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We present a collocation approach to the numerical solution of the Helmholtz

eigenvalue problem on multiply connected domains of arbitrary shape in two

dimensions. A suitable representation of the Helmholtz equation on an uniform grid

is obtained and the problem is converted to the calculation of the first few eigenvalues

performing a comparison with results available in the literature. The flexibility and

simplicity of the method make easy the application to arbitrary geometries.
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1. Introduction

In this paper we use a collocation method to obtain numerical solutions to the Helmholtz equation on multiply
connected domains in the plane. This problem has been considered recently in [1,2,4–6], using different approaches. In
particular, Wang has studied the vibration of polygonal membranes with a central circular hole, varying the size of the
hole: for holes of vanishing radius he has derived an asymptotic formula for the frequency, showing that the frequency for
an annular membrane pinned at the origin is unaffected; for holes of finite size he has used a point matching method,
considering membranes of square, hexagonal and octagonal shape. More recently Chen and collaborators have used the
boundary element method (BEM), which is known to provide spurious solutions when applied to multiply connected
domains. The elimination of these spurious modes, however, is possible and it has been discussed for example in [2], where
the reader may also find an extensive discussion on the literature relevant for this subject. Finally Reutskiy [6] has also
formulated a new boundary element method for the Helmholtz problem on simply and multiply connected domains: this
method does not involve the evaluation of a determinant and allows to reach precise results.

In this paper the same problem is studied using a collocation approach, already applied in [7,8] to solve the Helmholtz
equation in simply connected domains of the plane, both for homogeneous and inhomogeneous membranes. Despite the
flexibility and simplicity of the present approach, we will show that it yields precise results and we will compare our
findings with specific examples taken from the literature. The paper is organized as follows: in Section 2 we outline our
method and introduce the set of functions which are used for the collocation; in Section 3 we report the numerical results
obtained with our method and compare them with analogous results from the literature; finally, in Section 4 we state the
main conclusions of this paper.
ll rights reserved.
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2. The method

The method that we use in this paper to obtain numerical solutions to the Helmholtz equation on multiply connected
regions is based on a collocation approach, which allows the discretization of a finite two-dimensional region of the plane
using a set of function, called Little Sinc functions (LSF) (see [7–10]). These functions were originally obtained in [11], where
they were called ‘‘first sine basis’’. Previous applications of these functions include the Schrödinger equation in one
dimension, within a variational approach [9], the representation of non-local operators on a uniform grid, which has been
applied to the solution of the relativistic Salpeter equation [10], the Helmholtz equation on arbitrary two-dimensional
domains both for the homogeneous [7] and the inhomogeneous [8] case. In particular the last two references are the most
relevant for the discussion carried out here. LSF corresponding to different boundary conditions have been recently derived
in [12].

To make our discussion self-contained we briefly review the main features of our approach, starting with the set of
functions which are used for the discretization. A Little Sinc function (LSF) is obtained as an approximate representation of
the Dirac delta function in terms of the wave functions of a particle in a box (being 2L the size of the box):

skðh;N; xÞ �
1

2N

sinðð2Nþ1Þw�ðxÞÞ
sinw�ðxÞ

�
cosðð2Nþ1Þwþ ðxÞÞ

coswþ ðxÞ

� �
; (1)

where w7 ðxÞ � ðp=2NhÞðx7khÞ. The index k takes the integer values between �N=2þ1 and N=2� 1 (N being an even
integer). The LSF corresponding to a specific value of k is peaked at xk ¼ 2Lk=N¼ kh, h being the grid spacing and 2L the
total extension of the interval where the function is defined. Moreover the functions belonging to this set obey the useful
property skðh;N; xjÞ ¼ dkj. These properties are clearly evident in Fig. 1, where three different LSF corresponding to N¼ 10
and L¼ 1 are plotted.

Different functions belonging to the same set are also found to be orthogonalZ L

�L
skðh;N; xÞsjðh;N; xÞdx¼ hdkj: (2)

Using the properties above one can approximate a function defined on x 2 ð�L; LÞ as

f ðxÞ �
XN=2�1

k ¼ �N=2þ1

f ðxkÞskðh;N; xÞ: (3)

In a similar fashion one can also obtain a representation of the derivative of a LSF within the same set of LSF as
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dx

����
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x ¼ xj

sjðh;N; xÞ �
X

j

cð2Þkj sjðh;N; xÞ; (4)

where the analytical expressions for the coefficients cðrÞkj can be found in [9]. Clearly Eq. (3) is approximate, however, the
error made with this approximation is bound to decrease with N, as discussed in Ref. [9]. The effect of this approximation is
to discretize the continuum of an interval of size 2L on the real line into a discrete set of N � 1 points, xk, uniformly spaced
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Fig. 1. Three LSF for N¼ 10, L¼ 1 corresponding to k¼ � 1;0; þ1.
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on this interval. In particular, we may consider the one-dimensional Helmholtz equation

�
d

dx2
cnðxÞ ¼ k2

ncnðxÞ; (5)

with cnð71Þ ¼ 0. Using Eq. (4) we obtain a matrix representation for the second derivative operator on the grid, whose
matrix elements are analytically known and correspond to the cð2Þkj in Eq. (4). In the following we will use the notation

Ĥ
ðdÞ
� �

q2

qx2
1

þ � � � þ
q2

qx2
d

 !
¼ � Dd

to indicate the negative Laplacian operator in d dimensions; our result in one-dimensional may therefore be written as

Hð1Þkj ¼ cð2Þkj : (6)

Notice that since the indices k; j span N � 1 values, a ðN � 1Þ � ðN � 1Þ matrix, Hð1Þ, is obtained: its eigenvalues and
eigenvectors are approximations to the frequencies and wave functions of the equation in the continuum. Actually in the
case of Eq. (5) the matrix corresponding to the discretized second derivative provides the exact solutions, since the LSF itself
are built using the solutions of Eq. (5) (see Ref. [9]).

We may now extend the discussion to two dimensions: on a plane, one may generate a set of functions obtained by the
direct product of the Nx � 1 and Ny � 1 LSF in the x- and y-axis: this operation generates a uniform rectangular grid with
spacings hx and hy (in the following we will limit ourselves to square grids). Although a point on this grid is clearly
identified by a pair of integers numbers, ðk; k0Þ, one prefers to be able to use a single integer to specify the location of the
point:

K � k0 þ
N

2
þðN � 1Þ kþ

N

2
� 1

� �
; (7)

which takes the values 1rKr ðN � 1Þ2, ðN � 1Þ2 being the total number of points on the grid. This relation can also be
inverted

k¼ 1� N=2þ
K

N � 1þe

� �
; (8)

k0 ¼ K � N=2� ðN � 1Þ
K

N � 1þe

� �
; (9)

where ½a� is the integer part of a real number a and e-0.
In the case at hand we are interested in the solution of the Helmholtz equation on a two-dimensional square region O,

i.e. we wish to solve the equation

�r
2cnðx; yÞ ¼ k2

ncnðx; yÞ; (10)

where ðx; yÞ 2 O, supplemented by Dirichlet bc on qO. The discretization of this equation using the set of functions obtained
above is straightforward and leads to

Hð2Þkj;k0 j0 ¼ � ½c
ð2Þ
kj dk0j0 þdkjc

ð2Þ
k0 j0 �; (11)

where ðk; j; k0; j0Þ ¼ � N=2þ1; . . . ;N=2� 1. At this point we wish to make few remarks on this equation: first, we notice that
(11) is analytical, second, that it has a tensorial nature since it connects two points on the grid; it is straightforward to
obtain a matricial representation using Eq. (7). We thus obtain a ðN � 1Þ2 � ðN � 1Þ2 square matrix, whose elements are
given by Eq. (11).

Although the approach described so far is specific to a rectangular region of the plane, which is the natural support of
the LSF, we may generalize it to arbitrary regions using two different approaches, both of which have been discussed in [7].
The more precise approach is based on the conformal map of the arbitrary region onto a square: in this case the
homogeneous Helmholtz equation on the original region is mapped to an inhomogeneous Helmholtz equation on the
square, where the density is obtained directly for the derivative of the conformal map (see [13]). The numerical results
obtained in [7] for a circular membrane and for a circular waveguide indicate that the convergence toward the exact result
is proportional to h4, h being the grid spacing. The drawback of this approach is the cost of obtaining a conformal map,
either analytically, when possible, or numerically, for arbitrary regions of the plane.

The second approach to this problem is based on the observation that a given LSF is peaked on a specific grid point and
that if this function is removed from the set then any function obtained from the linear combination of the remaining
elements of the set will necessarily vanish on this grid point (remember the property skðh;N; xjÞ ¼ dkj). It is therefore
possible to implement approximate Dirichlet bc on the border of the region by rejecting all grid points which are external
to the membrane. This procedure is illustrated in Fig. 2, where we have plotted a square membrane of size ‘¼ 2, with a
central circular hole of radius R¼ 1

2. In this case we use a square grid of 361 points (N¼ 20), although the matrix obtained
with the collocation procedure is just of dimensions 280� 280. Notice that the internal circular border is not sampled
exactly from the grid, and the ratio between the number of allowed points to the total points is bound to fluctuate as grid
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size decreases. The amplitude of the fluctuations also decreases with larger N. The behavior for this particular membrane is
illustrated in Fig. 3, where we have plotted the ratio RN between the number of grid points belonging to the membrane and
the total number of grid points, as a function of N. In the limit N-1, RN tends to the geometric ratioR¼ 1� p=16� 0:804,
the horizontal line in the figure. The dashed line is the fit Rfit

N ¼ 0:805� 1:14=N, which suggests that the convergence
toward the exact result will now be of order h (remember that h¼ 2L=N). Notice that the fit approximates R with an error
of just 0.2 percent. An important aspect to stress is that, although RN gives important information on the expected accuracy
of the approximation at a given N, it does not involve the previous calculation of eigenvalues/eigenvectors and therefore it
has a limited computational cost. By using the information contained in RN we may be able to select more convenient grids,
before having to calculate the eigenvalues. The second aspect that should be clear from this discussion is that following the
procedure that we have illustrated one is able to treat approximately the Helmholtz equation on multiply connected
domains of arbitrary shape, with an arbitrary number of holes. An assessment of the accuracy that can be achieved using
this method will be made in the next section, performing a comparison with results available in the literature.

We like to point out that the matrices obtained with this collocation procedure are sparse. Efficient iterative methods to
obtain selected eigenvalues or eigenvectors of a large sparse matrix are available: the main limitation of these methods is
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not the dimension of the matrix itself, but rather the number of non-zero elements of the matrix, which determines the
amount of memory effectively needed on a computer. For example, in the case of Fig. 2, the number of non-zero elements is
Nnz ¼ 8696, over a total of Ntot ¼ 78 400 elements. Luckily enough, the sparseness of the matrices is also increasing as the
grid becomes finer (for example, for a grid corresponding to N¼ 50, Nnz ¼ 158 232 and Ntot ¼ 3 655 744). While for grids
with moderate number of points we have used the built-in Mathematica commands to obtain the eigenvalues and
eigenvectors of the matrices, for the finest grids considered in this paper we have used the conjugate gradient method

(CGM), which typically converges quite rapidly and requires less memory.
We wish to conclude this section sketching the extension of the present approach to three-dimensional problems (with

or without holes). In three dimensions the LSF define a cubic grid with ðN � 1Þ3 internal points. Clearly a point on this grid
is identified by a triplet of integers ðk; k0; k00Þ and thus the discretization of the Helmholtz equation on this grid leads to an
expression which depends on six indices:

Hð3Þkk0k00 ;jj0 j00 ¼ � ½c
ð2Þ
kj dk0 j0dk00j00 þcð2Þk0j0dkjdk00j00 þcð2Þk00 j00dkjdk0 j0 �: (12)

In order to obtain a matrix representation of Ĥ on the grid, one needs to generalize Eqs. (7)–(9). The generalized relations
read

K ¼ k00 þ
N

2
þðN � 1Þ k0 þ

N

2
� 1

� �
þðN � 1Þ2 kþ

N

2
� 1

� �
(13)

and

k¼ 1�
N

2
þ

K

ðN � 1Þ2þe

" #
; (14)

k0 ¼ 1�
N

2
þ

K � ðN � 1Þ2ðkþN=2� 1Þ

ðN � 1Þþe

" #
; (15)

k00 ¼ K � N=2� ðN � 1Þ2 kþ
N

2
� 1

� �
� ðN � 1Þ k0 þ

N

2
� 1

� �
: (16)

In this way a point on the grid may be identified with a single integer K which takes the values from 1 to ðN � 1Þ3 and
Eq. (12) provides the elements of a ðN � 1Þ3 � ðN � 1Þ3 matrix. The reader will notice that the only difference with respect
to the two-dimensional case discussed above stays in the dimensionality of the matrix, which in d dimensions would be
ðN � 1Þd � ðN � 1Þd. The amount of memory available to store this (sparse) matrix is the only limitation to the application of
the present approach to higher dimensional problems. Concerning the solution of the Helmholtz equation in d dimensions
for regions of arbitrary shapes (with or without holes), the same considerations made earlier hold: only the points of the
grid internal to the volume are kept and used to obtain a matrix representing the Laplacian on the grid. The few lower
eigenvalues and eigenvectors of this matrix may be obtained again using the same procedures followed in two dimensions.

Finally we point out that the approach described in this paper does not suffer the presence of spurious modes, which is
common to other approaches: while the empirical evidence of this claim can be obtained from the examples considered in
the next section, we may also provide a qualitative justification. Strictly speaking, the LSF corresponding to a finite grid do
not form a basis: as a matter of fact the LSF functions obtained for a fixed N are built using the N lowest eigenfunctions of a
particle in a box, as shown in [9]. Therefore we may argue that LSF with N fixed span a subspace of the whole Hilbert space
of solutions. The general solution to the Helmholtz equation may be obtained as a linear combination of the elements of
the basis: in particular, for a solution corresponding to lower energy (frequency) the states in the Hilbert space with lowest
energy will provide larger contributions. This statement may be rephrased in terms of the LSF as the possibility of
accurately interpolating functions with a wavelength lbh, where h is the grid spacing h¼ 2L=N. With this simple
argument we expect that the lowest part of the spectrum of the matrix representing the negative Laplacian on the uniform
grid will reproduce the corresponding low energy physical spectrum, up to wavelengths where the constraint given above
holds.

The reader may find useful the flowchart in Fig. 4 which illustrates our method.

3. Numerical results

3.1. Example 1: annular membrane

The first example that we wish to consider is an annular membrane with radiuses rmax ¼ 2 and rmin ¼ 1
2. Our results are

reported in Table 1 where they are compared with the results reported in Ref. [2], using the finite element method (FEM) and
the boundary element method (BEM), and with the exact results, which can be easily calculated in this example.

It is interesting to notice that, even with a limited number of grid points (LSF50), the collocation approach provides
results which are very close to those of BEM and FEM: in particular our results approximate better the exact results than
the FEM results.
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In Table 2 we report the results for the membrane obtained by shifting the center of the circular hole of the previous
membrane at the point ð0:5;0Þ. This example is discussed in [2,6]. Notice that the results of [6], while possibly being the
most precise, fail to identify exactly the upper three eigenvalues, which are marked in the table with y (evidently the two
last pair of modes, the seventh and the eighth mode on one side, and the ninth and the tenth on the other, which are almost
Fig. 4. Flowchart illustrating the method.
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Table 1
First 10 eigenvalues of the Helmholtz equation on an annular domain.

1 2 3 4 5 6 7 8 9 10

LSF50 2.00 2.18 2.18 2.62 2.63 3.19 3.19 3.77 3.78 4.06

LSF100 2.02 2.20 2.20 2.64 2.64 3.20 3.20 3.78 3.78 4.11

FEM of Ref. [2] 2.03 2.20 2.20 2.62 2.62 3.15 3.15 3.71 3.71 4.06

BEM of Ref. [2] 2.06 2.23 2.23 2.67 2.67 3.22 3.22 3.81 3.81 4.18

Exact 2.0489 2.2238 2.2238 2.6600 2.6600 3.2132 3.2132 3.7992 3.7992 4.1619

Table 2
First 10 eigenvalues of the Helmholtz equation on an annular domain with the interior hole shifted.

1 2 3 4 5 6 7 8 9 10

LSF50 1.71 2.11 2.44 2.74 2.92 3.29 3.32 3.33 3.81 3.83

LSF100 1.72 2.12 2.44 2.75 2.93 3.30 3.33 3.35 3.83 3.84

FEM of Ref. [2] 1.73 2.13 2.45 2.76 2.95 3.30 3.34 3.36 3.83 3.84

Ref. [3] 1.75 2.14 2.47 2.78 2.97 3.33 3.37 3.38 3.85 3.87

Ref. [6] 1.74 2.13 2.46 2.77 2.96 3.31 3.38 3:86y 4:28y 4:41y

Table 3
First 10 eigenvalues of the Helmholtz equation on a circular domain with a central square hole.

1 2 3 4 5 6 7 8 9 10

LSF50 2.15 2.30 2.30 2.66 2.74 3.22 3.22 3.78 3.78 4.34

LSF100 2.15 2.30 2.30 2.66 2.74 3.22 3.22 3.79 3.79 4.33

FEM of Ref. [2] 2.19 2.33 2.33 2.67 2.76 3.22 3.22 3.76 3.77 4.32

BEM of Ref. [2] 2.19 2.33 2.33 2.69 2.76 3.24 3.24 3.81 3.81 4.40

Table 4
First 10 eigenvalues of the Helmholtz equation on a circular domain with an eccentric square hole.

1 2 3 4 5 6 7 8 9 10

LSF50 1.80 2.20 2.50 2.79 3.05 3.38 3.38 3.47 3.84 3.90

LSF100 1.80 2.20 2.50 2.80 3.08 3.40 3.45 3.47 3.87 3.93

FEM of Ref. [2] 1.81 2.20 2.50 2.79 3.07 3.36 3.40 3.41 3.79 3.85

BEM of Ref. [2] 1.81 2.21 2.53 2.83 3.10 3.42 3.47 3.47 3.90 3.95

P. Amore, D. Chowell / Journal of Sound and Vibration 329 (2010) 1362–13751368
degenerate, appear only once in Reutsky results). A clear advantage of the collocation approach is that it provides the
correct sequence of eigenvalues and that spurious results are not present.

3.2. Example 2: circular membrane with a square hole

In Table 3 we consider a circular membrane with a central square hole. The circle has radius R¼ 2 and the square has
side ‘¼ 1. A comparison is made with the results of [2] (last two rows).

In Table 4 we consider the membrane of the previous example, where the square hole has now been centered around
ð0:5;0Þ. The last two rows are the results taken from [2].

3.3. Example 3: polygonal membranes with a central circular hole

In Table 5 we have considered the examples of a square, hexagonal and octagonal membrane with a central circular
hole. These examples were considered in Wang 1998 and later studied also in [4]. The last four rows are the results taken
from these references.

In Fig. 5 we plot the frequency of the fundamental mode of the hexagonal membrane with a central circular hole
obtained by using our collocation approach in two slightly different ways. This problem has been discussed in [1,4]. The
circles in the plot represent the results obtained by discretizing the problem, with the hexagon oriented to have two sides
parallel to the x-axis; the squares in the plot represent the results obtained by performing a scale transformation on the
original problem which moves these faces of the hexagon to coincide with the sides of the square where the LSF are
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Table 5
Fundamental eigenvalues of polygonal cavities with inner circular hole.

Square Hexagonal Octagonal

LSF50 5.00 5.55 5.75

LSF100 5.06 5.62 5.90

Ref. [1] 5.09 5.76 5.97

BEM of Ref. [4] 5.07 5.74 5.94

CHIEF of Ref. [4] 5.08 5.75 5.96

Null-field of Ref. [4] 5.08 5.74 5.93

50 100 150 200

N

5

5.1

5.2
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5.4
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k 0

Fig. 5. Frequency of the fundamental mode of a hexagonal membrane with a central circular hole: the circles are obtained by orienting the membrane to

have two sides parallel to the x-axis; the squares are the results obtained by performing a scale transformation in the y direction to make these two sides

fall on the border of the square. The horizontal line is the result of [1], whereas the two dashed curves are fits of the two sets of data.
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defined. Notice that this operation also changes the shape of the hole, which now becomes elliptical, and the form of the
Laplacian operator. The horizontal line is the precise result of [1], whereas the dashed line corresponds to the fits of the two
set of data, respectively, kfit

0 ¼ 5:75� 11:97=N and kfit
0 ¼ 5:76� 6:75=N. The most striking feature of the first set of data is

the oscillating behavior, which is much milder in the case of the second set of data. This behavior is due to the two
horizontal sides of the hexagon, which are not sampled precisely, since the grid does not pass through them: consequently,
as N is increased, for particular values of N a whole set of points may move from one side of the border to the other, causing
a sudden rise or drop in the value of the eigenvalue. This effect, while maximal for horizontal or vertical lines, is much
weaker for arbitrary lines, where some points may migrate in one direction and other points in the opposite direction, thus
leading to smaller oscillations.

In Fig. 6 we have plotted the ratio between the collocation points internal to the membrane and the total number of grid
points (the solid circles) and compared with the frequency of the fundamental mode (the solid squares), which has been
shifted to allow better comparison. As previously mentioned, the calculation of RN involves a limited computational effort,
however, it carries interesting informations on the spectrum, as it can be seen from the figure. In particular we observe
that, as expected, the eigenvalues are minimal at the values of N where the ratio is maximal.

3.4. Example 4: circular membrane with four circular holes

Another example which we have studied is a circular membrane of radius R¼ 1 with four circular holes of radius r¼ 0:1
at a distance d¼ 0:5 from the origin as shown in Fig. 7. This problem has been studied in [14], where the first five
frequencies have been calculated. We have used our collocation approach to obtain numerical solutions for the even–even
states of this membrane: by using the symmetry of the problem one is able to reduce by 4 the size of the collocation
matrices. We have obtained two sets of results: one using the configuration shown in the figure and one using the
configuration obtained by rotating the membrane of an angle p=4. In Table 6 we report the numerical results for the first
three frequencies: the first three columns are the numerical results obtained with N¼ 50, 100 and fitting the results from
N¼ 20 to 220 for the configuration of Fig. 7; the remaining three columns are the similar results for the configuration
rotated by p=4. It is interesting to see that k2 is different for the two configurations: although one could suspect a
numerical error, this result is actually correct since the second even–even mode in the rotated configuration is odd–odd
when seen in the original configuration and therefore absent from the first column. The results obtained with a fit (third
and sixth column) are remarkably close to those of [14].
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Fig. 7. Circular membrane of radius R¼ 1 with four circular holes of radius r ¼ 0:1. The points in the figure correspond to a grid with N ¼ 20.

Table 6
First three even–even frequencies of the Helmholtz equation on a circular domain with four circular holes.

LSF50 LSF100 LSFFIT LSF�50 LSF�100 LSF�FIT

k1 4.45 4.46 4.48 4.28 4.44 4.50

k2 5.88 5.91 5.94 5.44 5.50 5.54

k3 7.16 7.19 7.25 5.87 5.90 5.95
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3.5. Example 5: square membrane with a rotated central square hole

This example has been studied by Kang and Lee in [15] using the non-dimensional dynamic influence function and
more recently by Wu et al. in [16] using a differential quadrature method based on radial functions. The profile of the
membrane is shown in Fig. 8, where the collocation points correspond to N¼ 20. As one can see, for this particular choice of
N, the border of the inner square is sampled by the grid (the collocation points falling on the grid are rejected), and
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Fig. 8. Square membrane of side ‘¼ 2 with a square hole of side ‘0 ¼ 3=5
ffiffiffi
2
p

, rotated by p=2 with respect to the outer square. The points in the figure

correspond to a grid with N¼ 20.
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Fig. 9. Ratio of allowed to total points of the grid for a square membrane of side ‘¼ 2 with a square hole of side ‘0 ¼ 3=5
ffiffiffi
2
p

, rotated by p=2 with respect to

the outer square. The horizontal line is the geometric ratio.
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therefore we may expect that the results obtained in this case are optimal. This situation repeats at N integer multiple of
20: this behavior is reflected in the plot of Fig. 9, where the ratio has local minima in correspondence to these points. It is
easy to convince that if we had kept the collocation points falling on the internal border the ratio would have local maxima.
A similar situation was discussed in [7] for the L-shaped membrane: in that case it was found that the two cases provide
two monotonous sequences of approximation converging to the exact result from above and below, respectively. By
performing a fit of the results corresponding to different grid sizes it was possible to obtain correctly the first 11 digits of
the fundamental eigenvalue of the L-shape membrane.

Armed with this knowledge we have considered the same two sets for the present membrane, calling Set I (Set II) the
set obtained after rejecting (keeping) the collocation points falling on the inner border. Taking advantage of the symmetry
of the problem we have limited our study to the even–even modes of the membrane and we have obtained numerical
approximations for the first five even–even frequencies for grids with N going from 20 to 200 and multiples of 20. In the
case of the fundamental mode the calculation has been carried out up to grids with N¼ 360 (see Fig. 10). Since the two sets
provide monotonous sequences of values converging to the exact results, at a fixed N they also provide a rigorous bound on
the frequency itself. For example, for N¼ 360, we have the relation 3:624ok0o3:645, which excludes all the values
reported in [15,16] (actually, already for N¼ 60 all these values are excluded, as one can see from the figure).
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Fig. 10. Fundamental frequency for the square membrane of side ‘¼ 2 with a square hole of side ‘0 ¼ 3=5
ffiffiffi
2
p

, rotated by p=2 with respect to the outer

square. Set I (Set II) corresponds to rejecting (accepting) the points falling on the internal border. The horizontal line is the result of [15].

Table 7

First five even–even frequencies of the square membrane of side ‘¼ 2 with a square hole of side ‘0 ¼ 3=5
ffiffiffi
2
p

, rotated by p=2 with respect to the outer

square.

LSFðIÞ220 LSFðIIÞ220 LSFðIÞFIT LSFðIIÞFIT
LSFmixed

k0 3.6477 3.6136 3.64186 3.64186 3.6412

k1 5.1718 5.1522 5.16786 5.16786 5.1672

k2 6.4135 6.3897 6.40929 6.40929 6.4088

k3 7.7117 7.6803 7.70717 7.70717 7.7069

k4 8.5540 8.5199 8.54732 8.54732 8.5464
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y

Fig. 11. Square membrane with a central hole described by the equation r¼ 1þ 1
10sin½8ðfþp=16Þ�. The points in the figure correspond to a grid with

N ¼ 20.
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In Table 7 we report the results obtained for the first five even–even frequencies of this membrane using our method.
The second and third columns contain the values obtained by using Sets I and II with N¼ 220, which as mentioned above
provide a rigorous bound on each frequency. The fourth and fifth columns contain the values obtained by fitting the
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numerical results for the two sets of grids going from N¼ 20 up to N¼ 220 (with step DN¼ 20) with the functional form

kFITðNÞ ¼ c0þ
X6

k ¼ 1

ck

Nk
þ

c7

NlogN
;

remarkably the results agree to all digits shown. Finally the last column contains the results obtained by generating a new
set which interpolated the two original sets, i.e. kmixedðNÞ ¼ akIðNÞþð1� aÞkIIðNÞ. The parameter a is determined by
requiring that the last two values of the sequence be equal. Although this estimate is less precise than the previous two it
provides an independent check.
3.6. Example 6: square membrane with a central hole of complex shape

Our last application in two dimensions is to a square membrane with a central hole described by the equation

r¼ 1þ
1

10
sin 8 fþ

p
16


 �h i
;

see Fig. 11. We have calculated the frequency of the fundamental mode of this membrane using LSF with N ranging from
N¼ 20 to 220. We show the results in Fig. 12, where we also display the fit k0 ¼ 2:64� 1:9=N. In Fig. 13 we display the
frequency of the fundamental mode of this drum, obtained by fitting the numerical results in Fig. 12 from N¼ 20 to Nmax

and varying Nmax. One can appreciate that the fitted valued of k0 is converging quite rapidly to a constant value.
0 60 80 160 180
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20 40 100 120 140 200 220

Fig. 12. Frequency of the fundamental mode of the drum with a central hole described by the equation r¼ 1þ 1
10sin½8ðfþp=16Þ� as a function of N. The

dashed curve is the fit k0 ¼ 2:64� 1:9=N.
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Fig. 13. Frequency of the fundamental mode of the drum of Fig. 12 obtained by fitting the numerical results in the figure from N ¼ 20 to Nmax and

varying Nmax .
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Fig. 14. Frequency of the fundamental mode of a spherical volume of radius R¼ 2 with an interior spherical hole of radius r¼ 1
2 centered at the origin. The

continuous horizontal line is the exact value kexact
0 ¼ 2:0944, while the dashed curve corresponds to the fit: kfit

0 ðNÞ ¼ 2:08501� 1:61284=N. The horizontal

dotted line is the constant value k0 ¼ 2:08501 obtained from the fit for N-1.
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3.7. Example 7: spherical volume with a spherical hole

Although the main focus of the paper is on two-dimensional multiply connected membranes, we will discuss here a
simple three-dimensional example, which is the direct generalization of our first example of the annular membrane. We
consider a sphere of radius R¼ 2 with a spherical hole of radius r¼ 1

2 at its center. Our method is applied along the lines
explained in the last part of Section 2, the only difference with the previous examples being the dimensionality of the
matrices obtained with the discretization. In particular, we have exploited the symmetry of the problem, which is invariant
with respect to reflections about each coordinate axis, and used a set of LSF which are symmetrized in each direction. In
this way the dimensionality of the matrix is reduced from ðN � 1Þ3 to ðN=2Þ3. Clearly the corresponding eigenvalues and
eigenvectors only approximate the even–even–even part of the spectrum (the remaining parts may be obtained in a similar
way). Using this approach we have been able to calculate the frequency of the fundamental mode for a large number of
grid points, as shown in Fig. 14. The continuous horizontal line is the exact value, kexact

0 ¼ 2:0944, while the dashed curve is
the fit:

kfit
0 ðNÞ ¼ 2:08501� 1:61284=N: (17)

The green dotted line corresponds to the value k0 ¼ 2:08501 which is obtained from the fit for N-1. This value is in quite
good agreement with the exact result.
4. Conclusions

In this paper we have described a simple approach to the solution of the Helmholtz equation on multiply connected
two-dimensional domains of arbitrary shape. We have compared the numerical results obtained by using this approach
with those available in the literature for specific cases. We have found that a good precision could be achieved within our
scheme, even with grids of modest size.

To be more explicit we may summarize the advantages of the present method in the following points:
	
 its generality; its application does not require a specific treatment of the different cases and all the procedure can be
automatized from the start;

	
 the absence of spurious solutions;

	
 the possibility of using fine grids, since the matrices obtained by collocation are sparse the amount of memory needed

in the calculation is reduced; the dimension of the matrices can be further reduced for problems which are symmetric
with respect to the coordinate axes;

	
 the diagonalization of the matrix provides an approximation to a whole part of the spectrum of the membrane

	
 it can also deal with membrane with multiple holes;

	
 the extrapolation of the results corresponding to different grid sizes provide precise approximations for the eigenvalues,

particularly for geometries where the border is sampled by the grid;

	
 the method can be applied also to inhomogeneous membranes (see [8]).
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