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1. Introduction

The problem of a dynamic response of a structure subjected to moving loads is interesting and important. This problem
occurs in dynamics of bridges, roadways, railways and runways as well as missiles, aircrafts and other structures. Various
types of structures and girders like beams, plates, shells, frames have been considered. Also various models of moving loads
have been assumed [1]. Both deterministic and stochastic approaches have been presented [2-4]. A string as a simple
model of a one-dimensional continuous system resistant to tension but not to bending is often used in analysis of
numerous engineering structures and has been a subject of great scientific interest for a considerable time. This follows
from the fact that the vibrations of a string are described by the wave differential equation. This allows one to see the wave
effect in a string, contrary to many more complex systems where it might be either not present or not clearly visible.
Various aspects of the dynamics response of a string under a moving load have been considered, among others, in the
papers [5-8]. An important technological extension of a single string, beam or plate is that of the double-string, double-
beam or string-beam system. Various aspects of the dynamic response of a double-string and double-beam system have
been considered by Oniszczuk [9-13]. In his papers an excellent bibliography is also given. Free and forced vibrations of a
double-beam system have been considered, among others, in the papers [14,15]. The problem of vibration and buckling of
a double-beam system under compressive axial loading is presented in the paper [16]. Vibrations of a complex system
under moving load have been studied in many papers [17,18].
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In this paper the dynamic behavior of a double-string system traversed by a constant or a harmonically oscillating
moving force is considered. The force is moving with a constant velocity on the top string. The strings are identical, parallel
one upon the other and continuously coupled by a linear Winkler elastic element.

The classical solution of the response of a double-string system subjected to a force moving with a constant velocity has
a form of an infinite series. The main goal of this paper is to show that in the considered case a part of the solution can be
presented in a closed, analytical form instead of an infinite series. Using the method of superposed deflections Kaczkowski
[19] has shown for a simply supported Euler-Bernoulli beam that the aperiodic part of the solution can be presented in a
closed form. Next, Reipert obtained a closed form solution for a beam with arbitrary boundary conditions [20] and for a
frame [21]. In this paper we use a different method to obtain the solutions in a closed form. The presented method of
finding the solution in a closed form is based on the observation that the solution of the system of partial differential
equations in the form of an infinite series is also a solution of an appropriate system of ordinary differential equations. This
method has been used to find closed, analytical solution for a finite, simply supported Timoshenko beam loaded by point
force moving with a constant velocity [22].

2. Forced vibrations. General solution

Let us consider the vibrations of a connected double equal string complex continuous system excited by a point force P(t)
moving with a constant velocity v as shown in Fig. 1. The differential equations of motion of the springs system have the form

62 & 62 .t
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where S is the tension of the string, m is the mass of the string, k is the stiffness modulus of a Winkler elastic element and J( - ) is
the Dirac delta.
The boundary conditions have the form

wi1(0,6)=0, wy(L,t)=0, wy(x,0)=0, wy(L,t)=0. (2)
After introducing the dimensionless variables

é:%,T:%,feDﬂ,T&MH 3)
Eq. (1) takes the form
—WI(ET)+ko[w1 (&,T) =W (&, D]+ 1P W1 (E,T) = Po(T)S(E-T),  —Wh(ET)+ko[wa(E,T)—w1 (&, +n*W2(E,T)=0, (4)
where

S v kL? L
Vs = e n= V_s' ko = < PO(T):P(t)§~
The quantity v, represents the wave velocity in the string. The Roman numerals denote differentiation with respect to the
spatial coordinate &, and the dots denote differentiation with respect to time T.
The boundary conditions (2) have the form

Wl(O,T)ZW](],T)ZO, W2(O,T)=W2(1,T):O (5)
Let the initial conditions have the form
wi1(£,00=0, wi(£,00=0, wy(£0)=0, w,(£0)=0. (6)
Let us introduce two new functions
Wl(é)T) =W‘l(évT)+W2(évT)v (7)
and
wi(E,T) = w1 (E,T)—w(E,T). (8)
I 7 S—— 1 (3] k
-i—# i Ed, m [ JI)—E-
£ ,22222223¢32,
-9 $—=
] L g

Fig. 1. Double-string system under moving force.
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From Eq. (4) we obtain two new differential equations for the functions w(&,T) and wy(&,T)
W/ ED+n*Wi(E,T) = Po(T)o(E-T), (9)
and
—wii(&, D) +n*Wi(E,T)+ 2kowy(&,T) = Po(T)S(E—T). (10)

Eq. (9) describes vibrations of a single string, while Eq. (10) describes vibrations of a single string resting on an elastic,
Winkler support with parameter 2k, (2ko). From (7) and (8) it follows that

wi(&,T)+wy(&,T) WI(fYT)—Wu(CV.T).

The solutions to Egs. (9) and (10) for boundary conditions (5) are assumed to be in the form of the sine series
wi(E,T) = Z y(T)sinnné, (12)

n=1

where J=1I or J=II.
By substituting expression (12) into Egs. (9) and (10) and using the orthogonalization method one obtains the following
set of uncoupled ordinary differential equations:

2P0(T)

y]n(T)"'w]nyjn(T)_ sinnnT, (]3)

where for J=I @}, = @, =nn/n, and for J=II W}, = Oy, = (nm)? +2k0/11.
These functions fulfill the initial conditions

Ym(©0)=0, yp(0)=0, y;(0)=0, y;,(0)=0. (14)
The solution to Eq. (13) has the form

T
ym(M) = 2;/ sinwj,(T—1)sinnntPy(t)dtr, for0<T<1, (15)
Ny Jo
and

2 -1
YD) = —— / siny,(T—7)sinnntPy(tr)dtr, forT>1. (16)

n w]n JOo
After integrating Eq. (15) we obtain the classical solution for the vibrations of the system of the strings in the form of

infinite series. Below we present a method for finding the solution also in a closed analytic form.
Let the function f(&,T) for £€[0,1], Te[0,1] be given by the series

2s—1

i by (nm)* sinnaTsinnmé + by (nm)>*~'cosnaTsinnmé
=1 aommP+a;(nm* V4 g () +

fen= (17)

where k,r,s € Np; quantities a; (i=0,2, ..., k) are real numbers such that ap+0. To function (17) one can associate the
following partial differential equation:

d? T d2k=Df(ET d*f(&E,T
a( -l)k f(c )+a( ])l{]ﬁ_'_. A 7( 1) f(éé )+akf(éT)
L d2TS(E-T) 51 A¥16(E-T)
=bi(-1) 74—1)2(—1) 1w- (18)

for which it is a solution for the boundary conditions

[FO.DI? =[f1,1* =0, (19)
where [f(&, )@ =d¥f&T)/dE¥ and j=0,1, ..., k—1.
This can be verified by solving (18) using finite Fourier sine transform. After solving (18) by, for example, Laplace
transform and taking into account the boundary conditions (19) we get the function f{&,T) in a closed form.
While solving (18) one has to take into account the relationship

Ld2r§(E=T) . .
/ ————sinnnédé = (-1) (nm)*’sinnaT, (20)
0 d¢
-1 d23—15(5_T)
/O d£2$—1

Now we consider two particular cases of the load processes, one if the moving point force is constant and second if the

moving force is harmonically oscillating. Besides the classical solutions in a form of an infinite series also the closed,
analytical solutions have been obtained using the method presented above.

sinnnédé = (=1 ' (nmn)*>~'cosnnT. (21)
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3. Moving constant force

Let the moving force be constant, Po(T)=Po=PL/S=const. From Eq. (16) it follows that the solutions to Egs. (9) and (10) for
the initial condition (6) are sums of particular integrals w{/(£,T), wi(&,T) and general integrals wi(&,T), wii(E,T):

. . 2P, - sinnnTsinnmé  2Pon & sinfETsinnnd
1 I 1 17’12 nz::l (nn)2 ]7,12 nz::] (TlTE)z
and
. -1 2 .
% sinnaTsinnmé o nnsm{n \/ (n7) +2koT} sinnmé
wi(ET) =WiED+Wi(ET)=2P, Y ——————=——2P,n y : (23)
i1 ()~ (1=n2)+2k, n=1 y/(nm)? + 2ke[(nT)>(1—12) + 2k, ]
The dynamic component of the tension in the strings is given by

L &

The differentiation of Eqs. (22) and (23) in order to obtain the tension (24) results with slowly convergent series. These
remarks refer to the next solutions in this paper as well.

The functions w(&,T) and wil(&,T) are aperiodic vibrations and wi(&,T) and wy(&,T) are free vibrations of the strings.
Now we will present the aperiodic solutions w{(£,T) given by the first series in expression (22) in a closed analytical form
using the method described by Eqs. (17)-(21).

Let us notice an important fact that this function is a solution not only of the partial differential equations (9) but also of
the ordinary equation

i = b 30T, (25)

1—
for the boundary conditions (5).

The variable T in Eq. (25) is the only parameter that describes the location of the moving force on the string. After solving
Eq. (25) we can obtain the functions wf(¢,T) in a closed form instead of a series. The closed form of the solution has the form

Po S>(A=T)¢ for&<T,
1-y
wiED=1{ p ) (26)
T2 T(1-¢&¢) foré>T,
or in the short form
P,
Wi T) = T2 [(A-T)é—(E-TH(E-T)], (27)

where H( - ) is the unit step Heaviside function.
Also the function w;(&,T) can be presented in the closed form. For the interval in < T< (i+1)y <1, wherei=0,2,4, ..., n,
the function w;(&,T)is also a solution of the equation

s Poll (T .
T = o0 = (1) | (28)
and hence can be presented in the closed form
P, . . .
wp(ET) =~ ﬁ {[A+Dn=T] + & +D-T]HE+i—(T/n)}. (29)
For the interval i n <T<(i+1)y <1 where i=1,3,5, ..., n+1, the function w;(&,T)is also a solution of the equation
n__ Pon (i T
eI == ool (i1 )] (30)
and hence can be presented in the closed form
P, . . .
WiET) = 75 (== [1E—n-+ D+ TIH[E(+1=(T/m)] . (31)

Taking into account the relationships (27), (29) and (31) the function w;(&,T) = wi(&,T)+w;(&,T) can be presented in a
closed analytical form. For the interval in <T<(i+1)y <1, where i=0,2, ...,n and 1 <1 (v < v5) one obtains

WET) = 120 (1T [+ DN-T)E=E=DHET) -+ [1E+D-TIHE+i=T/m)), (32)
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and for the interval in <T<(i+1)n <1, where i=1,3, ..., n+1and 7 < 1 one obtains
Py

1-n?

—[m&=n(i+D)+TIHE -+ 1T/} (33)

Eq. (32) gives the string response when the front of the free wave moves in the same direction as the point force while
Eq. (33) is when it moves in the opposite direction. For example, for 0 <T<# <1 it follows from Eq. (32) (i=0) that

wi€, D= {A=T)E+T=imE—(E-TH(E-T)

P,

Ta7© for £<T,
. Po f . T
wi(E,T) = W(T—né) or T<é<,. (34)
0 for Igisl.
n

From (26) or (27) and (29) for i=0 we obtain the solution for # > 1, i.e. when the point force velocity is bigger than the
transverse wave velocity, namely

1117115 for &< %
MED= o en for Tecer, (35)
0 for ¢>T
In the particular case when 7=1 (v=vs), Egs. (34) and (35) imply that
Wi(ED) = { 3¢ for ¢<T, (36)
0 for ¢>T.

Solutions (34), (35) and (36) are presented in Fig. 2.
The aperiodic solution wf(&,T) given by the first series in the expression (23) is a solution not only of the partial
differential equation (10) but also of the ordinary equation

—(A=1PYW] 22T+ 2koeWH(ET) = Pod(E=T). (37)

After solving Eq. (37) one can obtain the functions w(¢,T) in a closed, analytical form instead of a series. The closed
form of the solution has the form for v< v, (< 1)

P sinha(1-T)sinhaé .
WHED = s [ i —sinha(E-DHE-T)]. (38)
where a®=2ko/(1—#?) and for v < vg (5 < 1),
P sinb(1-T)sinb¢ .
WAET) = gt [T s —sinb(E-DH(E-T)). (39)
where b%=2ko/(n*>—1).
In the particular case if v=v; (#=1) the solution has the form
Po o .
W& = 5. 0(E=T). (40)
0

The solution (40) has a Dirac delta singularity. For the general integral w5 (&, T) one cannot find a closed solution by the
method presented above.
In the case if T> 1 (free vibration of the system) from Eq. (16) one obtains

2Py K (—D)'nmsin®p,(T—1)sinnné 2Py X nrsinnaTsinnnm
W](f,T)z—ZOZ( ) n(T-1) ¢ 2P ¢

— —— , (41)
= Dyn[@), —(n7)’] e e A UL
where J=1LII.
For example for J=I the solution (41) has the form
2Pgn S (—1)'sin(nn/n)(T—-1)sinnné  2Pon & sinnnTsinnm
wi(&T) = 2P0t Z( )'sin(nz/n)(T—-1) ¢ 2Port < (42)

‘1_712 = (nn)Z 1_,/]2 = (nn)Z
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Fig. 2. Transverse displacement of the string under moving force.

4. Moving harmonic oscillation force

Let the moving force be a harmonic oscillator of the form
P(t) = Psin(wt+ @), (43)
hence
Po(T) = Posin(&T + @), (44)

where @ = w(L/v).
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Taking into account (44) and Eq. (15) the response function w;(¢&,T) has the form
wi&T) =wi(ED+W(ET), (45)

where

2112y 126521si .
WAET) = 2P, T [(nm)*(1-n*)—n*®IsinnnT - sinnné
(&,T) = 2P,sin(@ +(P)nz_:](nn) A2 222+ 2) i

_ N nncosnnT-sinnmé
—4Pyn*wcos(®T + ,
! @ ; (m*(1—n2? =2(m)*n2>° (1 +12) +n*d>*

(46)

and
wi(&T) =
2P, Z [(nm)?>(1—n2)—ny wz]sin[(nn/n)ﬂ sm(p+2n7mn7cos [(nn/n)T] cose
ey ) (1—n2)’ =2’ 2 >* (1 +12) + 0"
Taking into account (44) and Eq. (15) shows that the next response function is

nnné. (47)

wi(E,T) =wi( & D) +wy(ET), (48)
where
WAGET) = i Zfosin(csz—i—(p)[(nzn)z(l —172)+k(,—~1122d)2]sinnnTsinnngi2 :
=1 () A=) +201m) [ (=12 ko =120 (14+12) | + (ko =112 D)
i 4P, 1% cos(WT + @)nncosnaT sinnmé '
=1 ()} (1=2)? + 202 [ (1= ko—? D% (1 +112) ] + (ko =112 00°)?

(49)

and
2Py & S nm nEolws, —(n1)? +21sin[wiy TISing —2wj, cos[w, TIcos ¢

2
n* = O [w,z,n —(nm)? —62] —4(nmy’ @’

wi(ET) =

sinnmé, (50)

and

(nm)® +k
Offy = To

The aperiodic vibration wi(&,T) given by Eq. (46) is also a solution of the ordinary differential equation
A= P WHEDY +22 0> (1 + )W E D+ wi(ET)
= —P,sin(@T+ @)[(1-#*)" (E=T) + 120> S(E—T)]+ 2Pon? dcos(OT + )d' (¢—T), (51)
and satisfies the boundary conditions
wiO.T)=wi(1,T)=0, WO =w'(1,T)]"=0. (52)
After taking into account the boundary conditions (52), the solution to Eq. (51) for the case ##1 takes the form

WAET) = P, (cos[a(1-Ty N—e@lsinaé cos[f(1+Tn~1)+ @lsinBE
D= < sina B sinf )

[BE+Tn™N+ @] —cos[a(E—Ty~)—@DH(E-T), (53)

where o =nw/1-n, f=nd/1+7n.
In the particular case if =1 instead of Eq. (51) one has

40 WA+ WHET)
= —Po@%sIN@T + P)S(E—T) + 2P, cos(OT + )5 (E=T). (54)
After taking into account the boundary conditions (52), the solution to Eq. (54) takes the form

,P T
wf(f,T):me{ (E-1-T)— (p} sm{%(é+l+T)+goD
2

# (sin {% (E+1 +T)+go} —sin {% (&-1 +T)+go} >H(£—T). (55)

+
4w sing
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Also the function wj(&,T) can be presented in a closed, analytical form. For the interval in <T<(i+1)y <1 where
i=0,2,4, ..., n,and <1 (v <vs) the function w;{(£,T) is also a solution of the equation
A=W ETNY + 2070 A+ ) Wi + o wiET)
= Ponsin @{(1—1*)3"[E—(Tn " =i)]—n> > S[E—(Tn " =)} —2Pon*® cos o' [E—(Tn " )], (56)
and for in <T<(i+1)y <1, where i=1,3,5, ..., n+1, respectively, of the equation
A=W EDY + 2120 A+ WED] + it wi (& T)
= Ponsinp{(1-1?)3" [E—(i+1=Ty~")]=n>@>S[E—(i+ 1-Ty~ ")} —2Pon* @ cos p&'[E—(i+1-Tn )], (57)
After solving Eq. (56) for #s1 one obtains for the boundary conditions (52)

oo o
WSET) = P, (cos[ﬁ(1+1 Ty~ H—@lsin ¢ cos[oi+1-Tn~") (p]smocf)

20 sinf8 sino
+ 22‘;) (cos[ouC+i=Tyn™")—¢p]—cos[B(E+i-Tn ") —@])-HE+1-Tyn™"). (58)

The solution to Eq. (57), for ##1, has the form

WET) = 2P_0~(cos[ﬁ(i—Tnfl)—(p]sinﬁf_cos[oc(i—Tnﬂ)—(p]sinocg’)
no sinfs sino
Py

+ 20N

{cos[o(é—i—1+Tn ") +@]—cos[B(E—i—1+Tn ")+ @] tH[E—(i+1-Ty™1)]. (59)

The function w/(¢,T) can also be obtained in a closed form but it would have a compound form that depends on the
values of the parameters; for this reason it has been presented in Appendix.

5. Numerical results

Figs. 3-10 present some results of vibration of the strings under moving, constant force. Two dimensionless parameters
are assumed to be the same on all graphs, namely Po=1 and ko=5.0n all figures the displacements of the top string
(loaded by force) are presented by the solid line and the displacement of the bottom string is presented by the dashed line.
Figs. 3-7 present the displacement of the strings if the velocity of the force is less than the velocity of the wave (7 < 1) for

0.2 0.4 .6 0.8 1 ¢
-0.05 F

0.1 F
-0.15
02 F
-0.25
03 F

-0.35 F
04 YWED

Fig.3. Displacements of the springs for #=0.4 and time T=0.25.

-0.05 | . ' -
0.1 F
-0.15 F
0.2 f
-0.25 F
03 F

-0.35 |
0.4 IVED

Fig.4. Displacements of the springs for #=0.4 and time T=0.5.
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-0.35 f
0.4 YWED

Fig.5. Displacements of the springs for #=0.4 and time T=0.75.

T2 --03" " 0k 0.8 1
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-0.25 f
-0.3 F
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0.4 IVED

Fig.6. Displacements of the springs for #=0.8 and time T=0.5.
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Fig.7. Displacements of the springs for #=0.8 and time T=0.75.

™y

-0.05 |
-0.1 F
015 |
-0.2 F
025 |
03
035 f
0.4 YWET)

Fig.8. Displacements of the springs for #=1.2 and time T=0.5.
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Fig.9. Displacements of the springs for #=1.2 and time T=0.75.
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0.4 ITVED

Fig. 10. Displacement of the springs for #=0.2 and £=0.5 as the function of time.

time T=0.25, T=0.5, and T=0,75. Figs. 8 and 9 present the displacement of the strings if the velocity of the force is bigger
than the velocity of the wave (# > 1) for the time T=0.5 and T=0.75. Fig. 10 presents the displacement of the strings in the
midpoint (¢=0.5) as a function of time. The graphs for the loaded string (the top string) have two characteristic points,
namely, in Figs. 3-9, the position of the moving force and the wave-front, in Fig. 10 the time when the force is directly at
the midpoint and the time when the wave-front is directly at the midpoint.

6. Conclusions

The dynamics response of an elastically connected double-string complex system loaded by a constant or a harmonic
oscillation force moving with a constant velocity has been studied. The classical solutions for transverse displacement of
the strings have the form of sums of two infinite series. It has been shown that a part of the solution can be presented in a
closed, analytical form. The closed, analytical solutions are derived from the fact that the solutions in the form of series are
integrals not only of partial differential equations but also of some ordinary differential equations. The closed solutions
take different forms depending if the velocity v of the moving force is smaller than, equal to or bigger than the wave
velocity in the strings. This follows from the fact that in a string wave phenomena may occur. The presented closed
solutions have an important meaning in the case when we consider the tension force in the string. The closed solutions
allow one to analyze the vibrations phenomena due to moving forces without performing numerical calculations, see Fig. 2.
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Appendix

The function w{}(£,T) can be also presented in a closed form after solving the equation

A=W DY —2[(1—n>ko—112 @ (1 +0NIWHE DI+ (ko —12 D P W(ET)
= —Posin(@T + @)[(1-12)3"(E=T) + 120> —ko)S(E—T)]+ 2Pon2 & cos(®T + )d' (¢ —T), (1A)
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for 1 and taking into account the boundary conditions (52).
Let us introduce the constants and functions

bzz(l—nz)l<o—;72032(1+n2) Posin(dT 4+ @)
(1-y2) a-» -
Posin(@T + @)(n2 &> —ko)
(1-n?)
o(T) = 2P0 cos(dT + ® (ko—1720?)?
(1-n2y (1-n2y
P2 b—+/b2—4c 2 ++/b2—4c
1= 2 ’ 2= 2 .

The closed solution to Eq. (1A) for d? >0 and d3 > 0 has the form

» &M=

h(T) =

)

AYES {d1d2q(T)(cosh[d; (E~T)]—cosh[dr(E-T)DH(E-T)

;
did; (d?—d3)
+ (d2 (R(T)—d3g(T))sinh[d; (¢~ T)]—d; (h(T)—d5g(T))sinh[dy (E—T)])H(E-T)
_ didxq(T)cosh[d; (1~ —T)]+d (h(T)—d3g(T))sinh[d; (1-T)]
sinhd,
dldzq(T)coshdz(l =T)]+d; (K(T)—d3g (T))Sinh[dZ(l_T)]sinhdé
sinhd, 250

sinhd ¢

(3A)

for d? <0 and d3 >0

% {—d1d2q(T)(cos[d1((—T)]—cosh[d,(E-T)DH(E-T)
—(da (h(T)+dig(T))sin[d; (E—~T)]—d: (h—d3g)sinh[dy(E-T)])H((—T)
d]dzq(T)cos[dl(l T)]+d, (h(T)+d?g(T))sin[d; (1 T)] nd,

sind, ¢
d1d,q(T)cosh[d,(1-T)]+d; ((T)—d3g(T))sinh[d>(1-T)]
N sinhd,

Wi(ET) =

sinhd é} (4A)

and for d3 <0, d3 <0
1
Gh (@B dz){—chalzq(T)(COS[d](f—T)]—'SOS[dz(é—T)])H(é—T)
—(da (R(T)+d3g(T))sin[dy (£ —T)]—d; (h(T)+d3g(T))sin[da(E~T)])H(E-T)
d1d2q(T)cos[d1(1 )]+ da (h(T)+d?g(T))sin[d; (1-T)]
sind;
d1d2q(T)cos[d2(1 T)]+d; (W(T)+d%g(T))sin[d>(1-T)] sind, &
sind, 250

WiH(ET) =

sind; ¢

(5A)

In the particular case if 1=1, Eq. (1A) is reduced to the form
40 WHE D] + (ko=@ PWH(ET)
= —Posin(@T + @)@ —ko)d(E—T)+ 2Py dcos(@T + @)3' (=T, (6A)

and the closed solution has the form

WHET) = {sin[a(¢+1-T)—OT—¢] +sin[aE-1+T)+ BT+ ]}

4wsma
{sin[a(¢+1-T)-@OT—-¢]-sin[a(¢—1-T)—DOT—¢@] }H(E-T), (7A)

4wsma
where

~2
a:k"z_—d‘f. (8A)

For the general integral wy(&,T), similarly as in the case of a constant moving force, one cannot find a closed solution by
the method presented above.
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