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1. Introduction

In the past two decades, piezoelectric materials have been widely used as distributed sensors and actuators for
structural vibration control [1]. In particular, piezoelectric ceramics, such as the lead titanate zirconate (PZT) family of
ceramics, are interesting choices for integrated sensors and actuators since they can be found in the form of small and thin
patches and, hence, may be bonded to or embedded in laminate composite structures leading to little structural
modification combined to a relatively high electromechanical coupling. Patches made of piezoelectric macro-fibre
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composites (MFC) can be another interesting choice for this type of applications. The piezoelectric effect of embedded PZT
patches may then be used to estimate local deformation/vibration of the structure by means of an electric voltage/charge
measurement in the PZT (direct or sensor effect) and/or induce local deformation/vibration of the structure by applying an
electric voltage/charge to the PZT (inverse or actuator effect) [2,3]. Therefore, depending on the electronics connected to
the piezoelectric transducers, the vibration control can be passive, active or hybrid active-passive [4]. Passive control is
particularly interesting since there is no need to inject additional energy into the system so that the mechanical energy
dissipation is due only to transformation into electrical energy and heat [5,6]. The idea of using shunted piezoelectric
materials is based on the important electromechanical coupling it provides, converting part of the vibratory energy into
electrical energy which is then dissipated through the shunt circuit [6].

More recently, research was redirected to combine active and passive vibration control techniques [7]. One of these
techniques, the so-called Active-Passive Piezoelectric Networks (APPN), integrates an active voltage source with a passive
resistance-inductance shunt circuit to a piezoelectric sensor/actuator [8]. In this case, the piezoelectric material serves two
purposes. First, the vibration strain energy of the structure can be transferred to the shunt circuit, through the difference of
electric potential induced in the piezoelectric material electrodes, and then passively dissipated in the electric components
of the shunt circuit [5,6]. On the other hand, the piezoelectric material may also serve as an actuator for which a control
voltage can be applied to actively control the structural vibrations. This technique allows to simultaneously dissipate
passively vibratory energy through the shunt circuit and actively control the structural vibrations. It has been shown that
combined active-passive vibration control allows better performance with smaller cost than separate active and passive
control, provided the simultaneous action is optimized [8].

In order to better understand the electromechanical interaction between piezoelectric sensors and actuators and
vibrating structures, several research groups have focused on proposing and implementing modeling techniques for
structures containing piezoelectric elements. In particular, usual modeling techniques for laminate structures were
adapted and extended to include the piezoelectric effect [9]. There are today several modeling techniques for laminate
structures available that include piezoelectric elements. Most of them can be grouped into: (i) three-dimensional elasticity
theories, (ii) two-dimensional equivalent single layer theories, and (iii) discrete-layer or layerwise theories. Both analytical
and numerical methods can be applied to approximate the solutions of the equations resulting from these models [10,11].

Three-dimensional theories are evidently more accurate since there is no need to make approximations for the
mechanical and electrical fields. However, except for the case of simplified boundary conditions, an analytical solution
cannot be found and one must search for a numerical approximation, for which a series of simplifying assumptions must
be included for the discretization. Although some authors focused on analytical solutions for three-dimensional models of
laminate plates with piezoelectric layers [12], most three-dimensional models were combined to the finite element
method for approximate solutions [13]. Most three-dimensional analysis of laminate plates with piezoelectric elements
were limited to thin piezoelectric layers in the extension mode, that is poled in the thickness direction. More recently,
Baillargeon and Vel [14] and Deii and Benjeddou [15] used three-dimensional theories to model laminate plates with
embedded piezoelectric materials in the shear mode, that is poled in the length/width direction.

Two-dimensional equivalent single layer theories yield equations of motion that are easier to solve but also contain a
series of simplifying assumptions. In particular, some a priori assumptions for the kinematics along the thickness
direction must be made. For that, there have been a number of propositions presented in the literature, imposing
polynomial functions of different orders or piecewise continuous (zig-zag) functions to interpolate the kinematics behavior
across the thickness [16]. Reddy [17] proposed a finite element formulation and Navier solutions for simply supported
plates with thickness-poled piezoelectric sensors and actuators using equivalent single layer combined to
classical laminated plate (CLPT), first-order shear (FSDT) and third-order shear (TSDT) deformation theories. TSDT theory
was also used recently to model the shear piezoelectric core layer of a sandwich beam structure [18,19]. For laminated
plates with shear piezoelectric materials, Aldraihem and Khdeir [20] presented an equivalent single layer model using
FSDT and TSDT.

Layerwise theories allow two-dimensional modeling of the kinematics as equivalent single layer theories, but with
independent sets of variables for each constitutive layer. Therefore, they provide a more kinematically correct through-
thickness representation. However, for practical laminate structures, they also lead to a great number of independent
variables meaning a high computational cost to solve the equations. Saravanos et al. [9] and Benjeddou and Deii [21],
among others, considered a layerwise model for laminate plates with piezoelectric elements.

In order to study laminate plates with piezoelectric materials connected to active and passive shunt circuits, it is
necessary to account for the coupling between piezoelectric elements and external circuits. There are mainly two
techniques used in the literature to perform that task. The first consists in modifying the equivalent piezoelectric element
impedance considering the piezoelectric element, in unidirectional deformation, and electric circuit as impedances in
parallel for which the admittance can be summed. This leads to a modification in the constitutive equations for the
piezoelectric material and, in particular, its elastic coefficient becomes a function of the circuit impedance [6]. A second
approach considers the equivalence between the charge generated/induced in the piezoelectric material electrodes and the
charge flowing in the electric circuit to which it is connected. This allows to write independently the equations of motion
for the structure with piezoelectric elements and the electric circuit before coupling the charge variables [22,23]. Unlike
the first one, this technique allows a time-domain analysis and does not require unidirectional deformation in the
piezoelectric material.
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The objective of this work is to present the finite element modeling of laminate composite plates with embedded
piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance,
inductance and voltage source. The model is based on an equivalent single layer theory combined with TSDT. A stress-
voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electric circuit. To this
end, the electric circuits equations are also included in the variational formulation. Hence, conservation of charge and full
electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical
(displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced)
laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and
thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control
performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through
the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration
modes. Then, an analysis of the control authority enhancement, when the piezoelectric patches are used as actuators, due
to the resonant shunt circuit is performed.

2. Finite element model

A laminated plate composed of elastic and piezoelectric layers is considered. Both elastic and piezoelectric layers are
supposed to be thin, such that a plane stress state can be assumed, perfectly bonded and made of orthotropic piezoelectric
materials. Elastic layers are obtained by setting their piezoelectric coefficients to zero. Upper and lower surfaces of
piezoelectric layers are assumed to be fully covered by electrodes. The equivalent single layer theory is used so that the
same displacement field is considered for all 2n layers of the laminate plate. Also, for simplifying purposes, only symmetric
laminate plates are considered, however the electric displacements in each layer are independent.

2.1. Mechanical displacements and strains

The displacement fields for the laminate plate are defined according to a third-order shear deformation theory (TSDT)
proposed by Reddy [17], such that

UKY,Z,b) = Uo(X.Y,0)+ 2P (XY, ) —C1 2 [P (XY, )+ Wo (.Y, )],
VX,Y,Z,t) = Vo (XY, 1)+ 21, (X,y,0)—C1 22 [P, (X, 1) + Wo y (.Y, )],

W(XvJ"Z-t) = Wo(xvyvt)) (1 )

where uo, Vo and wy are the displacements and i, and v, are the cross-section rotations at the neutral surface (z=0) of the
laminate plate. wo and wy, are the derivatives of wg in x- and y-directions, respectively. c¢; is a constant that allows FSDT
(c1=0) or TSDT (c;=4/3h?) to be implemented (Fig. 1).
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Fig. 1. Representation of the assumed kinematics for FSDT and TSDT.
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Considering the standard relations between displacements and infinitesimal strains yields the following strain
components:

g1 =& +zel—c12%63, ey =&9+zes—c 1233,
£3=0, &4=263-3012%¢3,
es =e3-3c12%62, g5 =8d+zel—c123€d, (2)
where generalized strains are defined as

0 1 3
&1 =1Ugx, &1 = l//x,xv &8 = (l:bx,x +Wo,xx),

0 1 3
82 = v(),yv 82 = lpy,yv 82 = (lpy,y +W0,yy)v

0 1
&g = (Uo,y + VO,X)- &g = (‘//x,y + l//y,x)v

8% = (l//x,y + lr/’y,x + 2W0,xy),

e =e5=,+Woy) &) =¢el=(+Woy. (3)
2.2. Piezoelectric constitutive equations

Linear orthotropic piezoelectric materials with material symmetry axes parallel to the plate ones are considered here.
c?, hy; and By (ij=1,...,6; kI=1,...,3) denote their elastic (for constant electric displacement), piezoelectric and dielectric
(for constant strain) material constants. The potential energy of a given piezoelectric layer can be described by its electric
enthalpy density [22,23]

U(e,D) = % gcPe—e'h'D +%Dtﬂ8D. (4)

The constitutive equations of each piezoelectric layer are obtained from ¢ = 0U(¢,D)/0¢ and E = dU(¢g,D)/0D that are
6 =c’¢—h'D, E=—he+pD. (5)

The material constants ¢, h and f° can be obtained from the standard strain-charge form (d-form) constants, s, d
and &7, using the following transformations: h = (¢t)~'d(sf)~!, ¢=(sf)~" [I+dh'] and f° = (¢°)"!, where & = ¢°—d(sf)~'d".

For thin layers fully covered with electrodes on their upper and lower surfaces, plane stress, g3 =0, and unidirectional
electric displacement, D, =D, =0, hypotheses can be considered. Hence, the previously presented constitutive equations can
be reduced to

o1 o 00 0 —hu| .
oy &, & o 0 0 —hs||e
04 0 0 ¢ o 0 0 &4
os (| 0 0 0 & 0 -—hyl|)es ([ (6)
06 0 0 0 0 ¢c& o &6
Es —h3y —hy 0 —hi 0 P Ds

In this work, two polarization schemes were considered. Each piezoelectric layer may be poled in x- or z-direction. In
the first case, the piezoelectric layer responds to transverse shear strains, ¢s, while in the second case, it responds to normal
strains, ¢; and &,. The constitutive equations for a piezoelectric material poled in the x-direction may be obtained from the
standard z-poled ones through a 90° rotation around the y-direction [24]. In order to use a unified constitutive equation (6)
for both cases using the properties for a z-poled piezoelectric material provided by the manufacturers, the modified elastic,
piezoelectric and dielectric constants are defined as

=D D_.D2,D =D D_.D2,D
Ciy =(Cc11—Cy3 /C33), € =(C3—C33 /C33),
—D D DD /D —D D = D =D D
Cia =(C13—C13C33/C33), C44=C44, Cs5=Css5, Ces = Cep:
e . s b _
B33 =(B33—h33/c33), h3s=0,

h31 = (h31-h33c/cDy), 3o = (h3o—h33cBs/cDy), (7)
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for piezoelectric layers poled in the z-direction and
= (C3D3*511332/C1131)v = (CzDz*C?zz/C%)v
E1D2 = (c3—cPycls /Py, 624 = CC6» E?s =cls, Egs =Ciy
Ege. = ﬁ%. E35 = hlsy

E31 :E32 =0, (8)

for those poled in the x-direction. From (6) to (8), it is possible to observe that the electromechanical coupling is between
through-thickness electric field, or displacement, and normal strains &; and &;, for a piezoelectric layer poled in the
z-direction, or transverse shear strains &s, for a piezoelectric layer poled in the x-direction.

2.3. Variational formulation

The equations of motion for the laminate plate composed of elastic and piezoelectric (z-poled or x-poled) layers are
obtained using Hamilton’s principle

/t (OT—5U+6W)dt =0, 9)

such that the virtual variation of electromechanical potential energy éU of the laminate plate may be written from (4) as
0U(g,D) = Uy —0Ume—0Uem +0Ue, (10)
with

SUp = / 56 cedQ, Upe = / seh'DdQ,
Q Q

SUom = / SD'hedQ, U, = / SD'B'DAQ. (1
Ja Ja
The virtual variation of kinetic energy oT is written in terms of the mechanical displacements u, v and w such that
/(3Tdt=—//p((iuil+6vi)+(5wv\'/)d9dt, (12)
t tJQ

where ii, 7 and w represent the accelerations in the directions x, y and z, respectively. The virtual work done by the
external mechanical forces dW is defined a posteriori in the finite element model.

2.4. Finite element discretization

With the objective of obtaining a discrete finite element model for the laminate plate, for which a single mechanical
displacements field is considered for all layers while electric displacements in each layer are independent, this section
presents the finite element discretization of mechanical and electric displacements.

A rectangular finite element model with four nodes is considered using linear Lagrange’s interpolation functions for the
in-plane displacements, o and vy, and cross-section rotations at midplane, ¥, and ¥, and cubic Hermite’s interpolation
functions, nonconforming, for the transversal displacement wy. For the electric displacements in each layer, linear
Lagrange’s interpolation functions were also considered. Therefore, a four-node finite element model with seven
mechanical degrees of freedom, ug, vo, ¥y, ¥,, Wo, Wox and woy, and four (per piezoelectric layer) electrical degrees of
freedom is obtained.

2.4.1. Discretization of mechanical displacements and strains
Using the considerations described above, the generalized mechanical displacements uo, vo, ¥y, ¥, and wo can be
written as

Uy )= > Up(ON;X.Y), VoY) =Y Vp(ON;(x.Y),

i=1 i=1

4 . 4 i
Yy, =D YAONXY), Yyt =Y YONEY),

ji=1 j=1

4 . . . . . .
Wo(x.y,) =Y [Wh(ONSX,Y)+Wp (ON§(X.Y) + W) (DN, (X,y)], (13)

i=1
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where the interpolation functions Ni(x,y), N5(x,y), N5(x,y) and Ni(x,y) (j=1,...,4) are defined as

N; a=-5H0a-mn)
N 1| A+HA-n)

Ns (T4 [A+90+m |’ (14)
Ny (1= +1n)
N 1 A+ &)1 +10)2 +Eo+1p—E 1)
N{:S =3 Ei(Eo—D)(1+19)(1+&o) . (15)
N, 1;(1o—1)(1 +Eo)(1+119)

The natural coordinates are defined as ¢ = (x/a), n = (y/b), {o = £&; and ng = nn;, with §; = (x;/a) and u; = (y;/b), where x;
and y; correspond to the node position on the element, that is, xj=a or x;= —a and y;=b or y;= —b. a and b are the half-dimension
of the element along the directions x and y, respectively, as shown in Fig. 2.

The generalized displacements uo, Vo, Wo, Y, and i, can be grouped in a vector u, such that

ug:[u() Vo Wo lpx lpy]t (16)

Then, the vector of generalized displacements u, can be written as a function of the nodal displacements vector u, as

u; = Ngu, (17)

with
u =[u} v o} ulf, (18)
w=(u) vh wh wh, wh, Vi WL j=1,....4 (19)

The interpolation matrix for u, can then be written as

Ng =[N; N7 NJ Ng],

N O 0O 0 0 0 O

0O N O 0O 0O O O
N=|0 0 N, M, N, 0 0 (20)

0 0 0 0 0 N O

0 0 0 0 0 0 N

The generalized strains defined in (2) can also be grouped in a vector &g, such that,
ge=[c9 &9 €] &2 &2 &l &l &l &2 &2 &3 & &, (21)
and written as a function of the generalized displacements vector in the form

g =L.uy, (22)

1 p! 2p?2
u', D, u’, D,

Fig. 2. Schematic representation of the laminate plate finite element.
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with
g ; 0 0 O
o 0 0 O
0 % 0 1
o 0 % L
oy 0 O
0 &
0 O 0 0 o
L.= oy |- (23)
0 O 0 % %
0 O % 0
0 O % 1 0
0 O % % 0
0 O aayiz 0 %
2
0 020 50

Finally, using (17) and (22), the generalized strains can be written as a function of the nodal displacements as

&g =Bu, where B=L;N; or 8{ =Bju,. (24)

2.4.2. Discretization of electric displacements
The through-thickness electric displacements in the 2n layers can be grouped as a vector Dy

D, =D (xy.t) DS Veey.t) - D3 Vey,t) DS Py ol (25)
and written as a function of the nodal electric displacements in the form
D, =NpD,, (26)
where

D, =[D, D; D; Dl

D£=[D(3n)'j D(3"*1)J D;(”*UJ D(;ﬂ),]']t_ (27)

Considering linear Lagrange’s interpolation functions for electric displacements, the interpolation matrix Np is written
as

Np=[N; N; N3 Ny, N;=diag(N). (28)
Notice that the dimension of N; is (2n x 2n) and, therefore, that of Np is [2n x (2n x 4)].

2.4.3. Discretization of energy virtual variations
Using the discretization of mechanical displacements and strains and electric displacements previously presented, it is
possible to discretize the virtual variations of potential (11) and kinetic (12) energies. Replacing (24) and (26) in (11), one gets

OUpm = owiKS ue,  SUpe = SULKS,, D,

e~ me

t

OUem = ODLKS,'te,  SU, = SDLKED,, (29)

where the elastic Kf,, piezoelectric K&, and dielectric K¢ elementary stiffness matrices are evaluated from

n b a . X
K,=2>" / , / {(z,——z,-l)[ > Ca(BioBio)+Ch5(B5oBio+BoBao)
i=1/-bJ-a k=

1,2,4,5,6
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3.3
(-7 1)

T3

> Bl Bi)-3ci > (BB +Bisz0):|
k=126 k=45

- gl(z? ) { Cie(BiyBis +BigBi)—9¢1 > CiiBi,Bio +Ch5 (B Bis +BY3By1 + B By + BBy )}
k=126 k=45

c? e e
+G | 3 RBb BB Bt
k=126

}dx dy, (30)

n b a . . . . > 1 - . . »
Kh. = Z /b/ {(Zifzi—l)[hnggo+h132B50+h135820](N})+ND1)+ i(zizfzi{])[h;];g] +h132351](N;J*ND'
iz1/-bJ-a

—c1(z 22 (5Bl IND +Np)— 72—z RS, B +EQZB;3](N5—N5f)}dx dy, (31)
k=2 [ [z Ny dxay. (32)
iz1/-bJ-a
The virtual variation of kinetic energy and virtual work of external mechanical forces are
/t STdt=— /t SulMCii, dt, (33)
oW = SulF:, (34)

where the vector of elementary external mechanical forces F;, is defined for the global nodes after assembly and the
elementary mass matrix M® is written, using (1), (12) and (17), as

n b pra 1 c
M =2%" / ) / p'{(zi—zlq)[NLNu+N5NU+N5VNW]+ 3@ 2} Ny Ny, +Nj, Ny, 1- = (20 ~2] )
i=17/-bJ/-a

C2
X[2Ny, Ny, +Nj, Nuo+-Ny, Ny, +2Nj, Ny, Ny, Ny + N3 Ny 1+ = =2 )

x[Nj, Ny, +NY, N+ Nb Ny, +NG, N+ NG, Ny NG Ny + NG Ny, +N5V'yNW,y]}dx dy. (35)

2.5. Coupled equations of motion

Replacing the discretized form of the elementary virtual variations of potential (29) and kinetic (33) energies and virtual
work of external mechanical forces (34) into Hamilton’s principle and, then, assembling the equations for all finite
elements yields the following global equations of motion, written in terms of the nodal mechanical and electrical degrees

of freedom,
|:M 0:|{u}+|: Kn: Kme:|{ll}={l:m}' (36)
0 0D K. Ke D 0
where M, K, K;,,. and K, are mass and elastic, piezoelectric and dielectric stiffness global matrices, respectively. u and D
are the global vectors of nodal mechanical and electrical degrees of freedom. More details in this formulation can be found
in [25].

These equations of motion account for the coupling between mechanical displacements of whole laminate plate,
including piezoelectric layers, and electric displacements induced in the piezoelectric layers. It is possible to consider
different boundary conditions for both mechanical and electrical quantities, for instance open (D=0) and closed (D#0)
circuit conditions for the piezoelectric layers. However, in this work, it is supposed that each piezoelectric layer may be
connected to an electric circuit, composed of resistance, inductance and voltage source. For a series of independent
resonant (resistive-inductive) electric circuits coupled to voltage sources, the equations of motion are

chc"'chc =V, (37)

where L. and R, are diagonal matrices and q. and V. are vectors with elements L R, q’C and V4, respectively, which are the
inductance, resistance, electric charge and applied voltage for the j-th circuit.
Combining the equations of motion of the circuits with those of the structure with piezoelectric elements yields
M 0 O u 00 O u Kn —Kpe O u Fn
00 0{D'+joo0 o{D}y+|-K, K. ofl{D'=!0} (38)
0 0 L | (4. 0 0 R | |4 0 0 0] |9 Ve
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In order to couple the electric circuits and piezoelectric structure, two additional steps should be undertaken. First, an
equipotential surface representing the electrodes over the upper and lower surfaces of the piezoelectric layers must be
reinforced. This is done by rewriting the global vector of nodal electric displacements D in terms of a vector of electric
displacements in each independent piezoelectric patch or layer, such that

D=L,D,, Dp=[Dp1 Dp2 Dp3 -+ Dpml', (39)

where L, is a binary matrix that imposes the equality between the electric displacements at the nodes located in the region
covered by an electrode. Then, the total electric charge accumulated in an electrode is related to the electric displacement
by q,=A,D,, where A, is a diagonal matrix containing the surface area of the electrodes covering each piezoelectric patch.
Next, it is assumed that all electric charge accumulated in an electrode will flow through the circuit to which it is
connected. This allows to write an equality relation between the electric charge q,, and thus the electric displacement Dp,
in the patches and the electric charge q. in the circuits, such that D,=A, 'q,=A, 'q.. Replacing this relation into (39)
leads to

D=B,q., B,=LA," (40)

Replacing (40) in a variational form of the equations of motion (38) and summing the terms related to q., one gets the
following reduced equations of motion in terms of the mechanical displacements u and circuits’ electric charges q.

M O u 0 0 u K —Kine u Fn
. o+ T _ = , (41)
0 L |]|q 0 Rc|]q -K,. K. q. V.
where Kine = KBy and K, = B,K.B,.

3. Finite element model validation

The proposed finite element model was implemented in Matlab. In this section, eigenfrequency results obtained with
the proposed model are compared to numerical and analytical results found in the open literature, considering only open
and closed circuit boundary conditions for the piezoelectric layers, that is without connection to an electric circuit.

3.1. Laminate plate with through-thickness poled piezoelectric layers

In this case, a square laminate plate composed of three layers of Graphite-Epoxy (GE, Carbon-Fibre Reinforced) material
(0/90/0) covered by PZT-4 piezoelectric layers poled in z-direction (through-thickness) is considered, leading to a five-layer
laminate plate (PZT-4/GE 0°/GE 90°/GE 0°/PZT-4). The thickness of piezoelectric and GE layers are 1 and 2.67 mm, respectively,
and plate’s length is 500 mm. The material properties of PZT-4 poled in z-direction are [26]: c§;=c5,=138.5 GPa, c53=114.75GPa,
C§2=7737 GPa, C§153=C53=73.64 GPa, C£4=Cl555=25.60 GPa, Cgs=3060 GPa, ej5=e94=12.72C miz, e31=e3;=—5.2C miz, e33=15.08
Cm~2 ¢&f, =%, =153nFm™, &3 = 15nFm~". The material properties of the GE (0°) are [26]: ¢;1=133 GPa, c2,=10.81GPa,
c33=14.36 GPa, ¢;,=2.59 GPa, ¢13=5.16 GPa, c»3=7.14 GPa, c44=3.61 GPa, c55=Cg5=5.65 GPa. The densities of all materials were
considered to be unitary, 1kgm ™3, for comparisons purpose. The plate was considered to be simply supported (SSSS). Four
hundred plate elements were used in this analysis.

The first five natural frequencies wy, were evaluated and re-dimensionalized by the expression Ay, = wyyL?./p/27h.
The results obtained by FSDT and TSDT models were compared to the analytical solutions 3D-SSM (State Space Method,
coupled) by Benjeddou and Deii [21] and finite element solutions Q9-HSDT (Higher Shear Deformation Theory, with nine
nodes per element and 11 degrees of freedom) by Franco Correia et al. [26], in short-circuit (SC) and open-circuit (OC). The
present results and their percent errors relative to the published ones (4%) are shown in Table 1. It is possible to observe
that a reasonably good approximation to 3D-SSM and Q9-HSDT theories is obtained, although the relative error for some
eigenfrequencies are greater than 5%. For this plate configuration, the present FSDT model yields higher eigenfrequencies

Table 1
First five eigenfrequencies of laminate plate PZT-4/GE 0°/GE 90°/GE 0°/PZT-4.

SC 0]@

A1 12 A2 A22 13 11 12 22,1 222 213
3D 245.94 559.40 691.73 965.18 1090.98 245.94 559.41 691.73 965.19 1091.00
Q9 230.46 520.38 662.91 908.46 1022.09 250.50 583.18 695.70 980.36 114541
FSDT 227.65 547.81 690.55 921.65 1118.41 231.08 547.81 690.55 921.65 1120.37
A%(3D) —8.03 —2.12 -0.17 —4.72 2.45 —6.43 —2.12 -0.17 —4.72 2.62
A%(Q9) —-1.23 5.01 4.00 143 8.61 —8.40 —6.46 —0.75 —6.37 —2.23
TSDT 225.98 542.29 680.11 906.09 1099.05 229.41 542.29 680.11 906.09 1100.94
A%(3D) —8.83 —3.16 —-1.71 —6.52 0.73 —7.20 —3.16 -1.71 —6.52 0.90

A%(Q9) —1.98 4.04 2.53 —0.26 7.00 -9.19 —7.54 -2.29 -8.20 —4.04




T.C. Godoy, M.A. Trindade / Journal of Sound and Vibration 330 (2011) 194-216 203

than the TSDT one. Differences between eigenfrequencies for piezoelectric layers in SC and OC conditions occur only in
symmetric modes for both models, FSDT and TSDT, which is reasonable since asymmetric modes leads to asymmetric
distribution of electric potential on the electrodes of piezoelectric layers leading to a charge cancelation effect [29].

3.2. Sandwich plates with longitudinally poled piezoelectric layers

In a first analysis, a square sandwich plate with Graphite-Epoxy (GE, Carbon-Fibre Reinforced) surface layers and a
longitudinally poled (x-direction) PZT-5H piezoelectric core layer is considered (GE 0°/PZT-5H/GE 0°). Plate dimensions
are: total thickness H=1cm and length L=10cm, GE layers thicknesses 0.4 cm and PZT-5H layer thickness 0.2 cm. Material
properties for a through-thickness poled PZT-5H are [15]: cf1=c§,=126 GPa, c§3=117 GPa, c§,=79.5 GPa, cf3=c55=84.1 GPa,
cha=cEs=cts=23 GPa, e15=e24=17Cm~2, e3;=e3;=—6.5Cm 2, €33=23.3Cm?, &, =&, =15.03nFm~!, &; =13nFm",
pP% =7500 kg m—3. GE material properties are [15]: c;1=183.443 GPa, ¢;,=c33=11.662 GPa, c1,=c13=4.363 GPa, c,3=3.918
GPa, c44=2.870GPa, c55=c56=7.170GPa, p°f = 1580kgm3. The plate is considered to be simply supported (SSSS). Nine
hundred plate elements were used in this analysis.

The results obtained with the proposed models, based on FSDT and TSDT, were compared to analytical solutions 3D
MSSA (Mixed State Space Approach) obtained by Deii and Benjeddou [15], in SC and OC conditions. Table 2 presents the
first eight non-dimensional eigenfrequencies, Ay = wyyL?\/(pP* /cEspzt)/H, for the plate evaluated with the present
models and their comparisons with the analytical results. It is possible to observe that the results of the present model are
close to those obtained by Deii and Benjeddou [15], although for some eigenfrequencies the error is larger than 5%. TSDT is
closer than FSDT to reference results for lower eigenfrequencies while, for higher eigenfrequencies, FSDT is closer to
reference results. It was also observed that the TSDT model yields higher eigenfrequencies than the FSDT one. No difference
between SC and OC conditions were found, which can be explained by the fact that all vibration modes yield an
asymmetric shear strain distribution and, thus, leading to charge cancelation due to equipotentiality.

A second analysis was performed with a sandwich plate GE 0°/PZT-5A/GE 0° studied by Baillargeon and Vel [27]. The plate is
considered to have infinite extent in y-direction. The thickness of GE and PZT-5A layers are considered to be 1 and 0.5 mm,
respectively, leading to a total thickness of 2.5 mm, and the length along the finite direction (x) is L=250 mm. The plate is simply
supported at the boundaries along the finite direction (SSFF). The material properties of through-thickness poled PZT-5A are [27]:
c§1=c5,=99.201 GPa, c53=86.856 GPa, c},=54.016 GPa, cf3=c53=50.778 GPa, cis=cE5=21.100 GPa, cts=22.600 GPa, e;5=e,4=12.322
Cm™2, e3=ep=-7209Cm™2 e33=15118Cm~2 &f, =&}, =153nFm~!, & =15nFm~!, pP*=7750kgm—3. Material
properties of the GE material at 0° are the same of the previous analysis. Three hundred plate finite elements were used.

Table 2
First eight non-dimensional eigenfrequencies of sandwich plate GE 0°/PZT-5H/GE 0°.

Modo SC ocC
Ref. FSDT Error (%) TSDT Error (%) Ref. FSDT Error (%) TSDT Error (%)
A1 13.49 13.09 —3.06 13.29 -1.52 13.56 13.09 —3.56 13.29 -2.02
2 19.77 18.69 —5.80 18.90 —4.61 19.84 18.69 -6.17 18.90 —4.98
13 31.73 31.50 -0.74 31.82 0.28 31.80 31.50 -0.95 31.82 0.07
2.1 40.68 42.51 431 44.52 8.63 41.26 42.51 2.95 44.52 7.33
222 44.44 4491 1.04 46.91 5.26 45.02 4491 -0.26 46.91 4.02
M4 47.81 49.83 4.05 50.45 5.23 47.88 49.83 3.91 50.45 5.09
23 52.33 52.01 —0.60 53.96 3.03 52.89 52.01 -1.69 53.96 1.99
Ao 64.57 65.16 0.91 67.15 3.84 65.10 65.16 0.10 67.15 3.06
Table 3

First eight eigenfrequencies (Hz) of sandwich plate GE 0°/PZT-5A/GE 0°.

e oc

Ref. FSDT A (%) TSDT A (%) Ref. FSDT A (%) TSDT A (%)
fia 145.06 145.19 0.09 145.13 0.05 145.06 145.19 0.09 145.13 0.05
B 578.54 579.85 0.23 579.60 0.18 578.65 579.85 0.21 579.60 0.16
f31 1295.49 1301.22 0.44 1300.66 0.40 1296.04 1301.22 0.40 1300.66 0.36
fan 2287.84 2304.78 0.74 2303.81 0.69 2289.53 2304.78 0.66 2303.81 0.62
fsa 3544.82 3584.38 1.10 3582.89 1.06 3548.85 3584.38 0.99 3582.89 0.95
foa 5053.35 5132.34 1.54 5130.25 1.50 5061.46 513234 1.38 5130.25 1.34
fra 6798.55 6939.68 2.03 6936.95 2.00 6813.07 6939.68 1.82 6936.95 1.79

f8:1 8764.26 8996.26 2.58 8992.87 2.54 8788.09 8996.26 231 8992.87 2.28
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Similarly to the previous study, the first eight eigenfrequencies, in SC and OC, were evaluated using the FSDT and TSDT
models and compared to the analytical results published by Baillargeon and Vel [27]. The eigenfrequency results and their
error relative to the reference analytical results (4) are presented in Table 3. One can notice a satisfactory concordance
between the proposed models results and the reference ones. For the same reason of the previous analysis, no difference in
eigenfrequency values was observed between SC and OC conditions.

4. Passive vibration control using resonant circuits

In this section, the previously presented TSDT finite element model is used to evaluate and optimize the performance of a
passive vibration control system using piezoelectric patches connected to resonant (resistive-inductive) shunt circuits. This is
done by first placing four pairs of piezoelectric patches in a laminate composite plate, so that the energy conversion between
the plate and the electric circuits is maximized, and then designing the shunt circuit components (resistance and inductance)
so that the reduction of vibration amplitude of the plate near the first four resonances is maximized. The plate is made of 12
Graphite-Epoxy (Carbon-Fibre Reinforced) AS4/3501-6 layers (90°/ 90°/ 0°/ 0°/ 90°/ 90°/] 90°/ 90°/ 0°/ 0°/ 90°/ 90°), has
dimensions (250 x 350 x 1.5)mm and is supposed to be clamped on all sides (CCCC). The piezoelectric patches are made of
thickness-poled PZT-5A piezoceramic material with dimensions (25 x 25 x 0.25)mm. The material properties were adapted
from [28] and, for the GE, are: c;1=146GPa, ¢3=9.71GPa, c33=11.7GPa, ¢12=2.91GPa, ¢;3=4.92GPa, c3=4.76GPa,
€44=3.45GPa, ¢s55=C56=4.14GPa, p° =1389kgm—3. The material properties of PZT-5A are the same as those presented
previously.

4.1. Optimal positioning of piezoelectric patches on the plate

It is known that the squared modal electromechanical coupling coefficient (EMCC) is an adequate indicator of the
amount of strain energy converted to electrical energy by a piezoelectric patch when the structure to which it is bonded/
embedded vibrates in a given mode shape [29]. Therefore, the EMCC is used here as a metric to perform the positioning of
four symmetric pairs of patches throughout the plate, via parametric analysis, such that each patch maximizes the EMCC of
one of the first four vibration modes of the laminate plate.

In order to analyze the optimal positioning of piezoelectric patches that maximizes the electromechanical coupling, a
parametric analysis was performed. This was done through variation of the x, y and z position of one symmetrical pair of
patches and subsequent evaluation of the electromechanical coupling of the pair for the first four vibration modes. Three
positions across the thickness z-direction were chosen based on a previous analysis. In the first two positions, each
piezoelectric patch replaces part of the first and last two adjacent layers of graphite-epoxy, starting from the midplane,
respectively. In the third case, the piezoelectric patches are bonded on the external (upper/lower) surfaces of the laminate
plate. In the plane xy, nine positions in x and in y are considered according to Fig. 3. Seven hundred plate elements were
used in this analysis.

Y
350
52 25]
85
o X
8.5 25 250
Zi 27
0.750
0.125%
X
-0.750 T

[JGE-90° [JGE-0° [HPZT-5A

Fig. 3. Schematic representation of the laminate plate with the possible and optimal (highlighted) positions in x- and y-directions for piezoelectric
patches.
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The EMCC of a given piezoelectric patch/layer used in the evaluations is defined as [29]

j 2 g2
Ocj.zfsc , (42)

oc

2
Kj:

where fi. and fi. denote the j-th eigenfrequency of the structure evaluated with the analyzed piezoelectric patch/layer in
open-circuit and in short-circuit, respectively.

The first four vibration modes are shown in Fig. 4 for piezoelectric patches positioned at the center of the plate. Results
have shown that, for all cases, the second position across the thickness gives the best coupling. In this position, the patches
external faces coincide with laminate plate external faces, as shown in Fig. 3. For this position in z, the variations of K?
along x- and y-directions are shown in Fig. 5. Notice that, as expected, the optimal position of the patch follows the mode
shapes such that the coupling is maximum at the regions of maximum curvature, which are, for instance, at the center of
the plate for the first mode. For the second and third vibration modes, two positions of maximum coupling coefficients are
available. For the fourth mode, four positions are equally interesting (Fig. 5). Following this analysis, the chosen optimal
locations in xy are shown in Fig. 3 labeled according to the vibration mode. The squared modal electromechanical coupling
coefficients for these locations are shown in Table 4.

In a second analysis, four pairs of piezoelectric patches are considered, where each pair is considered to focus at one of
the four vibration modes and, hence, is located where maximum coupling is obtained for the corresponding vibration
mode. The resulting design is defined by considering all highlighted patches in Fig. 3. The coupling coefficients were then
evaluated for each vibration mode by making all patches in open circuit or short circuit and are presented in Table 4. It is
possible to notice that, although each pair was located to optimize the coupling for only one vibration mode, the second
and fourth pairs lead to non-null coupling with vibration modes other than the ones they were designed for.

4.2. Design of resonant shunt circuits

This section presents a simplified formulation based on the theory of dynamic vibration absorbers for the design of a
passive shunt circuit working similarly to mechanical vibration absorbers, but using piezoelectric patches as converters of
mechanical energy into electrical energy and the shunt circuit as an electrical absorber. For that, the resistance and
inductance of the circuit have to be properly tuned to optimize the energy absorption/dissipation. In order to use the
standard theory of dynamic vibration absorbers [30], the equations of motion (41) are reduced to two degrees of freedom,
one mechanical, corresponding to the modal displacement of one vibration mode of interest, and one electrical,
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Fig. 4. First four vibration modes for the laminate plate with one symmetrical pair of thickness-poled piezoelectric patches located at the center of
the plate.
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Fig. 5. Variation of the squared modal electromechanical coupling coefficient of a symmetrical pair of piezoelectric patches with their positions along the
x- and y-directions.

Table 4
Squared modal electromechanical coupling coefficient sz (%) for the first four vibration modes provided by the four piezoelectric patch pairs.

Patch pair Mode j

1 2 3 4
1 0.35 0.00 0.00 0.00
2 0.23 0.59 0.00 0.00
3 0.10 0.00 0.54 0.00
4 0.03 0.26 0.22 0.79
1-4 1.12 0.54 1.20 1.67

corresponding to the electric charge in the shunt circuit. This simplification implies that one or more piezoelectric patches
must be connected to a single shunt circuit and that the contribution of other vibration modes to the structural response is
neglected. Therefore, consider the following modal decomposition for the nodal displacements as

u(t) = ¢,00(t), (43)

where ¢, is the mass-normalized vibration mode of interest and «, is the corresponding modal displacement. Moreover, as
only one circuit is considered, the equations of motion (41) are reduced to

dn+6030(n—kp%=bnfv (44)

Led, +chc+KEQC*kp0‘n =0, (45)

with the following definitions: k, = ¢;Kme, F,=bfand b, = qﬁlb. Notice that w, is the n-th eigenfrequency of the structure
considering open-circuit condition for all piezoelectric patches that are connected to the electric circuit.

In order to evaluate the frequency response function of the structure with piezoelectric patches connected to the
electric shunt circuit, let us consider that the structure is excited through a harmonic mechanical force f = fei®t, such that
oy = G,el®t and g, = §.el*t, and its response is measured by a sensor that gives output y=cu, where c is a row vector that
defines the degree of freedom that is measured. Hence, y = yei®t, where y = c,&, and ¢, = c¢. The equations of motion (44)
and (45) then become

(@F—*)in—kpG = buf, (46)

(~@*Le+joRc +Ke)f —kpbin =0. (47)
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Solving (47) for §. and substituting in (46), it is possible to write &, and, thus y, in terms of the excitation amplitude f,
such that y = Gp(w)f, where G,(w) is the frequency response function of the structure, subjected to a mechanical excitation,
which results in

Y K.,+i
Gp() = Cubn _ —oletKejoR: . 48)
@A Le—?(Ke+w2Le)+ 02K e~k +jwRc (03 —1?)
The amplitude of the frequency response function is written as
—2Lc +Ke)? +(wR.)?
1Gp(@)] = Cuby _ O+ e +(OR) . (49)
[0 Lc—?(Ke + @3Lc) + 03K —k3] +[0R (w3 —1?)]

which, for limited values of R, can be shown to have an anti-resonance at a frequency equal to the resonance frequency of
the electric circuit, defined as w. = (K./L;)!/2. One strategy to minimize the vibration amplitude of the structure at a
resonance frequency of interest is to design the resonance frequency of the secondary system, the shunt circuit in the
present case, such that it coincides with the resonance frequency of interest of the primary system, i.e. the structure.
Therefore, the following identity is defined as w. = w,, which allows to evaluate directly the inductance of the shunt
circuit as

_Ke

L=—.
c (/0%

(50)

Nevertheless, the designed anti-resonance at w, is accompanied by two resonances, before and after w,, which must
have their amplitude controlled to minimize or prevent amplification of the original vibration amplitude. This can be done
using the resistance parameter of the shunt circuit. One possible methodology based on the dynamic vibration absorbers
theory [30] is to design the damping parameter, which is the shunt circuit resistance, such that the amplitude at the anti-
resonance is approximately equal to that at one of the two invariant frequencies, which are independent of the damping
parameter, found by the following relation:

: 2_ 1 2
Him|Gp()* = lim |Gp()I*, (51)

leading to

1 —
0} 5 =0+ 02 + \ (@70 + 2023 Kol (52)

Hence, the vibration amplitudes at one of these invariant frequencies w; and at the anti-resonance frequency w, are
evaluated, leading to
R2w?2 2K,
2 c’n 2 e
=<1 an = e
and, then, equalized such that the following expression for the resistance R. can be found in terms of the equivalent
coupling stiffness kp, electrical stiffness K. and structural resonance frequency of interest wp,

k2K,

Re= 2 (54)

4.3. Performance results for passive vibration control using resonant circuits

The methodology presented in the previous section was then applied to the clamped laminate composite plate with
symmetrical pairs of piezoelectric patches represented in Fig. 3. Each pair is considered to be connected to a resonant shunt
circuit, for which the resistance and inductance are evaluated according to the expressions (50) and (54) using the
corresponding eigenfrequencies w, and eigenmodes ¢,,.

The frequency response functions for the laminate plate were evaluated considering five cases and using 600 plate
elements. For the first four cases, a single pair of piezoelectric patches, located to properly couple with one of the first four
vibration modes according to Fig. 3, is considered. For the last case, the four pairs of piezoelectric patches are embedded
simultaneously in the laminate plate and connected to the corresponding resonant shunt circuit to yield a multi-modal
vibration reduction. In all cases, the frequency response function of the laminate plate with shunted piezoelectric patches
was compared to the case of open-circuit condition to analyze the performance of vibration amplitude reduction. For
comparison purposes, a modal damping of 0.5% was considered for the host structure.

However, a preliminary analysis showed, for most cases, that the location of the anti-resonance and the amplitude of
the resonances generated by the shunt circuit were not exactly as expected. Therefore, some variations in the values of R.
and L, starting from the values obtained by the expressions (50) and (54), were tested and, indeed, better results were
found with an update of these values. The update was performed manually respecting the following known properties:
(i) the anti-resonance frequency must coincide with the structure’s resonance frequency of interest and its value is
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inversely proportional to the square root of L, thus L. was augmented when the anti-resonance frequency was larger than
expected and vice-versa; and (ii) as long as there are two resonances generated by the resonant shunt circuit, their
amplitude can be reduced by increasing the resistance, and, if there is only resonance, the resistance may be larger than the
value which makes the two resonances converge into one and, thus, must be diminished. Table 5 shows the calculated and
updated values of R. and L. for each circuit in the cases of one and four pairs of piezoelectric patches. It is possible to
observe that the values of L. were slightly changed, while the values of R. were greatly changed in most cases, except for
the first mode-patch. This indicates that the one degree of freedom approximation for the evaluation R, is not appropriate
for frequency regions with higher modal density. Therefore, the expression (54) should be used with caution or else be
used as an initial guess for a manual or automatic optimization procedure.

Then, considering the updated values for R; and L., a first analysis is performed considering that only one pair of
piezoelectric patches is embedded in the laminate plate and connected to a resonant shunt circuit. This is done for all four
pairs of piezoelectric patches presented in Fig. 3, one at a time. The frequency response function of the structure with one
shunted pair of piezoelectric patches (RL) is evaluated and compared to the case of open-circuit (OC) piezoelectric patches
(Re =00 and L.=0). The comparative results are presented in Figs. 6-9 for the first, second, third and fourth patch
pairs—vibration modes. In all cases, the vibration amplitude is only significatively modified near the resonance frequency
considered in the positioning and circuit design. However, it is possible to observe that the fourth shunted patch pair,
which was designed for the fourth vibration mode, also affects slightly the second and fifth vibration modes. Therefore, this
technique may yield an adequate vibration reduction with a narrow frequency-range performance. The amount of
amplitude reduction for each case is presented in Table 6, where one may observe that all shunted patch pairs are able to
reduce the vibration amplitude at the selected resonance frequency by more than 10 dB. This value was evaluated from the
difference between the amplitude at resonance for the open-circuit case and the higher amplitude between the two
resonances for the shunted case.

A second analysis is performed considering that the four pairs of piezoelectric patches are embedded simultaneously in
the laminate plate and connected to the corresponding resonant shunt circuit to evaluate the case of a multi-modal
vibration reduction. Notice that in this case, the eigenfrequencies and eigenmodes are different from the previous case and,
thus, the resistances and inductances need to be reevaluated and also updated according to Table 5. Fig. 10 shows the

Table 5
Values for R, and L. calculated using (50) and (54) and updated after simulations.

Circuit 1 pair of PZT patches 4 pairs of PZT patches
Rc (@) Lc (H) Rc (@) Lc (H)
Calculated Updated Calculated Updated Calculated Updated Calculated Updated
1 987 988 6.30 6.20 678 650 5.13 5.11
2 104 730 1.99 1.99 136 310 1.93 1.94
3 375 350 1.48 1.44 306 468 1.54 1.47
4 133 280 0.97 0.96 63 580 1.02 0.98
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Fig. 6. Frequency response function of the laminate plate with one pair of shunted piezoelectric patches designed for the first vibration mode.
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Fig. 7. Frequency response function of the laminate plate with one pair of shunted piezoelectric patches designed for the second vibration mode.

-100

-110

IG,| (m/N, dB)

-120

-130

-140 .
102 108
Frequency (Hz)

Fig. 8. Frequency response function of the laminate plate with one pair of shunted piezoelectric patches designed for the third vibration mode.

frequency response function of the laminate plate with four pairs of piezoelectric patches, distributed according to Fig. 3, in
two electrical boundary conditions: (i) all patches in open-circuit (OC) and (ii) each pair of patches connected to a properly
designed resonant shunt circuit, focusing one of the four first vibration modes. It is possible to observe in Fig. 10 that the
vibration amplitude at the first four resonance frequencies is effectively reduced by the shunted piezoelectric patches,
especially for the fourth resonance. In addition, the vibration amplitude at the fifth resonance, which was not included in
the design, is also slightly reduced. Similarly to the previous case, the amount of amplitude reduction, based on the
difference between the peak amplitudes, was evaluated and is presented in Table 6. In this case, a vibration amplitude
reduction of more than 10dB is also observed, but for the first four vibration modes simultaneously.

5. Control authority enhancement using RL shunts

As an extension of the use of shunt circuits connected to piezoelectric elements for passive vibration control, it is also
possible to include a voltage source to these circuits so that the piezoelectric elements may act both as vibration dampers/
absorbers and actuators. Hence, passive, active and active-passive vibration control could be obtained. In the particular
case of the circuit proposed previously, composed of resistance, inductance and voltage source, it is worthwhile to analyze
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Fig. 9. Frequency response function of the laminate plate with one pair of shunted piezoelectric patches designed for the fourth vibration mode.

Table 6
Vibration amplitude reduction (dB), from the open-circuit case, for the laminate plates with 1 and 4 pairs of shunted piezoelectric patches.

Mode 1 pair of PZT patches 4 pairs of PZT patches
1 13.50 12.24
2 15.24 11.11
3 12.19 14.36
4 11.72 16.84
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Fig. 10. Frequency response function of the laminate plate with four pairs of shunted piezoelectric patches designed for the first four vibration modes.

the active and active—passive action, since the passive action is obtained by eliminating the voltage source, which is the
case treated in previous section.

5.1. Evaluation of control authority of piezoelectric actuators

To evaluate the active action (control authority) of the piezoelectric elements, through a RL circuit, a harmonic
excitation analysis is performed considering excitation through a single voltage source, that is a single piezoelectric
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element connected to a circuit composed of resistance, inductance and voltage source, such that
Fn=0, V.=V u=te” q.=q.e, (55)
and, thus, the equations of motion (41) can be rewritten as

(—0*M+Kp)a—KppeG, =0,

—K, 0 +(— 2L +jOR: + K)o = V. (56)
Solving the second equation of (56) for §. and replacing the solution in the first equation leads to
[~ @*M+Kin—Kme(—@?Le +jwRc +Ee)71i;t~ng]ﬁ =Kme(—?Lc+joR: +Ke) Ve (57)

To evaluate the frequency response function of the structure subjected to an electrical excitation, it is supposed that a
selected displacement in the structure is measured, such that

y=cu, (58)
and the complex frequency response function of the displacement output when subjected to the voltage input can be defined as

y= Gc(w)‘?o (59)
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Fig. 11. Control authority of the first pair of piezoelectric patches with (RLV) and without (V) resonant circuit.
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Fig. 12. Control authority of the second pair of piezoelectric patches with (RLV) and without (V) resonant circuit.
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where

Ge() = [~ M+ K —Kine(—~0?Le +j0Re +Ke) Kol Kime(— P Le +joRe +Ke) . (60)

As in the passive case studied previously, the resistance and inductance of the electric circuits lead to a modification of
the dynamic stiffness of the piezoelectric elements. The purely active case can be represented by considering L.=R.=0. In
this case, the frequency response function reduces to

GV () = [~ ?*M+ K —KneK, K] KoK, (61)

where KmeK, ! indicates the equivalent force vector induced per unit voltage applied to the actuator and the reduction of
piezoelectric stiffness accounts for the modification from a constant electric displacement to a constant electric field
condition. The open-circuit case (R. —oo) leads to the impossibility of actuation as expected.

For the most general case, the inductance and resistance not only modify the dynamic stiffness of the piezoelectric
element, leading to vibration damping and/or absorption, but also affect the active control authority of the actuator due to
the term Kie(—@2L +jwR. +K.)~" in (60). In particular, it may be possible to amplify the active control authority near the
resonance frequency of the electric circuit [8,31,32].
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Fig. 13. Control authority of the third pair of piezoelectric patches with (RLV) and without (V) resonant circuit.
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Fig. 14. Control authority of the fourth pair of piezoelectric patches with (RLV) and without (V) resonant circuit.
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5.2. Results for a laminate plate with piezoelectric actuators

In this section, the same laminate composite plate with four pairs of piezoelectric patches from the passive vibration
control study is considered to evaluate the control authority of the piezoelectric patches, when they are used to excite the
plate. This is done adding a voltage source in each one of the independent electric circuits connected to the pair of
piezoelectric patches. To allow the analysis of the control authority enhancement provided by the RL elements of the
circuit, the control authority G.(w) of a piezoelectric patch when connected to an electric circuit with resistance,
inductance and voltage source (RLV) is compared to the one obtained with a piezoelectric patch connected to an electric
circuit with only voltage source (V), GY(w), that is considering L.=R.=0. This analysis is performed for each one of the four
pair of piezoelectric patches, considering first only one pair of piezoelectric patches embedded into the plate and then with
the four pairs of piezoelectric patches simultaneously.

Figs. 11-14 present the control authority of each one of the four pairs of piezoelectric patches, connected to RLV circuits
tuned to the first four resonances, when only the active pair is embedded into the structure. In Fig. 11, it is easy to notice
that the control authority around the first resonance frequency is indeed enhanced at the cost of reducing the control
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Fig. 15. Control authority of the first pair of piezoelectric patches with (RLV) and without (V) resonant circuit when the other three pairs are connected to
a passive RL circuit.
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Fig. 16. Control authority of the second pair of piezoelectric patches with (RLV) and without (V) resonant circuit when the other three pairs are connected
to a passive RL circuit.
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Fig. 17. Control authority of the third pair of piezoelectric patches with (RLV) and without (V) resonant circuit when the other three pairs are connected
to a passive RL circuit.
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Fig. 18. Control authority of the fourth pair of piezoelectric patches with (RLV) and without (V) resonant circuit when the other three pairs are connected
to a passive RL circuit.

authority at other frequencies. Unlike previous results published in the literature [8,33], for this case the control authority
is enhanced even exactly at the first resonance frequency and not only around it. For the other three cases (Figs. 12-14),
it becomes evident that the resonant circuit amplifies the control authority for a certain frequency range around the chosen
resonance frequency. Indeed, for the third pair presented in Fig. 13, the control authority is enhanced for the second, third
and fourth resonance frequencies, although more effectively for the third one as expected. It should also be noticed that the
location of the piezoelectric patch also affects the control authority. For instance, the second pair is not effective for
controlling the third and fourth modes, even through the resonant circuit (Fig. 12).

Figs. 15-18 present the control authority of each one of the four pairs of piezoelectric patches, connected to RLV circuits tuned
to the first four resonances, when the four pairs are embedded into the structure but only one of them is active. In this case, the
inactive pairs are considered to be connected to a passive RL shunt circuit, that is without the voltage source. In this case, the
control authority enhancement is still possible, but it can be noticed, in particular for the second and third pairs (Figs. 16 and 17),
that the passive circuits may affect the control authority of the active circuit. As an alternative analysis for simultaneous action of
the four pairs, Fig. 19 presents the control authority of the four pairs of piezoelectric patches, connected to RLV circuits tuned to
the first four resonances, when the four pairs are embedded into the structure and connected to the same voltage source. In this
case, it is possible to observe an enhancement on the control authority of the four pairs simultaneously.
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Fig. 19. Control authority of the four pairs of piezoelectric patches with (RLV) and without (V) resonant circuit when acting simultaneously.

6. Conclusions

The finite element modeling of laminate composite plates with embedded piezoelectric patches or layers connected to
active-passive resonant shunt circuits, composed of resistance, inductance and voltage source, was presented. Applications
to passive vibration control and active control authority enhancement were studied and discussed. An equivalent single
layer theory combined with a third-order shear deformation theory was considered for the laminate plate and a stress-
voltage electromechanical model was considered for the piezoelectric materials. Also, the dynamics of the electric circuits
connected to piezoelectric materials were accounted for resulting in a coupled finite element model with mechanical
(displacements) and electrical (charges at electrodes) degrees of freedom. The model was then used to optimize the
location of a set of piezoelectric patches, using the electromechanical coupling coefficient, and design the electric circuit
components for optimal passive vibration control and active control authority enhancement. A passive vibration amplitude
reduction of at least 10dB for the first four vibration modes was obtained. It was also shown that the control authority can
indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits
acting simultaneously.
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