maximum current is also shown
to occur far away from Z¼ 1. This response was obtained for the same parameters as those of Fig. 3, with the exception of
multiplying a and b by a constant to mimic a different inductance.
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Fig. 2. Response amplitude and phase relationships for the mass (graphs (a) and (c)) and the electric circuit (graphs (b) and (d)) when excited by a single

harmonic. A solid line represents analytical predictions and the marker 3 denotes a result from simulation. The following parameters were used to

generate these graphs a¼ 2500, b¼ 10, z¼ 0:01, g¼ 8, and A¼ 1
20.
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Fig. 3. Response amplitude and phase relationships for the mass (graphs (a) and (c)) and the electric circuit (graphs (b) and (d)) when excited by a single

harmonic. A solid line represents analytical predictions and the marker 3 denotes a result from simulation. The following parameters were used to

generate these graphs a¼ 50, b¼ 10, z¼ 0:01, g¼ 8, and A¼ 1
20.
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The counter-intuitive results of Figs. 2–4 can be explained by developing an analytical expression for resonance. For
instance, the extrema of Eq. (14) are found from db=dZ¼ 0, which gives the following polynomial expression:

Z6
bþ

a2

2
þ2z2

� bg� 1

� �
Z4

b �
a2

2
¼ 0; (18)

where Zb is the dimensionless resonant frequency. While Eq. (18) predicts the peak current in Figs. 2–4, the Zb trends
of Fig. 5 provide additional insight. In particular, this graph shows three Zb curves, where b was held constant and a varied,
that indicate Zb is very sensitive to b for small values of a; we note that varying only alpha means that the inductance was
held constant. If both alpha and beta are multiplied by a constant, which mimics an inductance change, the result in Fig. 5
is a jump to a different curve. This essentially extends the range where the resonance frequency is influenced by varying
either inductance or resistance. For sufficiently large values of a, all the curves coalesce and Zb is nearly independent of
changes in either a or b; this illustrates that inductance changes have very little influence within this region.

To summarize, the analytical solutions obtained in this section show responses that replicate the intuitive results of
prior work, i.e. the resonance for the oscillator displacement and current may occur near Z¼ 1. However, multiple counter-
intuitive cases were presented for other parameter regimes where the inductance was shown to significantly alter the
response behavior. For all of the cases shown, we have overlaid numerical simulation results to provide an external check
and illustrate the strong agreement with the closed form solutions. Furthermore, we have shown regions where the
resonance is sharply dependent upon the parameters of the electrical circuit and regions where the resonance is nearly
independent of parameters in the electrical circuit. Our results also indicate that changes in the inductance, mimicked
through simultaneous a and b changes, can either shrink or expand the region where resonance tuning can be achieved.
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3.2. Periodic base excitation

The response of an energy harvester is intimately coupled to excitation provided by the environment. Thus it is relevant
to consider the harvester’s response to various types of ambient vibration; accordingly, this section derives the harvester
response to an arbitrary-periodic excitation. For these cases, the response behavior can be generically determined when
the excitation is written as a Fourier series. This provides the motivation for the current section where the harvester’s
response was determined as a function of the input Fourier series coefficients.

A periodic acceleration with zero mean was assumed for the base excitation; this can be expressed as a summation of

harmonics,
P1

p ¼ 1 ÂpcospðOtþlÞ, of acceleration amplitude Âp shifted by l. Using the following two relationships, Z¼O=o

and Ap ¼ Âp=lo2, the dimensional excitation was converted into a dimensionless excitation of the formP1
p ¼ 1 ApcospðZtþlÞ. Inserting the periodic excitation into the governing equations gives

_IþaI¼ b _y; (19a)

€yþ2z _yþyþgI¼
X1
p ¼ 1

ApcospðZtþlÞ: (19b)

The steady-state solution takes the following form:

yðtÞ ¼ 1

2

X1
p ¼ 1

apðe
jpðZtþfÞ þe�jpðZtþfÞÞ; (20a)

IðtÞ ¼ 1

2

X1
p ¼ 1

bpðe
jpðZtþcÞ þe�jpðZtþcÞÞ: (20b)

After substituting Eqs. (20a) and (20b) into Eqs. (19a) and (19b) and collecting the coefficients of ejpZt, the following two
equations were obtained:

ðjkþaÞbp ¼ jbkapejpðf�cÞ; (21a)

ð1� k2þ2jkzÞapejpðf�cÞ þgbp ¼ Ape�jpðl�cÞ; (21b)

where the following substitution, k¼ pZ, has been applied. Following the solution procedure outlined in Section 3.1,
Eqs. (21a) and (21b) can be separated into real and imaginary terms to determine the response of the system. The following
solution was obtained for the p th harmonic of the dimensionless electrical circuit

bp ¼
Apkb

½ða2þk2Þðð1� k2Þ
2
þð2zkÞ2Þþ2gbk2ð1þ2az� k2ÞþðkgbÞ2�1=2

: (22)

The corresponding response of the mass to the p th harmonic was determined to be

ap ¼
Ap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þk2
p

½ða2þk2Þðð1� k2Þ
2
þð2zkÞ2Þþ2gbk2ð1þ2az� k2ÞþðkgbÞ2�1=2

: (23)

The phase relationships for the harvester’s response were found to be

c¼ lþtan�1 2zþaðZ2 � 1Þ

ZðZ2 � 1� 2az� gbÞ

� �
; (24a)

f¼c� sin�1 affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þZ2

p
 !

: (24b)

Example response predictions were investigated by approximating the input excitation of a square wave with a Fourier

series. If we denote the square wave as f ðtÞ, the following equations can be used to obtain the Fourier series terms Ap and l:

l¼ tan�1

R T
0 f ðtÞsinðZtÞdtR T
0 f ðtÞcosðZtÞdt

 !
; (25a)

Ap ¼
2

T

Z T

0
f ðtÞcospðZtþlÞdt; (25b)

where T ¼ 2p=Z. These terms were inserted into ApcospðZtþlÞ to approximate the actual excitation function f ðtÞ. In our

studies, the first 20 terms of the Fourier series were used to approximate the square wave function shown in Fig. 6a.
Graphs (b) and (c) of Fig. 6 also show one period of the response behavior for both the mass and electrical circuit. The
spectral amplitudes for the input excitation and responses of the system have been summarized in Fig. 7. One can see that
the largest spectral amplitude occurs near resonance for the electrical circuit, but relatively large spectral amplitudes occur
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at both the excitation frequency and near resonance for the mass. One general observation that can be made from our
studies was that more harmonics were required for Z values less than one.

3.3. Response to narrow-band white noise

The response of the system to random environmental disturbances will be investigated in this section. In particular, we
investigated the system’s response to narrow-band white noise. Following Ref. [24], we have approximated this type of
excitation with a summation of harmonic terms containing random frequency and phase components. The governing
equations are

_IþaI¼ b _y; (26a)

€yþ2z _yþyþgI¼G
X1
r ¼ 1

cosðZrtþlrÞ; (26b)

where G is a scaling constant, lr is a random phase, and Zr is a random dimensionless frequency ratio chosen on the
interval between a minimum and maximum frequency ratio. Following the previously discussed solution procedures, we
assumed a steady-state solution in the following form:

yðtÞ ¼ 1

2

X1
r ¼ 1

arðe
jðZrtþfr Þ þe�jðZrtþfr ÞÞ; (27a)

IðtÞ ¼ 1

2

X1
r ¼ 1

brðe
jðZrtþcr Þ þe�jðZrtþcr ÞÞ: (27b)

This results in the following response amplitude and phase relationships for the r th frequency

ar ¼
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þZ2

r

p
½ða2þZ2

r Þðð1� Z2
r Þ

2
þð2zZrÞ

2
Þþ2bgZ2

r ð1þ2az� Z2
r ÞþðgbZrÞ

2
�1=2

; (28a)

br ¼
bGZr

½ða2þZ2
r Þðð1� Z2

r Þ
2
þð2zZrÞ

2
Þþ2bgZ2

r ð1þ2az� Z2
r ÞþðgbZrÞ

2
�1=2

; (28b)

and

cr ¼ lrþtan�1 2zþaðZ2
r � 1Þ

ZrðZ2
r � 1� 2az� gbÞ

� �
; (29a)

fr ¼cr � sin�1 affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þZ2

r

p
 !

: (29b)

Since the form of this solution was already confirmed for the case of a single harmonic, we have chosen to omit plots of the
time series.

4. Power delivered to an electrical load

This section determines relationships for the power delivered to an electrical load. In the analyses that follow,
the material has been divided into separate sections that differentiate between the types of excitation studied in
Section 3.

4.1. Single-frequency case

This section investigates the power delivered to an electrical load for single-harmonic excitation. Results are presented
in terms of a dimensionless power ratio that accounts for the characteristics of the electrical load. More specifically, we
have assumed a power threshold, P̂m, and voltage, vm; this allows the reference current, a parameter that was previously
used in the non-dimensionalization, to be evaluated from im ¼ P̂m=vm. If the threshold voltage is expressed as vm ¼ imRi, the
following expression is obtained for the threshold power P̂m ¼ i2mRi. The instantaneous power delivered to the electrical
load, P̂ ¼ i2RL, is then divided by P̂m to determine the ratio of the instantaneous to the threshold power. Substituting the
previously defined relationships for i¼ imI, t¼ot, and Z¼O=o into this ratio gives

PðtÞ ¼ i2mI2

P̂m

RL ¼
RL

2Ri
b2ð1þcos2ðZtþcÞÞ: (30)
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Although an instantaneous value is sometimes of interest, the average power is often a more meaningful quantity. The
ratio of the average power to the threshold power was obtained by integrating PðtÞ over a single period,

Pa ¼
1

T

Z T

0
PðtÞdt¼ RL

2Ri
b2; (31)

where T ¼ 2p=Z.
A representative result, one that matches the findings from prior works, where the maximum power depends only on

the resistive load, is shown in Fig. 8. Taking the physical parameters of the solid-line curve as a reference, a change in the
inductance parameter was implemented by multiplying the dimensionless parameters a and b by a constant, to generate
the dotted-line results of Fig. 8 a. While this generates a nearly identical power curve, for the particular change in
inductance, graphs (b) and (c) show the peak Pa over a broader range of a and b values; however, no significant changes
occur in the peak Pa value.

Although the above results only affirm the findings from prior works and do not highlight the influence of retaining the
inductance term in the analysis, the graphs of Fig. 9 focus on a case where the peak power is altered by the inductance. More
specifically, the solid line of Fig. 9 a shows the same Pa curve as Fig. 8 a; however, multiplying a and b by a constant to mimic
an inductance change, gives the dotted Pa curve—a distinctly different result. Fig. 9 a highlights the primary difference of
including the inductance term in the analysis, i.e. the peak Pa is dependent upon both the resistive load and the inductance.
This observation is further substantiated by the graphs (b) and (c) of Fig. 9 since the peak Pa value of graph (a) can
substantially change for small changes in a and b. However, the maximum Pa value plateaus and becomes independent of a
and b beyond some threshold. Fig. 10 provides additional insight into the behavior shown in Fig. 9. This figure shows that
larger b values increase the rate of change in Zb due to solitary changes in aFat least for small values of a.

To summarize, we have shown that inductance changes can alter the average peak power for relatively small values of a and
b. In addition, we have also shown that inductance changes have a negligible effect on Pa for sufficiently large values of a and b.

4.2. Periodic-excitation case

The ratio of the instantaneous power delivered to the electrical load to P̂m is given by

PðtÞ ¼ i2mI2

P̂m

RL ¼
RL

2Ri

X1
p ¼ 1

bpcospðZtþcÞ
 !2

: (32)
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Fig. 8. Dimensionless average power curves plotted as a function of RL=Ri (graph (a)). Solid line shows the Pa curve for b¼ 2:0� 105 and

1� 103pap501� 103; the dotted line shows Pa for b¼ 222 and 1:1pap557. Graphs (b) and (c) use a constant RL=Ri ¼ 17 value while varying the

inductance to change a and b. The remaining parameters required to generate these graphs are z¼ 0:05, g¼ 8� 10�3, A¼ 1=20, and Z¼ 1.
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Fig. 9. Dimensionless average power curves plotted as a function of RL=Ri (graph (a)). Solid line shows the Pa curve for b¼ 222 and 1:1pap557; the

dotted line shows Pa for b¼ 2 and 0:01pap5. Graphs (b) and (c) use a constant RL=Ri ¼ 17 value while varying the inductance to change a and b. The
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20, and Z¼ 1.
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Fig. 10. Dimensionless resonance frequency plotted as a function of a. Each curve represents the following value of b: solid line b¼ 1, dashed line b¼ 2,

and solid line with 3 markers for b¼ 10. The following additional parameters were used: z¼ 0:05 and g¼ 8� 10�3.
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Although the above series is written for an infinite number of terms, reasonably accurate results are typically obtained
with a truncated series expansion. The ratio of the average power to P̂m is obtained by integrating Eq. (32) over a single
period,

Pa ¼
1

T

Z T

0
PðtÞdt¼ RL

2Ri

X1
p ¼ 1

b2
p ; (33)

where T ¼ 2p=Z still holds. It is interesting to note that the expression for Pa simplifies due to the orthogonality in the
response harmonics.
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Fig. 11. Dimensionless average power plotted as a function of a and RL=Ri for the approximated excitation of Fig. 6. Graphs (a) and (c) are for Z¼ 0:15 and

graphs (b) and (d) show results at resonance, Z¼ 1. The number of harmonics used to determine Pa is denoted as follows: 5 harmonics (dashed line), 20

harmonics (dashed-dot line), and 50 harmonics (solid line). The following parameters were used to generate these graphs b¼ 100, z¼ 0:01, and g¼ 0:8.

B.P. Mann, N.D. Sims / Journal of Sound and Vibration 329 (2010) 1348–1361 1359
Fig. 11 shows Pa predictions for the approximated square wave examined in Fig. 6. The fact that the Pa curve contained
multiple local maxima was an interesting outcome for the Z¼ 0:15 case. In addition, this case required a relatively larger
number of harmonics, in comparison to the Z¼ 1 case of the second column, before the predictions converged. For
instance, the Pa predictions for the Z¼ 1 case showed convergence when less than 5 harmonics were used, but the
predictions for the Z¼ 0:15 case did not converge until more than 20 harmonics were applied.
4.3. Narrow-band noise case

The ratio of the instantaneous power delivered to the electrical load to P̂m is given by

PðtÞ ¼ i2mI2

P̂m

RL ¼
RL

2Ri

X1
r ¼ 1

brcosðZrtþcrÞ

 !2

: (34)

While the analytical expression for the ratio of the average power to P̂m is given by

Pa ¼
1

T

Z T

0
PðtÞdt¼ 1

2T

RL

Ri

Z T

0

X1
r ¼ 1

brcosðZrtþcrÞ

 !2

; (35)

this expression cannot be reduced to a more convenient form since the harmonics of the response are not orthogonal over
any single period. In addition, the time interval to use for the averaging also seems somewhat ambiguous since a primary
harmonic does not exist. Despite these complications, we still believe Pa to be a beneficial metric for characterizing
the power. To illustrate why this becomes a reasonable metric, Eq. (34) was plotted for two different frequency bands in
Fig. 12. This was done by creating normally distributed random vectors for Zr and lr and then using the solutions from
Eqs. (28b) and (29a) to solve for br and cr , respectively. The two important observations from Fig. 12 and all of the other
cases we investigated are: (1) more energy is harvested when the resonance lies within the frequency band of the
excitation; and (2) PðtÞ contains small oscillations about a mean value; thus Pa can be readily obtained from the mean of
PðtÞ or by using Eq. (35) and an integer number of periods for the lowest frequency.
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5. Conclusions

This paper obtains analytical solutions for the linear response behavior of an energy harvester that uses electromagnetic
induction to convert ambient vibration into electrical energy. The model for an archetypal harvester was derived and
investigated for the case of directly powering a resistive load. The mathematical model was non-dimensionalized and
analytical solutions for the system’s response were presented for three types of ambient excitations. The analytical
solutions were then used to study the power delivered to an electrical load.

The present study does not assume the circuit inductance to be negligible; instead, we provide evidence that suggests
the inductance can sometimes alter the optimum power transferred to an electrical load. In addition, the results of Fig. 4
show the peak current can occur at a frequency away from the natural frequency. Response and average power results
indicate matching the device resonance to the primary harmonic of the periodic excitation will typically yield the best
performance. However, our investigations for relatively small values of a and b, results that were not included, were found
to display similar behavior to the single-frequency excitation case with peak power that can occur away from Z¼ 1. Power
studies for narrow-band white noise indicate that the average power can be used in comparative studies of device
performance.

In summary, the primary novelty of the present study is the development of closed-form solutions for the harvester
response to single-harmonic, periodic, and narrow-band white noise excitations. The presented solutions include the
circuit inductance and highlight regions, in dimensionless parameter space, where the optimum power is altered by
inductance. Finally, we expect the presented analytical solutions to impact the design choices for future energy harvesters
for two reasons: (1) we have shown the maximum power transferred to an electrical load can be altered by the inductance;
and (2) the inductance could potentially be used to tune the resonance to achieve peak power.
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