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The paper deals with a discrete differential dynamic programming type of problem. It is

an optimal control problem where an external disturbance is controlled over the time

horizon by a control force constituted with the well-known convolution approach.

The paper presents a simple and novel idea to achieve an optimally controlled response

approach uses the convolution concept and states that if a control method can be

established to restore a unit external disturbance, then the convolution integral can be

applied to generate an overall control strategy to control the system when it is

subjected to an arbitrary external disturbance. In spite of its simplicity, such a strategy

has not been encountered in the literature. The only requirement for this method to be

useful is to obtain an optimal control strategy to suppress the vibration of the system

when it is subjected to unit response disturbance. To accomplish this, a method from

classical optimal control theory such as linear quadratic regulator (LQR) that involves

solving the Riccati equation of the associated system can be used. However, genetic

algorithm (GA) can be adopted as an alternative way to obtain an optimal control

strategy against impulse input. As any arbitrary excitation can be divided into impulses,

the convolution concept will constitute the overall optimal control strategy for any

arbitrary excitation with simply shifting, scaling and summation (or integration) of the

GA-optimized control strategy for each impulse of the arbitrary excitation.

The proposed method can be used for real time control applications. Once the control

strategy for the impulse disturbance is established, the results can then be used at each

time step when online control is performed. Computer simulations were carried out to

control the response of a quarter-vehicle active suspension system using the proposed

method. The obtained results were compared to those of linear quadratic regulator

(LQR) and passive suspension applications. The overall results demonstrated the

effectiveness of the proposed method for active suspension systems, especially in

suppressing the vehicle body displacement when compared to both the LQR based and

passive systems. Furthermore, such a control system proves to be simpler requiring less

information to process, which is crucial for real-time applications.
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1. Introduction

Vehicle suspension systems aim to improve the vehicle performance which involves the following criteria [1]:
�
 Ride comfort: Achieving better ride comfort by reducing the vibration transmitted from the road to the vehicle body
through the wheels.

�
 Handling: In terms of pitch and roll movements of the vehicle body, which are generated because of the cornering and

braking motions.

�
 Road holding: By keeping a good contact force between the wheels and the road all the times.

�
 Suspension travel (deflection): This is associated with the limits of suspension working space.

�
 Static deflection: The suspension system should be able to support the payload changes [1].
As the above-mentioned criteria conflict with each other, a good suspension system should achieve a compromise that
satisfies different design requirements. Various suspension systems were used to achieve this aim such as passive, semi-
active and active suspension systems. The main difference between active systems and the others is that they dissipate
energy as well as provide it to the systems they are working with [1]. Research in the area of suspension systems for
automotive industry has gained a great interest in recent years from both academia and automobile industry. Many
research works have contributed to this field by introducing various methods and techniques to improve the performance
and quality of the suspension systems taking the cost, power consumption and the trade offs into consideration. The
models suggested in literature varied from one-degree of freedom (1-dof) quarter-vehicle model to multi-degree of
freedom full-vehicle model. Feedback and feed-forward control loops involving adaptive and optimal control methods
were used by designers to improve the suspension systems’ performance developed for different vehicle models.

The effects of adding active components to the passive system in order to achieve better compromise between ride
comfort and holding ability was demonstrated in [2,3]. Some practical considerations were also reported such as the
operating power consumption which should be carefully taken into account when designing suspension systems.
Low energy consumption and good ride comfort were taken as the main design objectives for the active suspension system
design presented in [4]. The proposed system has the characteristics of the full bandwidth and the slow active suspension
system. Moreover, it utilized two subsystems; the first was an electro-hydraulic system to provide low energy
consumption, the second was an electro-hydraulic system with pneumatic actuation mechanism to assure good ride
comfort. The design procedure proposed in [5] aimed to find the best parameters of the passive part of the suspension
system that would optimize the active control behaviour for minimum power consumption as the main objective. In order
to build a pneumatic active suspension system to suppress vibration of a quarter-car model, fuzzy reasoning and
disturbance observer were used in [6] in which the active control force was provided by a pneumatic actuator.
Deterministic robust control and adaptive control were used in designing active suspension controllers in which the
adaptive robust control guaranteed both the transient and steady-state tracking accuracy [7–9]. To investigate the effects
of suspension structure on the equivalent parameters, two sets of identified parameters were compared for different
suspension systems. The benefit of the parameter identification, which was a crucial process in the design of linear
and nonlinear active suspension systems, was demonstrated in [10]. Another work worth to mention was reported
by Kucukdemiral et al. where a unified approach referred to as adaptive sliding mode fuzzy control was successfully
incorporated an active suspension system [11]. The paper combines the human way of decision-making capabilities of
fuzzy logic with the robustness of sliding mode controller and presents prevailing results. The approach surpasses
several control techniques including PID and PD type self-tuning fuzzy controllers and proves to overcome the global
stability problem. All these methods were performed on a quarter-car model, and the results were presented
comparatively.

Active suspension systems are generally considered as two types: fully active and slow active systems [1]. In the fully
active suspension systems (also known as high bandwidth systems) the actuator is mounted between the sprung and
unsprung masses in parallel with the passive spring [1]. Using such a system would allow the full bandwidth of the
suspension to be controlled. However, in the slow active systems (known as low bandwidth systems) the actuator is
always in series with the passive system. The lower frequency range is controlled by the actuator and the higher frequency
is controlled by the passive system [1]. Fig. 1 shows passive and semi-active suspension systems and Fig. 2 shows the two
types of active-suspension systems together, i.e., high-bandwidth (Fig. 2(a)) and low-bandwidth (Fig. 2(b) and (c)) [1,3].

Using active suspension systems would enhance the vehicle performance in terms of ride quality, performance and
stability [1]. However, these systems can consume a large amount of power, which is required to operate the control
system along with the actuating system (hydraulic and pneumatic). Consequently, necessitating a large amount of power
might cause performance degradation [1]. Complexity and high cost have prevented the extensive use of active control for
many applications, but the control system stability and superior performance have made it viable for some applications
such as suspension systems in automotive industry.

Optimization is one of the most important issues in designing suspension systems; therefore, optimal control theory,
which is capable of achieving a desired performance, is commonly employed by researchers to accomplish this purpose. In
general, the main aim of optimal control is to generate control signals that minimize (or maximize) a chosen performance



Fig. 1. Automotive suspension systems: (a) passive and (b) semi-active suspensions.

Fig. 2. Active suspension systems: (a) high-bandwidth; (b), (c) low-bandwidth.
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index and to make sure that some constraints would not be exceeded [12]. A comprehensive survey on advanced
suspension works including the optimal control applications have been presented in [13]. A study on stochastic optimal
preview control of vehicle suspensions, which aims to improve the performance of vehicle active suspension system on a
random road, was carried out in [14,15], while five different types of suspension systems (fully active, limited active,
optimal passive, actively damped and variable damper systems) were designed using stochastic linear quadratic Gaussian
(LQG) in [16].

In the present study, a new method was proposed which combines the use of genetic algorithm (GA) and convolution
integral concept to find a general control force strategy that minimizes the response of an oscillatory system when it is
subjected to external arbitrary excitation. The following sections present the approach in detail and give example
applications involving a mathematical model with realistic parameters to demonstrate the effectiveness of the proposed
method.
2. Convolution of the control force strategy

The proposed convolution integral based control strategy is aimed to use the convolution concept in designing
automotive suspension systems. The study is motivated by the idea of convolution integral that can be used to find the
response of the system subjected to an arbitrary excitation if the response of the system to an impulse input is known.
An arbitrary excitation is assumed to be constituted of a series of impulses with different amplitudes [17]. Then the total
response can be found by simply scaling, shifting and summing (or integrating) the response of the system to these
impulses.

Convolution integral is represented in Eq. (1), which consists of the excitation input F(t) multiplied by the shifted
impulse response function h(t–t) [1,17]:

xðtÞ ¼

Z t

0
FðtÞhðt�tÞdt (1)

where x(t) is the system response.



I.I. Esat et al. / Journal of Sound and Vibration 330 (2011) 27–4830
The proposed method follows the similar approach and it was constituted as follows: If the response of a system to an
impulse excitation was controlled by a control signal, then it would be possible to obtain a control strategy for the system
when it is subjected to an arbitrary excitation by simply scaling, shifting and summing the control forces to the impulse
response. The scaling would be performed according to the ratio between the unit impulse and the arbitrary excitation
amplitude at each integration interval.

For the proposed method, Eq. (1) is modified to accommodate the arbitrary excitation and the control forces are
obtained as

GðtÞ ¼ ½FðtÞþlUðt�tÞ� (2)

where F( � ) is the arbitrary excitation input function, U( � ) is the general control force strategy, h( � ) is the impulse response
function, l is the scaling factor and will be defined later in Eq. (17).

It is possible to treat U( � ) as a part of the external excitation and this would not be in conflict with the idea of the
convolution integral. Therefore, the definition of the convolution integral can be applied to constitute a control strategy in
order to provide an overall controlled motion

xðtÞ ¼

Z t

0
GðtÞhðt�tÞdt (3)

where G( � ) is the actual external input function that results in minimum response of the system.
It is thought that the GA can be used to setup a control strategy against impulse disturbance so that it can be extended

to overcome any arbitrary excitation as described above. The prevailing side of the proposed method is that it can be used
for real time control applications. Once the control strategy for the impulse disturbance is established, the results can then
be used at each time step when online control is performed. Thus, the system can be controlled in real time irrespective of
the nature of the external excitation. Since the control of the system would be quite simple in this way, the
implementation of such a system would be rather straight forward. In previous studies, the convolution integral method
was applied to the response of the system, whereas in this study to the control force strategy.

3. Mathematical model

The mathematical model developed for this study is for a two-degree of freedom (2-dof) quarter-vehicle model
subjected to road disturbances. As shown in Fig. 2, the model comprises (ms, mus), (ks, kus), (cs, cus), which are masses and,
stiffness and damping coefficients of the sprung and the unsprung, respectively; u is the control force of the actuator, xr is
the road disturbance, xs is the sprung mass displacement and xus is the unsprung mass displacement.

The equation of motion for the 2-dof quarter-vehicle model is presented as

ms €xs ¼ csð _xus� _xsÞþksðxus�xsÞþu (4)

mus €xus ¼ cusð _xr� _xusÞþkusðxr�xusÞ�csð _xus� _xsÞ�ksðxus�xsÞ�u (5)

and in matrix form

ms 0

0 mus

" #
€xs

€xus

" #
¼

�cs þcs

þcs�ðcsþcusÞ

" #
_xs

_xus

" #
þ

�ks þks

þks�ðksþkusÞ

" #
xs

xus

" #
þ

0

kus

" #
xr

þ
0

cus

" #
_xrþ

þ1

�1

� �
u (6)

Representing the system in state space form as in Eq. (7a) will result in Eq. (7b)

_xðtÞ ¼AxðtÞþBuðtÞþD _xr tð Þ (7a)
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�
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1
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0

0

2
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If we assume that,

x1 ¼ xus�xr (8)

x2 ¼ _xus (9)

x3 ¼ xs�xus (10)

x4 ¼ _xs, (11)
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then Eqs. (7b) can be expressed as
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After converting the equation of motion to a state space form, it can be solved in time domain using the Runge–Kutta
numerical integration algorithm.

4. The optimization process

An optimization process is used to find the most effective design among many other alternatives, considering the constraints
which impose limitations on the controller design considerations. The process effectively utilizes the available resources to reach
the desired results [18]. In short, the aim of optimization is to find the optimum solution of a problem subjected to many different
constraints, and to improve the system performance to achieve optimal operating conditions [18]. The efficiency and robustness of
the optimization method will affect the results that could be obtained as a proper solution to the problem. Genetic algorithm (GA)
was chosen as an optimization tool in the current study and it will be explained in the following sections.

4.1. Genetic algorithm

Genetic algorithm (GA) is a global search method based on the principle of natural selection, which are related to the
evolution in nature. ‘‘Survival of the fittest’’, Darwin’s principle of natural selection, promoted the idea of mimicking the
natural selection and using it in the artificial life [19–21]. GA is an optimization method that operates with a population of
possible solutions (individuals) of the optimization problem. These solutions are evaluated with respect to their degree of
fitness that indicates how well the individual will fit (solve) the optimization problem [19–21].

The terms of the GA could be summarized as follows [19]:
�
 Population (P): the population consists of individuals si with i: 1, 2, y, a

P¼ fs1, . . ., si, . . ., sag (13)

An individual si represents a possible solution of the optimization problem, this individual si, which is a m-dimensional
�

vector, consists of m variables sj with j=1, 2, y, m. The variables sij are referred to as genes

si ¼ ½si1, . . .,sij, . . ., sim� (14)

Individuals are usually coded either in binary or real numbers. The selection of the appropriate candidates will be
related to a fitness function, which depends on the objective function decided by the designer. A simple form of GA uses
three types of operators: selection, crossover and mutation [19,20].

4.1.1. Selection

The selection operator tries to select the fittest individuals from the current generation’s population to go on into the next
generation [19,20]. Biasing towards the fitter individuals in the population is the main strategy of the selection process, which
hopefully, will lead to produce the offspring with higher fitness to be selected to the next generation and so on. One should take
into consideration that too-strong selection would cause the highly fit individuals to take over the population reducing the
diversity, which is an important factor for change and progress. Too-weak selection will lead to too-slow evolution [19,20].

4.1.2. Crossover

This operator will choose two individuals (parents) to produce two new offspring [20]; consequently, the crossover
process produces new assemblage of material by swapping genetic material between the individuals of the population.
The new offspring will be better than their parents if they get the best features from their parents [22], but the crossover
strategy may lead to the loss of good genetic pattern [19]. Although the crossover process reorganizes patterns, it does not
introduce new information to the population, except that some patterns are more effective than the others. In order to
ensure that pattern formation process is not biased in any particular way, the crossover process is carried out with the
probability that determines how many bits will be passed from a parent to an offspring. The crossover cut points will
decide how the genetic material of the new offspring will be made up from the material of the chosen individuals [19].

4.1.3. Mutation

Mutation is the occasional alteration of the value of a randomly selected string; the mutation operator will flip one or
more randomly selected bits in the chromosome. This will happen with mutation probability, which is usually very small
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and has a fixed value assigned before the optimization process is carried out. The importance of mutation comes from the
fact that it prevents the evolution process; thus the population from getting stuck in any local minima [19,20,22].

Usually searching methods need loads of auxiliary information to perform properly; some of them need the objective
function derivatives to be able to climb the current hill such as the gradient technique. Others need the access to almost all
tabular parameters like the greedy technique [21]. The main differences between GAs and the other optimization
techniques could be summarized as follows [21]:
�
 GA does not work with the parameters themselves; actually it works with a code of parameter group.

�
 GA does not perform search depending on one point; it starts searching based on a population of points.

�
 GA does not depend on the auxiliary information or the derivatives; it just needs the objective function information.

�
 GA is not a deterministic search technique, because it uses operators with probabilistic transition rules [21].
Although GA may be seen as a panacea to any optimization problem, a researcher new to GA will find out that unless
very lucky, GA does not necessarily work well. There will be a great deal of twigging of various user definable stochastic
parameters before getting it produce anything acceptable in terms of performance. Another major problem with GA is that
it is not really designed to work in real time optimization applications as mentioned above. So when it comes to using it for
control problems, the GA can be very effective if control is a passive control.

However, in the present study a real coded GA, in which each variable is represented by a real number, is used with
active application and the aim, as described before, is to find a control force strategy that minimizes the response of the
system to an impulse input. The first step of GA is to form initial population of individuals (chromosomes) and each
member of the chromosome set is a control force value (Uij) corresponding to a time step. In other words, the time horizon
t is divided into a number of steps and at each step a control force value is selected, forming a control force vector. This
vector is the chromosome in the GA as depicted in Fig. 3, which represents a control force strategy. Initially a population of
these vectors (chromosomes) is generated randomly to start the iteration process of the GA. In order to generate the initial
population, the following parameter values should be defined for GA to run:
�
 The number of variables (no. of variables) represents the number of forces. This is a user definable value.

�
 The population size that refers to how many chromosomes will be generated during each generation, for example, if the

no. of variables is four, the population size will decide how many sets of four variables will be used to evaluate the
objective function.

�
 The search space is needed to be defined by inserting the upper and the lower bounds of each variable.
Fig. 3. Genetic operators on the chromosomes for one generation; G: Generation, P: Population. Fij: output variable (here control force, U).
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objective function (performance index) to evaluate and select the best individuals. The objective function (Obj) in this

The chromosomes (individuals) of the initial population will undergo the evaluation process in which GA uses an

study can be defined as minimization of the sum of absolute values of all the selected variables over a given time horizon.
The selected variables in this case are the sprung mass displacement responses over the whole integration time:

Obj¼
Xn

i ¼ 1

Xn
j ¼ 1

xsðtÞ
�� �� (15)

where n is the population size, v is the number of variables and t 2 ½0,T�.
One can notice that there are no explicit control force terms in the objective function (Obj). However, xs is produced as a

result of the external disturbance and the applied control force. Achieving the objective, that is minimization of overall
response of the system, depends on selection of correct control force values at each time step. This involves selection of
control forces on a time horizon to constitute the control strategy. The evaluated individuals will assign a fitness value that
depends on how well they will solve the problem.

The individuals will go through the selection process, in which each population will be ‘‘stacked’’ based on the ratio R(j)
as follows:

RðjÞ ¼

Pj
i ¼ 1 ObjðiÞPn
i ¼ 1 ObjðiÞ

(16)

where j is the index of the current population and n is the population size, R(n)=1.
The ratio R(j) will generate a wheel, which is divided into regions; the area of these regions will be in proportion with

the fitness of the associated variables. GA will generate a random number between 0 and 1, and try to find the region in
which this number is placed. This selection process is expected to find the large regions that represent the fitter
individuals. After that the crossover operator starts, which involves the exchange of a variable between two of the selected
individuals. The variable to be selected is randomly determined as follows: a random integer is generated between one and
the maximum number of variables in each chromosome, and this indicates the variable number to be exchanged.

However, there could sometimes be a problem with GA depending on the fitness distribution among the population; that is
the best individual may not get selected to the next generation. To ensure that the best individuals will not be lost in the
processes, the ‘‘elitism’’ technique is utilized in the selection process. Elitism ensures that GA retains some of the best individuals
at each generation. In this work, it was ensured that the best individual of previous generation would populate at least 10% of the
next generation. GA was iterated until an acceptable convergence was reached and satisfactory solutions were obtained.

The GA based optimization process introduced was used to find the best control force strategy in order to control the
system when it is subjected to an impulse input. After this stage, one can proceed to the next step of the proposed method,
which involves use of convolution integral as described above to find the general control force strategy against arbitrary
excitation. To do so, the control force strategy against each impulse of the arbitrary excitation should be found.
Nevertheless, this does not require to re-run the whole optimization process to get the control force strategy against each
of the impulses of the arbitrary excitation. Instead, the ratio (li) between the unit impulse and the arbitrary excitation
impulses should be calculated. This ratio equals to

li ¼
xri

xr
(17)

where xr is the amplitude of the unit impulse, xri is the amplitude at the ith iteration, treated as an impulse in the short
time interval due to arbitrary excitation. The control force strategy for each of these impulses equals to the optimized
control force strategy of the unit impulse multiplied by the ratio li. These control force values are shifted with time and
summed up constituting the general control force strategy, which results in the minimum response of the sprung mass
against the arbitrary excitation.

5. Linear quadratic regulator

Optimal control theory has been widely applied to the design of vehicle suspension system as reported in literature. In
order to compare the performance of proposed method to that of a widely accepted optimal control technique, the
application of linear quadratic regulator (LQR) to control a quarter-vehicle model is introduced in this section.

Let us take an example linear dynamical system to be controlled, which is represented in the standard state space form
as in Eq. (18) with xðt0Þ ¼ x0 as in [12]

_xðtÞ ¼ BxðtÞþCuðtÞ (18)

where as usual B is the n�n state matrix, C is the n� r input matrix.
The optimal linear regulator problem of the system at hand is to determine the optimal control uðtÞ, t 2 ½t0,T�, which will

minimize the quadratic form of the cost function J (performance index) given as

J¼

Z T

0
ðxuRxþuuQuÞdt (19)
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where J is the quadratic performance index to be minimized. The superscript (0) denotes the matrix transposition. R is a real
symmetric n�n positive semi-definite matrix, Q is a real symmetric r� r positive definite matrix. T is the terminal time and
T4t0, t0=0 [23]. The selection of the trajectory weighting matrix R and the control weighting matrix Q is based on the control
system designer’s experience and is usually determined by experimentation. These weighting matrices execute the main rule
for deciding the relative importance of suppressing the response of specific system state or bounding the control attempt [1,23].

One of the most common techniques in literature to find the control gain matrix that minimizes the cost function J

introduced in Eq. (19) is dynamic programming, in which it is stated that if the control over some time period (t0 to tf) is
optimal; then, over all sub-intervals (tm, tf) the control would also be optimal [1]. Consequently, based on this method the
sequence of the optimal control is computed using the relationships of backward recursion, which starts with the best
possible final point [1]. It was proven in [24] that the control signal (u) that would minimize the aforementioned
performance index is found as

u¼�Q�1CuK x¼�D x (20)

D¼Q�1CuK (21)

where K is a (m�m) symmetric matrix and can be calculated from the following equation:

_K ¼KCQ�1CuK�R�BuK�KB (22)

Eq. (22) is the generalized form of Riccati differential equation. The matrix D is referred to as the optimal control gain
matrix.

6. Numerical results

In order to perform numerical tests, a computer program was developed using Visual Basic 6. The integration, which
uses the Runge–Kutta numerical integration method, was carried out for t=4 s with the time interval of Dt=0.02 s.

6.1. Response to a shock input with active suspension (i.e. with control forces)

An optimization process is carried out to find the optimal control force strategy, which minimizes the response of the
sprung mass to the shock input. The shock input and the generated GA based control force against this input are plotted in
Fig. 4. In this investigation the ranges of several parameters were studied. In particular, actuator forces were carefully
determined after experimenting with a number of possible actuator ranges. Another important parameter studied was
force reversals. Initially, the actuator was allowed to generate as many values as the number of integration steps. This was,
as explained before, equivalent to the number of variables in the control strategy. Initially, it was assumed that allowing
the maximum number of variables would enable GA to iterate and find the most effective number of variables so that the
control strategy becomes optimum. It was expected that GA would eliminate ‘‘unnecessary’’ variables (of forces) by zeroing
their magnitudes. As each control force represents a reversal and as it is known from literature that the total number of
reversals is related to the degree of freedom of the system under investigation, one would expect for this system that the
number of reversal would be four according to the Pontryagin principle. After a lengthy investigation and many
Fig. 4. (a) The shock input and (b) the generated GA based control force against it.
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experiments, it was found that GA was not able to reach such a number. It was then decided that the number four would be
the total number of forces as imposed by the GA scheme. The population size, which enables GA to search for the range and
density of sampling points at which fitness was assessed, was initially chosen to be equal to the number of the integration
steps. Also, during the early part of the experimentation, the total number of generations was chosen to be equal to the
number of the integration steps. Although there is no direct association between the number of generations and the
number of genes in population (in the current case the number of forces was initially taken to be the same as the number
of integration steps), it was accepted that they were related and more genes in chromosome would slow down the
convergence. After many runs with different numbers of chromosomes and generations, it was found that a good
convergence could be achieved by using the numbers presented in Table 2 and these numbers reduced the amount of total
time spent during the GA iterations.

Fig. 5 shows the response of the sprung mass when it is subjected to a shock disturbance and controlled by the
optimized actuator forces. The magnitude of the optimized control forces suppressing the deflections to the shock
disturbance is depicted in Fig. 4(b). The exact values of the forces are presented in Table 3.

It is known that genetic algorithm (GA) may fail for some applications; however, in the present study GA was able to
converge to specific force values after a certain number of generations. The number of generations was chosen after
experimenting with quite a few different numbers of generations in such a way to ensure that the convergence would
occur within the selected range. This can be seen for the optimized control force values in Figs. 6 and 7, as GA was able to
converge to the force values presented in Table 3 within the range.

Figs. 8–10 show the controlled acceleration, suspension deflection and tyre deflection responses to the shock excitation,
respectively. The results obtained by applying the proposed method to control the quarter-vehicle response to a shock
excitation were compared to the response of the passive suspension system under the same shock excitation. The passive
and controlled sprung mass displacement responses are presented in Fig. 11, while responses of passive and active
accelerations, suspension deflections and tyre deflections are shown in Figs. 12–14, respectively, for comparison purpose.
Fig. 5. The controlled displacement response of the sprung mass m2 to the shock input.

Fig. 6. Genetic algorithm convergence to the values of U1 and U2, respectively.



Fig. 7. Genetic algorithm convergence to the values of U3 and U4, respectively.

Fig. 8. The controlled acceleration response of the sprung mass m2 to the shock input.

Fig. 9. The controlled suspension deflection response.
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6.2. Application of the proposed method to achieve active suspension control against arbitrary excitation

As presented, the aim is to control the sprung mass response to an arbitrary excitation by means of the control force
strategy established through the proposed method. To do this, first a control force strategy optimized by GA was set up.
Then an arbitrary excitation input was generated as shown in Fig. 15 and it was divided into impulses. The ratio l was
calculated for each of these impulses using Eq. (17). Next, the control rule established as described above was shifted and
scaled by l for each impulse of the arbitrary excitation and by summing up the generated control forces against the
arbitrary excitation were obtained as depicted in Fig. 16. This control force strategy was applied to control the sprung mass
response when it was subjected to arbitrary excitation; the controlled response against this arbitrary excitation is shown in



Fig. 10. The controlled tyre deflection response.

Fig. 11. The sprung mass m2 displacement response to the shock excitation passive (dashed line), active (solid line).

Fig. 12. The sprung mass m2 acceleration response to the shock excitation passive (dashed line) and active (solid line).

Fig. 13. Suspension deflection response to the shock input passive (dashed line) and active (solid line).
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Fig. 14. Tyre deflection response to the shock input passive (dashed line) and active (solid line).

Fig. 15. An arbitrary excitation input.

Fig. 16. The generated control force against the arbitrary input given in Fig. 15.

Fig. 17. The controlled m2 displacement response to the arbitrary excitation.
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Fig. 18. The sprung mass m2 displacement response to the arbitrary excitation: passive (dashed line) and active (solid line).

Fig. 19. The controlled m2 acceleration response to the arbitrary excitation.

Fig. 20. The sprung mass m2 acceleration response to the arbitrary excitation passive (dashed line) and active (solid line).
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Fig. 17. Displacements generated by passive and active suspensions against the arbitrary excitation are presented in Fig. 18
for comparison purpose. The controlled acceleration response is shown in Fig. 19 and may be compared to the passive
response plotted together in Fig. 20. Similarly, the actively controlled suspension deflection and tyre deflection responses
are shown in Figs. 21 and 23, and they can be compared to the passive responses plotted in Figs. 22 and 24, respectively.

6.3. The optimal control strategy using linear quadratic regulator (LQR)

In order to solve the Riccati equation given in matrix form in Eq. (22) to minimize the performance index presented in
Eq. (19), the gain matrix D given in Eq. (21) should be determined so that it would be possible to find an optimal control
rule as a function of the state variables of the system. To achieve this, one should first set the quadratic performance index
as follows:

J¼

Z T

0
ðxu2Rx2þuuQ uÞdt (23)



Fig. 21. The controlled suspension deflection response to the arbitrary input.

Fig. 22. Suspension deflection response to the arbitrary input passive (dashed line) and active (solid line).

Fig. 23. The controlled tyre deflection response to the arbitrary input.

Fig. 24. Tyre deflection response to the arbitrary input passive (dashed line), active (solid line).
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where x2 is the sprung mass displacement. The matrices R and Q were chosen after many tests in such a way to make the
results obtained by the LQR method comparable to the results obtained by the proposed method. The state and control
weighting matrices R and Q, respectively, are given as follows:

R¼

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775, Q ¼ 4:5� 10�13

h i
(24)

Then the performance index will be

J¼

Z T

0
x2

2þ 4:5� 10�13
h i

u2
� �

dt (25)

The system matrices B and C will become

B¼

0 0 1 0

0 0 0 1

�
kusþks

mus

ks

mus
�

csþcus

mus

cs

mus

ks

ms
�

ks

ms

cs

ms
�

cs

ms

2
66666664

3
77777775

, C¼

0

0

�
1

mus

1

ms

2
66666664

3
77777775

(26)

The values of the model variables are given in Table 1; some of these variables are taken from [25]. In order to find the
4�4 matrix K, the Riccati equation in Eq. (22) should be solved. However, for numerical integration of the differential
equations it would be more appropriate to start with the initial values, so the time is reversed as follows:

t¼ T�t (27)

and Eq. (22) will take the form:

dK

dt
¼RþBuKþKB�KCQ�1CuK (28)

with the zero initial values [24].
Table 1
The values of the quarter-vehicle variables.

Model variables Values Unit

ms 2500 kg

mus 320 kg

ks 80,000 N m�1

kus 500,000 N m�1

cs 500 N s m�1

cus 20 N s m�1

The upper bound of (ui) +10,000 N

The lower bound of (ui) �10,000 N

Table 2
The parameters values required to implement the optimization process.

Parameter Value

No. of variables (control forces) 4

Population size 300

No. of generations 100

Table 3
Control force values obtained using genetic algorithm against shock input.

Force U1 U2 U3 U4

Value (N) �9921.36 �9769.85 �9147.76 �3661.89
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Runge–Kutta numerical integration algorithm was used to solve Eq. (28). The convergence of the elements of matrix K is
almost completed after t=1.0 s. Then the matrix K is found to be

K¼

0:00008723468070 0:00065297820393 0:00000014905327 0:00000876347192

0:00065297820393 0:06042025294314 0:00002964812207 0:00182109008197

0:00000014905327 0:00002964812207 0:00000008722491 0:00000230420118

0:00000876347192 0:00182109008197 0:00000230420118 0:00011865145798

2
6664

3
7775 (29)

In order to find the optimal control gain matrix D, the matrices Q, C, K are substituted into Eq. (21):

D¼ d1 d2 d3 d4

� �
(30)

where d1=�6754.66066500, d2=�1412857.00293167, d3=�1442.45028500 and d4=�89,466.56556556.
As a result the optimal control forces that minimize the sprung mass response to any excitation as a function of the

system state variables can be found by substituting D into Eq. (20):

u¼� d1 d2 d3 d4
� �

x1

x2

x3

x4

2
66664

3
77775¼�d1x1�d2x2�d3x3�d4x4 (31)

In the following paragraphs, the results obtained by means of the LQR based optimal control method will be illustrated
and they compared with the results obtained via the proposed method, i.e. convolution of the control force strategy, to
control the response of the quarter-vehicle model when it is subjected to the shock and arbitrary excitation.

Fig. 25 shows the optimal control forces generated by LQR to control the quarter-vehicle response to a shock excitation,
while in Fig. 26 these forces are compared to the control strategy optimized by genetic algorithm against the same shock
excitation. Likewise, the optimal control forces generated by LQR to control the quarter-vehicle response to the arbitrary
excitation are shown in Fig. 27 and compared to the control strategy established by the proposed method in Fig. 28.

The sprung mass controlled displacement response by means of LQR against shock excitation is shown in Fig. 29 and is
compared to the controlled displacement response using the proposed method in Fig. 30. The actively controlled
displacement response to the arbitrary excitation using LQR method is plotted in Fig. 31 and it could be compared to the
Fig. 26. The generated control force strategy against shock input LQR (dashed line), GA(solid line).

Fig. 25. The generated control force strategy by LQR against the shock input.



Fig. 29. The sprung mass m2 displacement response to the shock excitation by LQR.

Fig. 30. The sprung mass m2 displacement response to the shock excitation LQR (dashed line), the propose method (solid line).

Fig. 28. The generated control force strategy against arbitrary input by LQR (dashed line) and by the proposed method (solid line).

Fig. 27. The generated control force strategy by LQR against arbitrary input.

I.I. Esat et al. / Journal of Sound and Vibration 330 (2011) 27–48 43



Fig. 33. The sprung mass m2 acceleration response to the shock excitation using LQR.

Fig. 34. The sprung mass m2 acceleration response to the shock excitation LQR (dashed line), using the proposed method (solid line).

Fig. 32. The sprung mass m2 displacement response to the arbitrary excitation LQR (dashed line), the proposed method (solid line).

Fig. 31. m2 displacement response to the arbitrary excitation using LQR.
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Fig. 36. The sprung mass m2 acceleration response to the arbitrary excitation using LQR (dashed line) and the proposed method (solid line).

Fig. 35. The sprung mass m2 acceleration response to the arbitrary excitation by LQR.

Fig. 37. Suspension deflection response to the shock input using LQR.
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response obtained using the proposed method in Fig. 32. The actively controlled sprung mass acceleration response using
the LQR method to the shock excitation is shown in Fig. 33 and the response to the arbitrary excitation is shown in Fig. 35.
Both are compared to the acceleration response obtained by means of the proposed method in Figs. 34 and 36. The
suspension deflection and tyre deflection responses with LQR are shown in Figs. 37 and 41 for shock excitation and, in
Figs. 39 and 43 for arbitrary excitation. These responses are compared to the ones obtained by the proposed method in
Figs. 38 and 42 for shock excitation and, in Figs. 40 and 44 for arbitrary excitation, respectively.
7. Discussion

Based on the numerical results obtained and plotted in Figs. 11–18, one can easily observe the superiority of the
proposed method in reducing the quarter-vehicle displacement response for both shock and arbitrary excitations over
the passive suspension response. The controlled displacement response of the vehicle body to the shock excitation using
the proposed method was very similar with the displacement response using the LQR method but with some reduction in



Fig. 40. Suspension deflection response to the arbitrary input LQR (dashed line), the proposed method (solid line).

Fig. 41. Tyre deflection response to the shock input using LQR.

Fig. 39. Suspension deflection response to the arbitrary input using LQR.

Fig. 38. Suspension deflection response to the shock input LQR (dashed line), using the proposed method (solid line).
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Fig. 43. Tyre deflection response to the arbitrary input using LQR.

Fig. 44. Tyre deflection response to the arbitrary input. LQR (dashed line), using the proposed method (solid line).

Fig. 42. Tyre deflection response to the shock input LQR (dashed line), using the proposed method (solid line).
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the peak value, as shown in Fig. 30. A noteworthy achievement was the improvement in the sprung mass displacement
response to the arbitrary excitation using the proposed method when compared to the response with LQR as seen in
Fig. 32. As expected there was a slight increase in the sprung mass acceleration response due to the shock excitation and a
marginally higher acceleration response in the case of the arbitrary excitation using the proposed method when compared
to the responses using the LQR method as shown in Figs. 34 and 36. The increase in the sprung mass acceleration response
was something expected due to the fact that genetic algorithm attempted primarily to establish a control strategy that
could minimize the displacement response of the system as clearly stated in the objective function formula. The sprung
mass acceleration response using the proposed method is found to be much more controlled than that of passive system as
Fig. 20 reveals.

In order to see the effect of the proposed method on the other suspension criteria, the suspension deflection and tyre
deflection responses were also checked. The controlled suspension deflection response to the arbitrary excitation obtained
with the proposed method was almost identical to that of achieved with the LQR method as shown in Fig. 40. Both
exhibited a significant improvement over the one generated by the passive suspension as shown in Fig. 22. Also, the tyre
deflection response to the arbitrary excitation was very similar to that obtained with the LQR method as shown in Fig. 44,
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and was much improved in comparison to the tyre deflection recorded with the passive system as seen in Fig. 24.
Therefore, it can be concluded that in comparison to the performance of the LQR method, the proposed method
significantly improved the displacement response of the vehicle body with a slight increase in the acceleration response.
This was foreseen and found acceptable since the objective function designed for the genetic algorithm established a
control strategy to minimize the displacement response of the system. There was also no degradation in the suspension
deflection or the tyre deflection for both shock and arbitrary excitations, and a superior performance for all the suspension
criteria in comparison to the passive suspension was achieved.

It should be noted that the construction of the control strategy using the proposed method is not based on the system
states like conventional methods such as the LQR method, which needs to access all the system states to create the
required control forces. Therefore, this is another great advantage, which will lead to a considerable reduction in the
number of sensors needed for measurements as the only information required is the amplitude of the disturbance input.
This consequently decreases the complexity and cost of the control system.

8. Conclusion

A new approach to the control of the response of oscillatory systems subjected to arbitrary excitation is proposed in this
paper. The proposed method combines the use of genetic algorithm and the concept of convolution integral to obtain a
general control force strategy against arbitrary excitation. While convolution integral is usually applied to the response of
the system; in the present study, it is applied to the control force strategy, which is considered as novelty. Another
contribution of the proposed method is that it is suitable for real-time control of the system subjected to an arbitrary
excitation. As a matter of fact, an experimental quarter-vehicle active suspension setup has been constructed in the
laboratory and an advanced PLC based real-time implementation works of the proposed method have been already
initiated. The initial results have been found promising since they confirm the simulation results. The real-time control
application of the system involving the optimization studies of the code, the test rig and the experiments is considered as
the main topic of a forthcoming research. This second major part of the work is planned as a subsequent publication, which
will address the significant issues in real-time applications like computation time and memory usage. In conclusion, the
proposed method, which was developed to control the response of a quarter-vehicle active suspension system subjected to
an arbitrary external disturbance yielded noteworthy improvements especially on the vehicle body displacement response
in comparison to the results obtained using both the LQR method and as expected a passive suspension system. Another
great contribution is that the proposed control method has proven that these superior results could be achieved by means
of a reduced number of sensors yielding a less complicated control system.
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