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In partial eigenvalue assignment, not all eigenvalues of the open loop system matrix are

modified through a multiple input state or output feedback controller. This freedom

available to assign selected eigenvalues of the closed loop system matrix has been

widely used in design contexts such as to eliminate spillover effects in structural control

characteristics in selected eigenmodes of a damaged structure. When an external force

acts on the damaged structure, partial eigenvalue assignment in this fashion will

attempt to use minimal control effort and keep the structure active with safe operation.

In this paper, a new approach to partial eigenvalue assignment and its application to

structural damage mitigation are presented. A three mass spring–damper model with

damage in one of the springs is illustrated with damping modifications at specific

eigenmodes. The procedure is repeated for a second example, which is a cantilever

beam modeled using two inputs and 10 state variables.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Significant progress has been made in the areas of structural health monitoring where the objective is not only to detect
damages but also to determine the status of the structure [1,2]. The status of the structure is generally inferred through the
new stiffness matrix associated with the damage [3–7]. Depending upon an assessment made in damage prognosis studies
[8], a structure with less severe damage is often required to be operational in a clean as well as in an uncertain
environment. In these cases, the dynamic response of the damaged structure is expected to operate with sufficient
damping and stiffness characteristics incorporated in the structure. Such an operational structure with damage mitigated
using an integrated sensor, actuator and controller architecture often gives better life to the structure.

In terms of the closed loop pole constraints, a controller for damage mitigation will modify the eigenvalues of the
damaged structure in the sense of a partial eigenvalue assignment (PEA) algorithm [9–12]. If the open loop eigenvalues of
the damaged structure exhibit insufficient damping and/or stiffness, they are required to be modified through a feedback
controller. These altered eigenvalues enhance the damping and stiffness requirements that would have deteriorated in the
damaged structure. Further, since stiffness perturbation is local and since it normally confines to a damage location,
the unaltered eigenvalues are expected to exhibit sufficient damping and stiffness requirements to the structure. Thus, the
objective of the feedback controller in damaged structure is to restore the damping and stiffness characteristics through
PEA. In this paper, a new design procedure to synthesize such a feedback controller using PEA suitable for damage
mitigation is presented.
ll rights reserved.
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PEA has been a subject of immense interest to design controllers that avoid spillover problems in structures [12]. The
freedom available to assign eigenvector elements in multiple input systems has also been used for robustness
enhancement due to parameter perturbations [10, 13–15]. In this paper, linear algebraic methods [16] are used for PEA in
first order systems. A procedure to choose eigenvectors corresponding to the desired eigenvalues is presented. The
eigenstructure is used to determine the state and output feedback controller such that the eigenvalues of the closed loop
system matrix are the spectrum of the open loop matrix eigenvalues and the desired eigenvalues. The design procedure is
illustrated for damage mitigation in structures.

In Section 2, problem formulation is discussed. In Section 3, PEA using linear algebraic methods is presented. Section 4
develops a procedure to design state and output feedback controllers. In Section 5, structural damage mitigation using a
spring–mass model is illustrated. Conclusions are presented in Section 6.
2. Problem formulation

Consider a finite element model of the discrete or continuous structure of the form

M €qþC _qþKq¼Du (1)

where €qðtÞ is an n-component vector representing the acceleration of the structural degrees of freedom assumed at the
nodes, _qðtÞ is the velocity vector and q(t) is the position vector. u(t) is an m-component control vector. M, C, and K are the
compatible mass, damping and stiffness matrices of order n by n. D is the control influence matrix of order n by m. Assume
1omr2n. Suppose the health monitoring techniques determine the status of the structure to be damaged. Then the
stiffness matrix begins to deteriorate as a function of uncertain parameters ai giving rise to the new stiffness matrix

K̂¼Kþ
Xr

i ¼ 1

aiKi

Here Ki are constant structured matrices. In continuous structure, usually they are tri-diagonal. In discrete structures, they
are sparse. Further, r is the number of finite elements assumed to be damaged in the modeling. In a discrete spring–mass–
damper model, r refers the number of springs that are damaged. Assuming a single damage, the new stiffness matrix can be
estimated as

K̂¼Kþa1K1

Similarly, without loss of generality, the damping matrix can be estimated as

Ĉ¼ Cþb1C1

Let q0 denotes the transpose of the n-component column vector q. Defining the 2n-component vector x(t) as x¼ ½qu, _qu�u,
the first order state-space model for the damaged structure becomes

_x ¼ ðAþEÞxþBu (2)

where

A¼
0ðnÞ IðnÞ

�M�1K �M�1C

" #
2 R2n�2n

E¼ a1

0ðnÞ 0ðnÞ

�M�1K1 0ðnÞ

" #
þb1

0ðnÞ 0ðnÞ

0ðnÞ �M�1C1

" #
2 R2n�2n

and

B¼
0ðn�mÞ

M�1D

" #
2 R2n�m

Depending upon the damage assessment which is based on the values estimated for a1 and b1, structural damage
mitigation constantly ensures adequate damping and stiffness augmentation to some of the eigenmodes of the structures
where they are deteriorated due to damage. The rest of the eigemodes with unaltered eigenvalues are assumed to have the
necessary damping and stiffness characteristics. In this framework, PEA technique proposed in this paper considers a
completely controllable system in Eq. (2) and alters some of its eigenvalues through a feedback controller. That is, if lp,
p¼ 1,2,. . .,2n are the complex conjugate open loop eigenvalues of the matrix A, then the altered complex conjugate
eigenvalues of the matrix (A+E�BG) are denoted by l̂i, where i¼ 1,2,. . .,p. The unaltered complex conjugate eigenvalues of
the matrix (A+E–BG) by the feedback controller G are denoted by lk, where k¼ pþ1,pþ2,. . .,2n. In the next section, the
PEA technique for state and output feedback cases is presented. Thus the damping and stiffness characteristics of the
damaged system are modified at selective eigenmodes.
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3. Linear algebraic methods in PEA

Given a set of p sensor measurements y=Cx and a control law in output feedback format u=�Gy, the closed loop system

matrix is written as Ac ¼ ðAþE�BGCÞ or Ac ¼ ðÂ�BGCÞ, where Â¼ AþE. Let the eigenvector corresponding to l̂i ¼ l̂i,Rþ jl̂i,I

be v̂i 2C2n. Similarly for lk ¼ lk,Rþ jlk,I , the eigenvectors are vk 2 C2n. Denote the real and imaginary parts of the

eigenvectors as v̂i ¼ v̂i,Rþ jv̂i,I and vk ¼ vk,Rþ jvk,I , respectively. Let

GCv̂i,R ¼ ŵi,R and GCv̂i,I ¼ ŵi,I (3)

where ŵi,R,ŵi,I 2 Rm. Then the eigenvalue and eigenvector constraint for the altered eigenvalues becomes

B 0

0 B

� � ŵi,R

ŵi,I

 !
¼
�ðl̂i,RIð2nÞ�ÂÞ l̂i,IIð2nÞ

�l̂i,IIð2nÞ �ðl̂i,RIð2nÞ�ÂÞ

0
@

1
A v̂i,R

v̂i,I

 !
(4a)

which can be written as

Bŵi ¼ F̂v̂i, i¼ 1,2,. . .,p (4b)

Likewise, the eigenvalue–eigenvector constraint for the unaltered eigenvalues is

B 0

0 B

� � wk,R

wk,I

 !
¼
�ðli,RIð2nÞ�ÂÞ li,IIð2nÞ

�li,IIð2nÞ �ðli,RIð2nÞ�ÂÞ

0
@

1
A vk,R

vk,I

 !
(5a)

Bwk ¼ Fvk, k¼ pþ1,pþ2,. . .,2n (5b)

The dimensions of the matrix F̂ and F, respectively, are 4n by 4n. In the altered eigenvalue case, matrix F̂ is non-singular.
In the unaltered eigenvalue case, matrix F is singular. In both situations, we are interested in finding the non-zero vectors
fvk,wkg and fv̂i,ŵig, respectively. These vectors are used to compute the gain matrix G from Eq. (3).

One of the results in linear algebra states that the system of equations Ax¼ b is solvable if buy¼ 0 for all y satisfying

Auy¼ 0 [16]. In this result, if A is a square matrix, singularity of A is implicitly assumed. Thus the result for non-singular A

(or) non-square A requires further investigation. In the non-singular case, although x is unique, it resides in the null space

of YuA where the column vectors of Y is orthogonal to b. In the present case, consider Eq. (4b)

Bŵi ¼ F̂v̂i ¼ b̂i

Here, ŵi is solvable if b̂i is orthogonal to the vectors giAR4n that are again orthogonal to the column vectors of B. Thus,

guF̂v̂i ¼ 0

where g¼ ½g1,g2,. . .,g‘1
� and ‘1 is the number of vectors forming a basis for the null space of Bu. The order of the matrix guF̂

is ‘1 � n. Further, v̂i resides in the null space of guF̂ with basis ĝ1,ĝ2,. . .,ĝ‘2
where ‘2 is the dimension of the null space of

guF̂. Let

v̂i ¼ ĉ1ĝ1þ ĉ2ĝ2þ � � � þ ĉ‘2
ĝ‘2
¼ ½ĝ1 ĝ2 . . . ĝ‘2

�

ĉ1

ĉ2

^

ĉ‘2

2
66664

3
77775¼ ĝĉ

ĉi are the non-zero constants which can be determined from the following eigenvalue and eigenvector constraint

Bŵi ¼ F̂v̂i ) B�F̂ĝ
h i

ŵiĉ
� �

¼ 0 (6)

Thus, the non-zero constants ŵi and ĉi reside in the null space of B �F̂ĝ
j k

and they exactly determine ŵi and v̂i.

Similar procedure is repeated for the unaltered eigenvalues, for which the eigenvalue–eigenvector constraint is given by

Bwk ¼ Fvk ¼ bk:

However, now F is singular. wk is solvable if guFvk ¼ 0. This time vk reside in the null space of g0F with basis
~g1, ~g2,. . ., ~g‘3

, where ‘3 represents its dimension. Let

vk ¼ c1 ~g1þc2 ~g2þ � � � þc‘3
~g‘3
¼ ½ ~g1

~g2 . . . ~g‘3
�

c1

c2

^

c‘3

2
66664

3
77775¼ ~gc

where ck are the non-zero constants to be determined.
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Again, since F is singular, vk is solvable if and only if bk is orthogonal to vectors di 2 R4n that are orthogonal to the
column vectors of F. That is, di satisfy Fudi ¼ 0 and bukdi ¼ 0. Therefore,

duBwk ¼ 0

where d¼ ½d1. . .d‘4
� and ‘4 is the dimension of the null space of F0. Clearly, wk reside in the null space of duB with basis

½w1,w2,. . .,w‘5
�. The dimension of the matrix duB is ‘4 � 2m and wi are 2m-component column vectors spanning the null

space of duB. Suppose,

wk ¼ d1w1þd2w2þ � � � þd‘5
w‘5

¼wd

where di are any non-zero constants. The eigenvalue–eigenvector constraint suggests

Bwk ¼ Fvk ) Bw�F ~g�
d

c

� �
¼ 0

�
(7)

That is, the constants d and c are linearly dependent and they reside in the null space of Bw�F ~g�
�

. Therefore, the non-
zero vectors {vk, wk} and fv̂i,ŵig are exactly determined from Eqs. (6) and (7). Based on these vectors, the controller G is
determined from Eq. (3). The procedure is given in the following section.
4. State and output feedback controller design

The controller for PEA is determined from the following relations:

GCv̂i,R ¼ ŵi,R

GCv̂i,I ¼ ŵi,I , i¼ 1,2,. . .,p (8a)

GCv̂i,R ¼ ŵi,R

GCv̂i,I ¼ ŵi,I , i¼ 1,2,. . .,pþ1, pþ1,. . .,2n (8b)

Further the above equations resemble

IðmÞGv¼w (9)

where I(m) is the identity matrix of order m, G is an unknown matrix of order m� pand v and w are known non-zero vectors
with components p and m, respectively. Let,

G¼

g1,1 g1,2 � � � g1,p

g2,1 g2,2 � � � g2,p

� � � � � � � � � � � �

gm,1 gm,2 � � � gm,p

2
66664

3
77775 and

gup ¼ ½g1,1,g1,2,. . .,g1,p,g2,1,g2,2,. . .,g2,p,. . .,,gm,1,gm,2,. . .,gm,p�

where prime denotes transpose of the column vector gp. Under this arrangement, Eq. (9) is modified as below:

½IðmÞ � vu�gp ¼w (10)

where � refers the Kronecker product of the matrix I(m) and the row vector v0.
State feedback case:
In this case, matrix C is identity matrix of order 2n. gp=g. Eqs. (8) turns out to be

½IðmÞ � v̂ui,R�g¼ ŵi,R

½IðmÞ � v̂ui,I�g¼ ŵi,I , i¼ 1,2,. . .,p

½IðmÞ � v̂ui,R�g¼ ŵi,R

½IðmÞ � v̂ui,I�g¼ ŵi,I , i¼ 1,2,. . .,pþ1, pþ2,. . .,2n

These equations are rewritten in the matrix form as

Ug ¼f
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where

U¼

IðmÞ � v̂u1,R

IðmÞ � v̂u1,I

� � �

IðmÞ � v̂up,R

IðmÞ � v̂up,I

IðmÞ � v̂upþ1,R

IðmÞ � v̂upþ1,I

� � �

IðmÞ � v̂un,R

IðmÞ � v̂un,I

2
66666666666666666664

3
77777777777777777775

and f¼

ŵ1,R

ŵ1,I

� � �

ŵp,R

ŵp,I

wpþ1,R

wpþ1,I

� � �

wn,R

wn,I

2
66666666666666666664

3
77777777777777777775

U is a square matrix of order 2mn�2mn. j is a 2mn-component vector. Thus the state feedback controller G is uniquely
determined if U is non-singular.

Output feedback case:
In this case, C is a matrix of order p�n. Eq. (8) is given by

Wgp ¼j

W¼

IðmÞ � v̂u1,RCu

IðmÞ � v̂u1,ICu

� � �

IðmÞ � v̂up,RCu

IðmÞ � v̂up,ICu

IðmÞ � vupþ1,RCu

IðmÞ � vupþ1,ICu

� � �

IðmÞ � vun,RCu

IðmÞ � vun,ICu

2
66666666666666666664

3
77777777777777777775

W is a square matrix of order 2mn�mp. Further po2n suggests that the number of equations are more than the number of
unknowns to be solved. Solution will exist if the rows of ½W j� are linearly dependent. Otherwise exact solution for gp is
not guaranteed. Note that the approximate solution in the least squared error minimization sense may not guarantee poles
in the open left half plane for stability or exact pole placement in the left half plane.
5. Examples

Consider a spring–mass system in Fig. 1 with mass, stiffness and damping matrices given by

M¼

m1 0 0

0 m2 0

0 0 m3

2
64

3
75, C¼

e1þe2 �e2 0

�e2 e2þe3 �e3

0 �e3 e3þe4

2
64

3
75 and K¼

k1þk2 �k2 0

�k2 k2þk3 �k3

0 �k3 k3þk4

2
64

3
75

The control influence matrix D is given by

D¼

1 0

0 0

0 1

2
64

3
75
Fig. 1. Model for structural damage mitigation using PEA.
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If spring k2 is damaged, then k2-k2þDk2. Accordingly, K-Kþa1K1, where a1 ¼Dk2 and

K1 ¼

1 �1 0

�1 1 0

0 0 0

2
64

3
75

The controllable pair ðÂ,BÞ for the damaged structure becomes

Â¼

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

�21 11 0 �0:6 0:4 0

5:5 �15:5 10 0:2 �0:4 0:2

0 6:6667 �13:3333 0 0:1333 �0:2

2
666666664

3
777777775

, B¼

0 0

0 0

0 0

1 0

0 0

0 1=3

2
6666666664

3
7777777775

The following numerical values are assumed in the above matrices: m1 ¼ 1, m2 ¼ 2 and m3 ¼ 3. Further, k1 ¼ k2 ¼ k,
k3 ¼ k4 ¼ 2k where k¼ 1. Similarly, e1 ¼ e4 ¼ e, e2 ¼ e3 ¼ 2e where e¼ 0:2. When a1 ¼ 1, the eigenvalues of the damaged
structure are given by,

l1,2 ¼�0:03291228226861þ2:09664357437356j

l3,4 ¼�0:3951534147956575:30006344031241j

l5,6 ¼�0:17193430293574þ4:14087801817963j

Since l1,2 exhibits least damping, we are interested in modifying the eigenvalue l1,2 and enhance damping and stiffness.
Therefore, assume l̂1,2 ¼�0:111173j. Thus, the desired eigenvalues for PEA are l̂1,2, l3,4 and l5,6. Following the procedure
discussed in Section 3, the vectors required to compute the gain matrix G are

ŵ1,R ¼
�1:19652791651476

�7:60259117976494

� �
, ŵ1,I ¼

�40:717336288475

388:860309567509

� �

v̂1,R ¼

1:14113819790217

1:07651211901762

0:37036666666667

�65:56551835765345

�60:32310248704926

�3:04114773666667

2
666666664

3
777777775

, v̂1,I ¼

21:81291263462217

20:06783399687546

1

1

1

1

2
666666664

3
777777775

w3,R ¼
2:10441368560734

3:41138583103054

� �
, w3,I ¼

19:64290399946321

�67:91590325654130

� �

v3,R ¼

1:03750625322858

�0:54920306004516

0:26323334248871

�60:75156303393706

30:47116247565759

�5:40408099448490

2
666666664

3
777777775

, v3,I ¼

11:38506917410504

�5:70826054287403

1

1

�0:65517241379310

1

2
666666664

3
777777775

v5,R ¼

0:28978427549367

�0:17312563294820

0:28301589609513

�4:86570694921010

41:37951873026788

�4:18953815899448

2
666666664

3
777777775

, v5,I ¼

1:16301013230968

�9:98574512789546

1

1

1

1

2
666666664

3
777777775

w5,R ¼
14:78567599941380

14:54403997030568

� �
, w5,I ¼

�114:146175933530

�187:354000242387

� �

Following the procedure discussed in Section 4, these vectors are used to compute the controller G as below:

Gu¼

16:674829756373 5:197227254444

�9:014060120494 15:601871303801

�195:646829611661 �34:288586266912

1:415773491085 0:207873113289

�1:145191189470 0:256789479249

�28:175031515465 �3:778194166868

2
666666664

3
777777775
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We observe that both ðÂ�BGÞ and Â share common eigenvalues as unaltered under a state feedback control law
uðtÞ ¼ �GxðtÞ. The altered eigenvalue is at �0.111173j. It illustrates damping and stiffness modifications required in
structural damage mitigation problems.

In the next example, partial eigenvalue assignment for a cantilever beam model is illustrated [17]. It is represented by
ten states and two inputs. The matrices are given by

Â¼

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

�2:334e7 3:465e7 �1:938e7 2:734e6 1:097e6 �24:42 14:05 1:241 �8:169 �1:856

5:653e7 �1:204e8 1:180e8 �4:236e7 �4:915e6 24:42 �47:55 19:19 �1:528 2:264

�3:016e7 1:09e8 �2:429e8 1:656e8 �1:290e7 5:013 21:73 �66:56 32:01 4:129

�4:608e6 �1:090e7 1:425e8 �1:799e8 5:264e7 3:169 4:390 26:19 �51:46 13:49

6:401e6 �6:459e6 �9:703e7 1:772e8 �7:933e7 �5:384 7:757 �2:545 37:50 �43:32

2
6666666666666666664

3
7777777777777777775

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

B¼

0 0

0 0

0 0

0 0

0 0

�1503 �3937

7544 2:087e4

�1:475e4 �4:326e4

1:006e4 3:130e4

�8:576e4 �2:738e4

2
6666666666666666664

3
7777777777777777775

Eigenvalues of the matrix Â are lijeþ04, where lij are given by

l1,2 ¼�0:0048353669767972:07034435005781i

l3,4 ¼�0:0030919745392671:28828185293888i

l5,6 ¼�0:0025255615305470:66745711476861i

l7,8 ¼�0:0007217402217770:23074774058783i

l9,10 ¼�0:0004908567316470:11798597206295i

Suppose the eigenvalues l9,10eþ04 need to be modifies to

l̂9,10 ¼�5:8902807796339271:297845692692489eþ003

Then the controller is G eþ03, where G is given by

Gu¼

�0:00137223984125 �1:57922757003882

�0:00080957309888 �1:00824516274194

�0:00047006997748 �0:69745461280534

�0:00072650796522 �0:84102125257781

�0:00025813148110 �0:41108566068630

�0:00000030016279 0:00002527023762

�0:00000018822599 0:00001663196419

�0:00000012610088 0:00001184395892

�0:00000015317961 0:00001479883008

�0:00000007203303 0:00000738001074

2
6666666666666666664

3
7777777777777777775

The modified eigenvalues of the matrix (Â�BG) are li,jeþ04and l̂i,jeþ04 where

l1,2 ��0:0048353669767972:07034435005773i

l3,4 ��0:0030896488449571:28827443360098i

l5,6 ��0:0025255615305470:66745711476842i

l7,8 ��0:0007217402217670:23074774058759i

l̂9,10 ¼�0:0005890280779770:12978456926916i:

The altered and unaltered mode-wise damping and frequency of oscillation are given in Table 1.



Table 1
Basic principle in structural damage mitigation.

Damping factor B, frequency o rad/s

Without feedback With feedback

Mode 1 B=2.34e�003, o=2.07e+004 B=2.34e�003, o=2.07e+004

Mode 2 B=2.40e�003, o=1.29e+004 B=2.40e�003, o=1.29e+004

Mode 3 B=3.78e�003, o=6.67e+003 B=3.78e�003, o=6.67e+003

Mode 4 B=3.13e�003, o=2.31e+003 B=3.13e�003, o=2.31e+003

Mode 5 B=4.16e�003, o=1.18e+003 B=4.54e�003, o=1.30e+003 (modified)

C.R. Ashokkumar, N.G.R. Iyengar / Journal of Sound and Vibration 330 (2011) 9–1616
6. Concluding remarks

In this paper, linear algebraic methods for partial eigenvalue assignment by a state or an output feedback controller
using first order systems are presented. As a potential application of these controllers, structural damage mitigation
problem is illustrated. Partial eigenvalue assignment in structural damage mitigation augments necessary damping and/or
stiffness properties to a set of selective eigenmodes where such properties are deteriorated due to damage. Two examples
are illustrated to demonstrate the partial eigenvalue assignment methodology.
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