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a b s t r a c t

A new strategy for vibration suppression of a rotating beam using a time-increasing

internal tensile force is proposed in this paper. Nonlinear coupled longitudinal and

bending equations of motion are derived in non-dimensional form using the Hamilton

principle. The first-order analytical solution of the equations of motion is obtained using

simulations are then performed for various increasing rates of the internal tensile force

and performance of the vibration suppression strategy is studied. A very close

agreement between the simulation results obtained by the numerical integration and

the first-order analytical solution is achieved. Forced vibrations of the system for input

excitations of either a sinusoidal or a random function with white noise time history are

considered. The simulation results and dynamic performance of the suppressed system

for an externally excited rotating beam show an interesting phenomenon of the form of

remarkable effectiveness of the proposed vibration reduction strategy.

& 2010 Elsevier Ltd. All rights reserved.
0. Introduction

Vibration suppression of rotating beams has recently received much attention due to many different engineering
applications. Rotating turbine and helicopter blades, robot arms, vehicular propulsion systems, flexible rotating space
booms, automotive cooling systems and recently rotating-beam gyroscopes and rotary micro-electro-mechanical systems
(MEMS) are a few to mention. The research trend has recently been directed toward development of various control
systems to damp out the structural vibration of rotating beams. The interest mainly arises from the engineering desire to
reduce the noise and vibration levels and, consequently, improve performance and fatigue life of rotating systems. The
control systems designed for vibration suppression of beams can be mainly divided into three different categories, namely
passive, semi-active and active control systems.

In passive control systems, the conventional constrained viscoelastic damping layers are used to damp out vibration of a
rotating beam [1]. Systems with semi-active controllers employ the technique of activated damping in which an electro-
rheological (ER) damper [2] or a piezoelectric element [3] is attached to the rotating beams. In the active control strategy,
an external actuator is employed and its control force is designed based on one of the existing control theories, e.g.,
feedback control system [4–8], modal control [9], sliding-mode control [10], optimal control [11,12] and fuzzy-based
control system [13].
ll rights reserved.
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Nomenclature

a cross-sectional area
A function of T

A0 hole area
b hub radius
c increasing rate of the tensile force
C damping coefficient
e strain
f external force
FNC non-conservative force due to damping
F non-dimensional force
I area moment of inertia of the beam
K kinetic energy
L beam length
m mass per unit length of the beam
MNC non-conservative bending moment due to

damping
M bending moment
p0 internal pressure
P internal compressive force
q modal coefficient
r position vector
s non-dimensional length

t time
T tension force
T̂ =et
u longitudinal displacement
U potential energy
V velocity
w transversal displacement
W work
x longitudinal coordinate
y transverse coordinate
b hub ratio
e coefficient of proportionality
Z damping factor
r material density
l eigen-value
s stress
t non-dimensional time
j variable scale
c mode shape function
o rotational speed
O non-dimensional rotational speed
ð Þu ¼ @=@s

ð Þ
3

¼ @=@t
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Due to importance of the subject, there are many research articles recently published in the literature, mainly covering
the areas of dynamic modeling, active vibration control and stability analysis of rotating beams. Use of piezoelectric stacks
in vibration control of helicopter blades was studied by Straub et al. [1]. An electro-rheological (ER) sandwiched structure
was experimentally analyzed for the vibration control of a rotating flexible beam with variable speed and acceleration [2].
Vibration suppression of rotating beams using an active constrained layer consisting of a viscoelastic damping layer
sandwiched between two piezoelectric layers was studied by Baz and Ro [3]. A combined proportional and derivative
control for vibration suppression of a rotating beam provided with a pair of piezoelectric sensors and actuator layers was
investigated by Lin [4]. Suppression of transverse vibrations of a rotating beam was simulated by Yang et al. [5] using a
control system designed by combining positive position feedback and the momentum exchange feedback control laws.

An optimal control theory was employed by Choi et al. [6] to design a flow source vibration controller and a
conventional PD controller for vibration suppression of a rotating beam. A velocity feedback control system was proposed
by Na et al. [7,8] for vibration control of a rotating beam. An analytical design of an active control scheme for vibration
suppression in an elastic rotating beam was presented by Khulief [9] based on an optimal modal control employing a set of
significant modes. An integral sliding-mode control approach was proposed by Xue and Tang [10] for the vibration control
of a rotating system with nonlinear coupling effect between hub rotation and beam transverse vibration. An optimal
control system was presented by Cai et al. [11] to damp out transverse vibration of a rotating cantilever beam.

An optimal control strategy for a rotating, composite, pre-twisted and single-celled box beam was proposed by Shete
et al. [12], for which an optimum pre-twist leading to the lowest response, power and settling time, was obtained.
Marghitu et al. [13] presented a control system for vibration suppression of a parametrically excited rotating beam using a
fuzzy-logic controller. Controllability and observability of a rotating beam system was studied by Kuo and Lin [14] and a
controller system based on the pole assignment criterion was proposed.

It is a well-known fact that a tensile force can increase flexural rigidity and, consequently, natural frequency of a
rotating beam. However, it should be noted that for a known initial condition, more rigidity can only lead to larger natural
frequencies and not to any vibration suppression in a natural vibration. The new concept presented in this paper is time-
varying tensile force. It is proved that a time increasing tensile force behaves as virtual damping in an un-damped rotating
system. Literature review on the subject indicates that very few research studies have been carried out in the area of
passive control systems for vibration suppression of rotating beams. This is because of various difficulties due to the
rotation of such systems. In other words, conventional passive control systems like tuned-mass-damper (TMD) systems
practically do not have the potential to be utilized in a rotating system.

Vibration suppression of a rotating beam using time-increasing internal tensile force is investigated in this paper.
Coupled nonlinear longitudinal and bending vibrations of a beam are considered and the governing equations of motion for
a rotating beam with time-varying internal tensile force using the Hamilton principle are derived. These equations are then
converted to a non-dimensional form in order to generalize the study and its analytical solution. This procedure has the



Fig. 1. A rotating viscoelastic beam subjected to time varying tensile force.
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P (t) : Compressive force 
p0 (t) : Fluid pressure 
A0 : Hole area  
T (t) : Internal tensile force 

Fig. 2. A mechanism for supplying the internal tensile force.

Excessive tension due to span expansion

Vibration reduction  

Vibrating string 

Fig. 3. Vibration reduction concept employing an increase of tensile force.
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advantage of having outcomes to be in the general form and not dependent on a specific case study. The first-order
analytical solution of the nonlinear partial differential equation of motion is obtained using a combinational procedure
employing the Galerkin technique and the multiple scales method (MSM).

Analytical solutions can always provide a much better sense for the engineering design of complex systems. Numerical
simulations are carried out for various increasing rates of the internal tensile force and a very close agreement between the
simulation results obtained by numerical integration and the first-order analytical solution is observed. The rotating beams
are always subjected to a variety of external excitations due to the vortex shedding phenomenon. For the case of forced
vibration, the sources of external excitation are assumed to be a sinusoidal function or random excitation with white-noise
time history, and dynamic performance of the passive control system is investigated.
1. Mathematical modeling

A vibrating viscoelastic rotating beam subjected to an external force and a time-varying internal tensile force is shown
schematically in Fig. 1. Because of the rotating nature of the rotary beam, there is no feasible solution in which any external
tensile force can be applied. The only solution to provide such a desired tensile force is by an internal system. The concept
here is to provide a pressure internally exerted on the end wall of the beam via a hole located inside it. Such a pressure can
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be supplied by a fluid injection system, as illustrated in Fig. 1, or by a compression rod inserted into the rotating beam.
Considering the cross section of the rotating beam (Fig. 2) the compressive force P(t) can be obtained by p0(t)A0, in which
p0(t) and A0 denote the fluid pressure and area of the internal hole, respectively. Consequently, the reaction internal tensile
force T(t) is supposed to be proportional to the fluid pressure and the compressive force. The main concept of the vibration
suppression strategy is illustrated in Fig. 3. In a stretched vibrating string if any excessive tensile force is exerted via
expansion of string span, amplitude of the vibration remarkably decreases quite matched with physical sense.

As modeling assumptions, the beam is assumed to be inextensible and a classical linear viscoelastic model, i.e. a Kelvin–
Voigt model, is considered. It is assumed that the beam satisfies the Euler–Bernoulli beam theory, where shear deformation
and rotary inertia terms are negligible. The beam is also assumed to possess uniform cross-sectional area and mass
distribution along its length. Position vector of each element of the beam is expressed by

r
!
¼ ðbþxþuðx,tÞÞ îþwðx,tÞ ĵ (1)

and the components of velocity vector for a beam element positioned at x are

Vx ¼
@u

@t
; Vy ¼ ðbþxþuÞo; Vz ¼

@w

@t
(2)

The total kinetic energy of the beam can now be constructed by [21]

K ¼

Z L

0

1

2
mV2 dx¼

Z L

0

1

2
mðV2

x þV2
y þV2

z Þdx (3)

Substituting Eq. (2) in (3) gives

K ¼

Z L

0

m

2

@u

@t

� �2

þðbþxþuÞ2o2þ
@w

@t

� �" #2

dx (4)

in which m denotes the mass per unit length of the beam.
One can express the stress–strain relationship for a Kelvin–Voigt standard viscoelastic material in the form

s¼ EeþC _e (5)

in which E and C are Young’s modulus of elasticity and the damping factor, respectively, and e represents the strain value.
Using the kinematics of large deformation one can reach the following relation for curvature at any given point along the
beam [17]:

r¼ w00ð1þuuÞ�wuu00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þuuÞ2þwu

2�3
q (6)

The bending moment at each section of the beam is then obtained by [15]

M¼

Z
a
syda¼ EIr (7)

in which the parameter s is the stress value and parameters I and a represent the area second moment of inertia and the
cross-sectional area of the beam, respectively. Combining Eqs. (6) and (7) would lead to [15]

M¼ EI
w00ð1þuuÞ�wuu00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þuuÞ2þwu

2
�3

q (8)

The potential energy due to bending of the beam can be obtained by [15,17]

U ¼
1

2
ð

Z L

0
Mrdxþ

Z L

0
TðtÞedxÞ (9)

in which the strain value is given by [20]
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þ

1

2

@w
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� �2
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The above definition for strain value and Eqs. (6) and (8) lead to

U ¼
1

2
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0
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For an inextensible uniform beam, one can assume [16]

ð1þuuÞ2þwu
2
� 1 (12)



Fig. 4. Loading mechanism exerted by vortex shedding around a rectangular cross section.
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and consequently

uu��
1

2
wu

2 and u00 � �wuw00 (13)

Using the above approximation, the potential energy due to bending is given by

U ¼
1

2

Z L

0
EI w00 þ

1

2
ðw00wu

2
Þ

� �2

dx (14)

The work done by an external force and a non-conservative force due to damping FNC can be obtained by

WNC ¼

Z L

0
ðf ðx,tÞwdx�

Z L

0
FNCwdx (15)

f(x, t) denotes the external distributed load, practically representing air flow induced forces exerted on the beam surface.
Vortex-shedding induced force, which can have a random form or harmonic nature dependence on the flow regime, is an
example of such a distributed load. The vortex shedding is caused when the fluid flow past the beam creates alternating
low-pressure vortices on the downstream side of the object and consequently the object will tend to move toward the low-
pressure zone. As shown in Fig. 4, these alternating low pressure zones cause the beam to move in an oscillatory manner
perpendicular to the direction of the flow.

Similar to Eq. (8), the non-conservative moment due to structural damping is given by [17]

MNC ¼ CI
d

dt

w00ð1þuuÞ�wuu00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1þuuÞ2þwu

2
�3

q Þ (16)

The correlated non-conservative force is then given by [17].

FNC ¼

Z L

0

@2MNC

@x2
dx (17)

Using Eqs. (15)–(17) and the approximations given by Eq. (13), the total non-conservative virtual work done by structural
damping and the external force on the system is given obtained as [18,19]

dWNC ¼

Z L

0
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1

2
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2
Þþw00wu _wu

� �
00

� �
dwdx (18)

Using the Hamilton principle given by Z t

0
ðdK�dUþdWNCÞdt¼ 0 (19)

and well-known theorems for calculus of variations, the governing nonlinear differential equation of motion is then obtained as
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with the conventional boundary conditions for either ends of the beam in the form

BC
EI½w000 þw000wu

2
þwuw002�dw9L

0 ¼ 0

EI½w00 þw00wu
2
�dw0 L

0 ¼ 0
��

(
(21)

In order to make the solution method and the results as general as possible, the equation of motion is now converted to
a non-dimensional form using the following non-dimensional parameters:

s¼
x

L
; t¼ t

ffiffiffiffiffiffiffiffiffi
EI

mL4

r
; ðÞu¼

@

@s
; ðÞ

3

¼
@
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ffiffiffiffiffiffiffiffiffi
mL4

EI

r
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b

L
; Z¼ C

ffiffiffiffiffiffiffiffiffiffiffiffi
I

EmL4

r
; T� ¼ T

L2

EI
; F ¼ f

L3

EI
(22)

Therefore the governing equation of motion in its non-dimensional form is
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�

(23)

and similarly for the boundary conditions one can write

BC
½w000 þw000wu

2
þwuw002�dw91

0 ¼ 0

½w00 þw00wu
2
�dw091

0 ¼ 0

8<
: (24)

2. Method of solution

The Galerkin mode summation approach is employed in this research to discretize the nonlinear partial differential
equation of motion. The solution is then expressed as

wðs,tÞ ¼
X

i

ciðsÞqiðtÞ (25)

in which qiðtÞ are the modal coefficients. The mode shape functions ciðsÞ are presented in the following form:

ciðsÞ ¼ sinhðlisÞ�sinðlisÞ
� 	

�
½sinhðliÞþsinðliÞ�

½coshðliÞþcosðliÞ�
coshðlisÞ�cosðlisÞ
� 	

(26)

where li values satisfy the frequency characteristic equation

1þcoshðliÞcosðliÞ ¼ 0 (27)

Using a first-order approximation, in conjunction with the orthogonality principle of the mode shapes, one can arrive at

€qþ
1

ð1þ4:265q2Þ

�
ð12:362þO2

ð1:193þ1:987bÞþ5:01T�ðtÞÞq

þ12:362Z _qþð75:043þ23:994T�ðtÞÞq3þ4:265q _q2
�17:963Zq _q

�
¼ 0:575FðtÞ (28)

Using the Taylor series expansion one would obtain

€qþ½12:362þO2
ð1:193þ1:987bÞþ5:01T�ðtÞ�qþ12:362Z _qþð22:319�5:088O2

Þq3

þ4:265q _q2
�17:963Zq _q�320:058q5�52:724Zq2 _q�18:19q3 _q2

þ76:61Zq3 _qþ2:626T�ðtÞq3�102:334T�ðtÞq5 ¼ 0:575FðtÞð1�4:265q2Þ (29)

Recognizing the linear and nonlinear terms and splitting them into two parts give

€qþ½12:362þO2
ð1:193þ1:987bÞþ5:01T�ðtÞ�q¼ egðt,q, _qÞ (30)

in which

gðt,q, _qÞ ¼�½12:362Z _qþð22:319�5:088O2
Þq3 þ4:265q _q2

�17:963Zq _q�320:058q5�52:724Zq2 _q�18:19q3 _q2

þ76:61Zq3 _qþ2:626T�ðtÞq3�102:334T�ðtÞq5�þ0:575FðtÞð1�4:265q2Þ (31)

For non-stationary free vibration, in which T* varies with time, multiple scales method can be implemented [20,21] so
that Eq. (31) will be replaced by

€qþ½12:362þO2
ð1:193þ1:987bÞþ5:01T�ðT̂Þ�q¼ ef ðT,q, _qÞ (32)

where T̂ ¼ et.
The general equation of non-stationary motion indicates that the case of harmonic variations in angular velocity results

in a Mathieu–Duffing type oscillator [22]. Now, one should seek an expansion for the solution in terms of two scales t and
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j so that

ÔðT̂Þ ¼ 12:362þO2
ð1:193þ1:987 bÞþ5:01T�ðT̂Þ

h i
¼

dj
dt

(33)

The time derivatives will then become
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" #
þe2 @2

@T̂
2

(35)

Hence Eq. (32) yields

Ô
2 @2q
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þe 2Ô

@2q

@j@T̂
þÔu
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" #
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Now, expanding q in the series form

q¼ q0ðj0,T̂Þþeq1ðj0,T̂Þþ � � � (37)

substituting Eq. (37) in (36) and equating the coefficients of the same power of e, one can arrive at

Ô
2 @2q0

@j2
þq0

 !
¼ 0 (38)

Ô
2 @2q1

@j2
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¼�2Ô
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@q
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� �
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The general solution of Eq. (39) can be obtained in the complex form of

q0 ¼ AðT̂ÞexpðifÞþcc (40)

where cc denotes the complex conjugate term. Hence equation Eq. (39) becomes

Ô
2 @2q1

@j2
þq1

 !
¼�i 2ÔAuþÔuA

h i
expðijÞþ i 2ÔAuþÔuA

h i
expð�ijÞ þg T̂,AexpðijÞþcc,iÔðAexpðijÞþcc

h i
(41)

Eliminating the terms in Eq. (41) that produce secular terms in q1 yields

�i 2ÔAuþÔuA
h i

¼
1

2p

Z 2p

0
gðA,A,j,T̂Þexpð�ijÞdj (42)
Fig. 5. Effect of tensile force increasing rate on time history of vibration of an un-damped beam (Z¼ 0:0; O¼ 1:0; b¼ 0:1), Case 1: c=0.1.
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An exact solution of Eq. (42) exists for any arbitrary Tn varying with time. The solution can be obtained as

AðtÞ ¼ Að0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expð�12:36ZtÞ
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0 expð�12:36ZxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12:362þO2

ð1:193þ1:987bÞþ5:01T�ð0Þ

12:362þO2
ð1:193þ1:987bÞþ5:01T�ðxÞ

r dx

vuuuuuut (43)

3. Numerical results

Two approaches, namely the time integration method and the first-order multiple scales method, are employed here as
solution methods in this study. A computer program is developed using the MATLAB&–MAPLE& software link for numerical
Fig. 6. Effect of tensile force increasing rate on time history of vibration of an un-damped beam (Z¼ 0:0; O¼ 1:0; b¼ 0:1), Case 2: c=10.

Fig. 7. Effect of tensile force increasing rate on time history of vibration of a damped beam (Z¼ 0:01; O¼ 1:0; b¼ 0:1), Case 1: c=0.1.



Fig. 8. Effect of tensile force increasing rate on time history of vibration of a damped beam (Z¼ 0:01; O¼ 1:0; b¼ 0:1), Case 2: c=10.

Fig. 9. Effect of tensile force increasing rate on vibration amplitude of an un-damped beam when the final value of tensile force is fixed to Pn=60. Case 1:

c=1.0; Case 2: c=2.0; Case 3: c=4.0; Case 4: c=5.0.

T (τ)

τ

τ = 5 

T = 100 

21

1: Increasing tensile load 
2: Constant tensile load (Final value) 

Fig. 10. Time history of tensile load.
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simulation, and a parametric sensitivity study is carried out to evaluate the effects of different parameters on time history
of natural responses.

The effects of time increasing rates of the internal tensile force on time responses are illustrated in Figs. 5 and 6 for an
un-damped beam. The internal tensile force is assumed to be T�ðtÞ ¼ ct. A very close agreement between the numerical
solution and the first-order MSM approximation is observed. It is seen that the internal tensile force causes virtual
damping and reduces the vibration level with an increase in time. Larger values of internal tensile force increasing time
rates are correlated with larger virtual damping values. It should be noted that for a constant internal tensile force, even for
large values, attenuation phenomenon is not achievable. Large values of tensile force can only increase the flexural rigidity
of the beam and consequently its natural frequency but cannot damp out the beam vibration; however its positive time
increasing rate can do that.

The effects of time rate of the internal tensile force on time responses are illustrated in Figs. 7 and 8 for a damped beam.
As seen, time increasing rate of the internal tensile force contributes to reduce the vibration level in the presence of the
Fig. 11. Vibration of un-damped beam before and after reaching the final value of tensile load (Z¼ 0; O¼ 1:0; b¼ 0:1), Region 1: increasing tensile force,

Region 2: constant tensile force (final value).

Fig. 12. Vibration of damped beam before and after reaching the final value of tensile load (Z¼ 0:01; O¼ 1:0; b¼ 0:1), Region 1: increasing tensile force,

Region 2: constant tensile force (final value).



D. Younesian, E. Esmailzadeh / Journal of Sound and Vibration 330 (2011) 308–320318
structural damping. In other words, it can play the same role with the same significance as that of structural damping. The
effect of tensile force increasing rate on vibration amplitude of an un-damped beam is illustrated in Fig. 9, where the final
value of tensile force is assumed to be fixed. The objective here is to show that the reduction rate is dependent on the time
rate of increasing tensile force but the reduction factor (final displacement/initial displacement) is dependent just on the
final value of tensile force.

In order to evaluate the system behavior when the final value of the tensile force is attained, some case studies based on
the tensile force profile given in Fig. 10 are simulated. As seen for an un-damped beam (Fig. 11), once the final tensile value
is attained, the beam continues its oscillation at its new natural frequency with the amplitude remarkably smaller than
that of the uncontrolled beam (40% in this case). The end condition of the first part of the tensile loading profile acts as the
initial condition of free vibration of the beam with final value of tensile force (100 in this case). In the case of damped
beam, as illustrated in Fig. 12, after reaching the final value of the tensile load, the beam behaves as a free damped system
Fig. 13. Performance of the suppression system for an un-damped beam subjected to harmonic excitation (Z¼ 0:0; O¼ 10; b¼ 0:1).

Fig. 14. Performance of the suppression system for a damped beam subjected to harmonic excitation (Z¼ 0:01; O¼ 10; b¼ 0:1).



Fig. 15. White noise random excitation force exerted on the rotating beam.

Fig. 16. Performance of the suppression system for an un-damped beam subjected to random excitation (Z¼ 0:0; O¼ 10; b¼ 0:1).
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and its amplitude is attenuated due to structural damping. As seen, the amplitude of vibration is quite smaller than the
amplitude of uncontrolled beam for both parts of the loading history.

The performances of the suppressed system, for a rotating beam subjected to external excitations, are presented in
Figs. 13–16. In the case of a harmonic external force with the excitation frequency equal to the first natural frequency of
the linearized system (i.e. 12.31 in our case) results of the numerical simulation are illustrated in Fig. 13 for an un-damped
beam. As seen, the tensile force can suppress beatings in the time responses and interestingly leads to a steady state
response for the un-damped beam. The time responses for a damped rotating beam subjected to harmonic excitation are
illustrated in Fig. 14. It is seen that vibration is damped out when an increasing tensile force is exerted on the system. For a
typical random excitation having the white noise nature shown in Fig. 15, numerical results are illustrated in Fig. 16.
Existence of the increasing tensile force reduces the root mean square (RMS) of the responses up to 40% from 0.0509 to
0.0309.
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4. Conclusion

Vibration suppression of a rotating beam using time-increasing internal tensile force was studied in this paper. The
governing nonlinear differential equation of motion, with coupled longitudinal and bending vibrations of the beam, was
derived using the Hamilton principle. The first-order approximate solution of the equation of motion was obtained using
the Galerkin method in conjunction with the multiple scales method (MSM). Numerical simulations were carried out for
various increasing rates for the internal tensile force and performance of the proposed vibration suppression system was
investigated. A very close agreement between the simulation results obtained by the numerical integration and the first-
order analytical solution was observed. Forced vibrations due to sinusoidal and random excitation with white noise time
history were simulated and performance of the suppression system was investigated for externally excited rotating beams.
It was found that internal tensile force causes virtual damping in the rotating system and reduces the vibration level with
an increase in time. Constant tensile forces have no effect on vibration reduction even if they have large values. Larger
values of internal tensile force increasing rates are correlated with larger virtual damping values. The increasing tensile
force retains its reduction effect even in the presence of structural damping. The vibration reduction rate is dependent on
time rate of increasing tensile force but the reduction factor (final displacement/initial displacement) is dependent on the
final value of increasing tensile force. In the case of harmonic external force with the excitation frequency equal to the first
natural frequency of the linearized system, an increasing tensile force can suppress beatings in time responses and even
lead to a steady state response for the un-damped beam. It can also comprehensively damp out vibrations for a damped
rotating beam subjected to harmonic excitation. It was also shown that the suppression system can effectively reduce
vibration when it is subjected to a broad-band random excitation.
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