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In this paper the dynamic response of a double-string system traversed by a constant or

a harmonically oscillating moving force is considered. The force is moving with a

constant velocity on the top string. The strings are identical, parallel, one upon the other

and continuously coupled by a linear Winkler elastic element. The classical solution of

velocity has a form of an infinite series. The main goal of this paper is to show that in the

considered case a part of the solution can be presented in a closed, analytical form

instead of an infinite series. The presented method of finding the solution in a closed,

analytical form is based on the observation that the solution of the system of partial

differential equations in the form of an infinite series is also a solution of an appropriate

system of ordinary differential equations.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of a dynamic response of a structure subjected to moving loads is interesting and important. This problem
occurs in dynamics of bridges, roadways, railways and runways as well as missiles, aircrafts and other structures. Various
types of structures and girders like beams, plates, shells, frames have been considered. Also various models of moving loads
have been assumed [1]. Both deterministic and stochastic approaches have been presented [2–4]. A string as a simple
model of a one-dimensional continuous system resistant to tension but not to bending is often used in analysis of
numerous engineering structures and has been a subject of great scientific interest for a considerable time. This follows
from the fact that the vibrations of a string are described by the wave differential equation. This allows one to see the wave
effect in a string, contrary to many more complex systems where it might be either not present or not clearly visible.
Various aspects of the dynamics response of a string under a moving load have been considered, among others, in the
papers [5–8]. An important technological extension of a single string, beam or plate is that of the double-string, double-
beam or string-beam system. Various aspects of the dynamic response of a double-string and double-beam system have
been considered by Oniszczuk [9–13]. In his papers an excellent bibliography is also given. Free and forced vibrations of a
double-beam system have been considered, among others, in the papers [14,15]. The problem of vibration and buckling of
a double-beam system under compressive axial loading is presented in the paper [16]. Vibrations of a complex system
under moving load have been studied in many papers [17,18].
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In this paper the dynamic behavior of a double-string system traversed by a constant or a harmonically oscillating
moving force is considered. The force is moving with a constant velocity on the top string. The strings are identical, parallel
one upon the other and continuously coupled by a linear Winkler elastic element.

The classical solution of the response of a double-string system subjected to a force moving with a constant velocity has
a form of an infinite series. The main goal of this paper is to show that in the considered case a part of the solution can be
presented in a closed, analytical form instead of an infinite series. Using the method of superposed deflections Kączkowski
[19] has shown for a simply supported Euler–Bernoulli beam that the aperiodic part of the solution can be presented in a
closed form. Next, Reipert obtained a closed form solution for a beam with arbitrary boundary conditions [20] and for a
frame [21]. In this paper we use a different method to obtain the solutions in a closed form. The presented method of
finding the solution in a closed form is based on the observation that the solution of the system of partial differential
equations in the form of an infinite series is also a solution of an appropriate system of ordinary differential equations. This
method has been used to find closed, analytical solution for a finite, simply supported Timoshenko beam loaded by point
force moving with a constant velocity [22].

2. Forced vibrations. General solution

Let us consider the vibrations of a connected double equal string complex continuous system excited by a point force P(t)
moving with a constant velocity v as shown in Fig. 1. The differential equations of motion of the springs system have the form

�S
@2w1ðx,tÞ

@x2
þk w1ðx,tÞ�w2ðx,tÞ½ �þm

@2w1ðx,tÞ

@t2
¼ PðtÞdðx�vtÞ,

�S
@2w2ðx,tÞ

@x2
þk w2ðx,tÞ�w1ðx,tÞ½ �þm

@2w2ðx,tÞ

@t2
¼ 0, (1)

where S is the tension of the string, m is the mass of the string, k is the stiffness modulus of a Winkler elastic element and d( � ) is
the Dirac delta.

The boundary conditions have the form

w1ð0,tÞ ¼ 0, w1ðL,tÞ ¼ 0, w2ðx,0Þ ¼ 0, w2ðL,tÞ ¼ 0: (2)

After introducing the dimensionless variables

x¼
x

L
, T ¼

vt

L
, x 2 0,1½ �, T 2 0,1½ � (3)

Eq. (1) takes the form

�wII
1ðx,TÞþk0½w1ðx,TÞ�w2ðx,TÞ�þZ2 €w1ðx,TÞ ¼ P0ðTÞdðx�TÞ, �wII

2ðx,TÞþk0½w2ðx,TÞ�w1ðx,TÞ�þZ2 €w2ðx,TÞ ¼ 0, (4)

where

vs ¼

ffiffiffiffiffi
S

m

r
, Z¼ v

vs
, k0 ¼

kL2

S
, P0ðTÞ ¼ PðtÞ

L

S
:

The quantity vs represents the wave velocity in the string. The Roman numerals denote differentiation with respect to the
spatial coordinate x, and the dots denote differentiation with respect to time T.

The boundary conditions (2) have the form

w1ð0,TÞ ¼w1ð1,TÞ ¼ 0, w2ð0,TÞ ¼w2ð1,TÞ ¼ 0: (5)

Let the initial conditions have the form

w1ðx,0Þ ¼ 0, _w1ðx,0Þ ¼ 0, w2ðx,0Þ ¼ 0, _w2ðx,0Þ ¼ 0: (6)

Let us introduce two new functions

wIðx,TÞ ¼w1ðx,TÞþw2ðx,TÞ, (7)

and

wIIðx,TÞ ¼w1ðx,TÞ�w2ðx,TÞ: (8)
Fig. 1. Double-string system under moving force.
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From Eq. (4) we obtain two new differential equations for the functions wI(x,T) and wII(x,T)

�wII
I ðx,TÞþZ2 €wIðx,TÞ ¼ P0ðTÞdðx�TÞ, (9)

and

�wII
IIðx,TÞþZ2 €wIIðx,TÞþ2k0wIIðx,TÞ ¼ P0ðTÞdðx�TÞ: (10)

Eq. (9) describes vibrations of a single string, while Eq. (10) describes vibrations of a single string resting on an elastic,
Winkler support with parameter 2k, (2k0). From (7) and (8) it follows that

w1ðx,TÞ ¼
wIðx,TÞþwIIðx,TÞ

2
, w2ðx,TÞ ¼

wIðx,TÞ�wIIðx,TÞ

2
: (11)

The solutions to Eqs. (9) and (10) for boundary conditions (5) are assumed to be in the form of the sine series

wJðx,TÞ ¼
X1
n ¼ 1

yJnðTÞsinnpx, (12)

where J= I or J= II.
By substituting expression (12) into Eqs. (9) and (10) and using the orthogonalization method one obtains the following

set of uncoupled ordinary differential equations:

€yJnðTÞþo
2
JnyJnðTÞ ¼

2PoðTÞ

Z2
sinnpT , (13)

where for J= I oJn ¼oIn ¼ np=Z, and for J= II oJn ¼oIIn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpÞ2þ2k0

q
=Z.

These functions fulfill the initial conditions

yInð0Þ ¼ 0, _yInð0Þ ¼ 0, yIInð0Þ ¼ 0, _yIInð0Þ ¼ 0: (14)

The solution to Eq. (13) has the form

yJnðTÞ ¼
2

Z2oJn

Z T

0
sinoJnðT�tÞsinnptP0ðtÞdt, for 0rTr1, (15)

and

yJnðTÞ ¼
2

Z2oJn

Z 1

0
sinoJnðT�tÞsinnptP0ðtÞdt, for TZ1: (16)

After integrating Eq. (15) we obtain the classical solution for the vibrations of the system of the strings in the form of
infinite series. Below we present a method for finding the solution also in a closed analytic form.

Let the function f(x,T) for xA[0,1], TA[0,1] be given by the series

f ðx,TÞ ¼
X1
n ¼ 1

b1ðnpÞ2rsinnpT sinnpxþb2ðnpÞ2s�1cosnpT sinnpx
a0ðnpÞ2k

þa1ðnpÞ2ðk�1Þ
þ � � � þak�1ðnpÞ2þak

, (17)

where k,r,s 2 N0; quantities ai (i=0,2, y, k) are real numbers such that a0a0. To function (17) one can associate the
following partial differential equation:

a0ð�1Þk
d2kf ðx,TÞ

dx2k
þa1ð�1Þk�1 d2ðk�1Þf ðx,TÞ

dx2ðk�1Þ
þ � � � þak�1ð�1Þ

d2f ðx,TÞ

dx2
þakf ðx,TÞ

¼ b1ð�1Þr
d2rdðx�TÞ

dx2r
þb2ð�1Þs�1 d2s�1dðx�TÞ

dx2s�1
, (18)

for which it is a solution for the boundary conditions

½f ð0,TÞ�ð2jÞ ¼ ½f ð1,TÞ�ð2jÞ ¼ 0, (19)

where [f(x,T)](2j)=d2jf(x,T)/dx2j and j=0,1, y, k�1.
This can be verified by solving (18) using finite Fourier sine transform. After solving (18) by, for example, Laplace

transform and taking into account the boundary conditions (19) we get the function f(x,T) in a closed form.
While solving (18) one has to take into account the relationshipZ 1

0

d2rdðx�TÞ

dx2r
sinnpxdx¼ ð�1ÞrðnpÞ2rsinnpT , (20)

Z 1

0

d2s�1dðx�TÞ

dx2s�1
sinnpxdx¼ ð�1Þs�1

ðnpÞ2s�1cosnpT: (21)

Now we consider two particular cases of the load processes, one if the moving point force is constant and second if the
moving force is harmonically oscillating. Besides the classical solutions in a form of an infinite series also the closed,
analytical solutions have been obtained using the method presented above.
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3. Moving constant force

Let the moving force be constant, P0(T)=P0=PL/S=const. From Eq. (16) it follows that the solutions to Eqs. (9) and (10) for
the initial condition (6) are sums of particular integrals wA

I ðx,TÞ, wA
IIðx,TÞ and general integrals wS

I ðx,TÞ, wS
IIðx,TÞ:

wIðx,TÞ ¼wA
I ðx,TÞþwS

I ðx,TÞ ¼
2Po

1�Z2

X1
n ¼ 1

sinnpT sinnpx
ðnpÞ2

�
2PoZ
1�Z2

X1
n ¼ 1

sin np
Z T sinnpx

ðnpÞ2
, (22)

and

wIIðx,TÞ ¼wA
IIðx,TÞþwS

IIðx,TÞ ¼ 2Po

X1
n ¼ 1

sinnpT sinnpx
ðnpÞ2ð1�Z2Þþ2ko

�2PoZ
X1
n ¼ 1

npsin Z�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpÞ2þ2ko

q
T

� �
sinnpxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnpÞ2þ2ko

q
½ðnpÞ2ð1�Z2Þþ2ko�

: (23)

The dynamic component of the tension in the strings is given by

Niðx,TÞ ¼ EA
@wiðx,tÞ

@x
¼

EA

L

@wiðx,TÞ

@x
: (24)

The differentiation of Eqs. (22) and (23) in order to obtain the tension (24) results with slowly convergent series. These
remarks refer to the next solutions in this paper as well.

The functions wA
I ðx,TÞ and wA

IIðx,TÞ are aperiodic vibrations and wS
I ðx,TÞ and wS

IIðx,TÞ are free vibrations of the strings.
Now we will present the aperiodic solutions wA

I ðx,TÞ given by the first series in expression (22) in a closed analytical form
using the method described by Eqs. (17)–(21).

Let us notice an important fact that this function is a solution not only of the partial differential equations (9) but also of
the ordinary equation

�½wA
I ðx,TÞ�II ¼

Po

1�Z2
dðx�TÞ, (25)

for the boundary conditions (5).
The variable T in Eq. (25) is the only parameter that describes the location of the moving force on the string. After solving

Eq. (25) we can obtain the functions wA
I ðx,TÞ in a closed form instead of a series. The closed form of the solution has the form

wA
I ðx,TÞ ¼

Po

1�Z2
ð1�TÞx for xrT ,

Po

1�Z2
Tð1�xÞ for xZT ,

8>>><
>>>:

(26)

or in the short form

wA
I ðx,TÞ ¼

Po

1�Z2
ð1�TÞx�ðx�TÞHðx�TÞ
� �

, (27)

where H( � ) is the unit step Heaviside function.
Also the function wS

I ðx,TÞ can be presented in the closed form. For the interval iZrTr(i+1)Zr1, where i =0, 2, 4, y, n,
the function wS

I ðx,TÞis also a solution of the equation

½wS
I ðx,TÞ�II ¼

PoZ
1�Z2

d x�
T

Z
�i

� �� �
, (28)

and hence can be presented in the closed form

wS
I ðx,TÞ ¼�

Po

1�Z2
x ðiþ1ÞZ�T
� �

þ Zðxþ iÞ�T
� �

Hðxþ i�ðT=ZÞÞ
	 


: (29)

For the interval i ZrTr(i+1)Zr1 where i =1, 3, 5, y, n+1, the function wS
I ðx,TÞis also a solution of the equation

½wS
I ðx,TÞ�II ¼�

PoZ
1�Z2

d x� iþ1�
T

Z

� �� �
, (30)

and hence can be presented in the closed form

wS
I ðx,TÞ ¼

Po

1�Z2
xðT�iZÞ� Zx�Zðiþ1ÞþT

� �
H x�ðiþ1�ðT=ZÞÞ
� �	 


: (31)

Taking into account the relationships (27), (29) and (31) the function wIðx,TÞ ¼wA
I ðx,TÞþwS

I ðx,TÞ can be presented in a
closed analytical form. For the interval iZrTr(i+1)Zr1, where i=0,2, y, n and Zo1 (vovs) one obtains

wIðx,TÞ ¼
Po

1�Z2
ð1�TÞx� ðiþ1ÞZ�T

� �
x�ðx�TÞHðx�TÞ þ Zðxþ iÞ�T

� �
Hðxþ i�ðT=ZÞÞ

	 

, (32)
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and for the interval iZrTr(i+1)Zr1, where i=1,3, y, n+1and Zo1 one obtains

wIðx,TÞ ¼
Po

1�Z2
ð1�TÞxþðT�iZÞx�ðx�TÞHðx�TÞ
	

�½Zx�Zðiþ1ÞþT�H½x�ðiþ1�ðT=ZÞÞ�g: (33)

Eq. (32) gives the string response when the front of the free wave moves in the same direction as the point force while
Eq. (33) is when it moves in the opposite direction. For example, for 0rTrZo1 it follows from Eq. (32) (i=0) that

wIðx,TÞ ¼

Po

1þZ
x for xrT,

Po

1�Z2
ðT�ZxÞ for Trxr

T

Z
,

0 for
T

Zrxr1:

8>>>>>>>><
>>>>>>>>:

(34)

From (26) or (27) and (29) for i=0 we obtain the solution for Z41, i.e. when the point force velocity is bigger than the
transverse wave velocity, namely

wIðx,TÞ ¼

Po

1þZx for xr
T

Z ,

Po

1�Z2
ðx�TÞ for

T

Z
rxrT ,

0 for xZT:

8>>>>><
>>>>>:

(35)

In the particular case when Z=1 (v=vs), Eqs. (34) and (35) imply that

wIðx,TÞ ¼

Po

2
x for xoT ,

0 for x4T:

8<
: (36)

Solutions (34), (35) and (36) are presented in Fig. 2.
The aperiodic solution wA

IIðx,TÞ given by the first series in the expression (23) is a solution not only of the partial
differential equation (10) but also of the ordinary equation

�ð1�Z2ÞwA
II,xxðx,TÞþ2kowA

IIðx,TÞ ¼ Podðx�TÞ: (37)

After solving Eq. (37) one can obtain the functions wA
IIðx,TÞ in a closed, analytical form instead of a series. The closed

form of the solution has the form for vovs, (Zo1)

wA
IIðx,TÞ ¼

Po

að1�Z2Þ

sinhað1�TÞsinhax
sinha

�sinhaðx�TÞHðx�TÞ

� �
, (38)

where a2=2k0/(1�Z2) and for vovs (Zo1),

wA
IIðx,TÞ ¼

Po

bð1�Z2Þ

sinbð1�TÞsinbx
sinb

�sinbðx�TÞHðx�TÞ

� �
, (39)

where b2=2k0/(Z2
�1).

In the particular case if v=vs (Z=1) the solution has the form

wA
IIðx,TÞ ¼

Po

2ko
dðx�TÞ: (40)

The solution (40) has a Dirac delta singularity. For the general integral wS
II x,Tð Þ one cannot find a closed solution by the

method presented above.
In the case if TZ1 (free vibration of the system) from Eq. (16) one obtains

wJðx,TÞ ¼
2P0

Z2

X1
n ¼ 1

ð�1ÞnnpsinoJnðT�1Þsinnpx
oJn½o2

Jn�ðnpÞ
2
�

�
2P0

Z2

X1
n ¼ 1

npsinnpT sinnpx
oJn½o2

Jn�ðnpÞ
2
�

, (41)

where J= I,II.
For example for J= I the solution (41) has the form

wIðx,TÞ ¼
2P0Z
1�Z2

X1
n ¼ 1

ð�1Þnsinðnp=ZÞðT�1Þsinnpx
ðnpÞ2

�
2P0Z
1�Z2

X1
n ¼ 1

sinnpT sinnpx
ðnpÞ2

: (42)
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Fig. 2. Transverse displacement of the string under moving force.
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4. Moving harmonic oscillation force

Let the moving force be a harmonic oscillator of the form

PðtÞ ¼ PsinðotþjÞ, (43)

hence

P0ðTÞ ¼ P0sinð ~oTþjÞ, (44)

where ~o ¼oðL=vÞ:
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Taking into account (44) and Eq. (15) the response function wI(x,T) has the form

wIðx,TÞ ¼wA
I ðx,TÞþwS

I ðx,TÞ, (45)

where

wA
I ðx,TÞ ¼ 2Posinð ~oTþjÞ

X1
n ¼ 1

½ðnpÞ2ð1�Z2Þ�Z2 ~o2
�sinnpTUsinnpx

ðnpÞ4ð1�Z2Þ
2
�2ðnpÞ2Z2 ~o2

ð1þZ2ÞþZ4 ~o4

�4PoZ2ocosð ~oTþjÞ
X1
n ¼ 1

npcosnpTUsinnpx
ðnpÞ4ð1�Z2Þ

2
�2ðnpÞ2Z2 ~o2

ð1þZ2ÞþZ4 ~o4
, (46)

and

wS
I ðx,TÞ ¼

2PoZ
X1
n ¼ 1

½ðnpÞ2ð1�Z2Þ�Z2 ~o2
�sin ðnp=ZÞT

� �
sinjþ2np ~oZcos ðnp=ZÞT

� �
cosj

ðnpÞ4ð1�Z2Þ
2
�2ðnpÞ2Z2 ~o2

ð1þZ2ÞþZ4 ~o4
sinnpx: (47)

Taking into account (44) and Eq. (15) shows that the next response function is

wIIðx,TÞ ¼wA
IIðx,TÞþwS

IIðx,TÞ, (48)

where

wA
IIðx,TÞ ¼

X1
n ¼ 1

2Posinð ~oTþjÞ½ðnpÞ2ð1�Z2Þþko�Z2 ~o2
�sinnpT sinnpx

ðnpÞ4ð1�Z2Þ
2
þ2ðnpÞ2 ð1�Z2Þko�Z2 ~o2

ð1þZ2Þ

h i
þðko�Z2 ~o2

Þ
2

�
X1
n ¼ 1

4PoZ2 ~o cosð ~oTþjÞnpcosnpT sinnpx
ðnpÞ4ð1�Z2Þ

2
þ2ðnpÞ2 ð1�Z2Þko�Z2 ~o2

ð1þZ2Þ

h i
þðko�Z2 ~o2

Þ
2

, (49)

and

wS
IIðx,TÞ ¼

2Poo
Z2

X1
n ¼ 1

np
oIIn

Z2o½o2
IIn�ðnpÞ

2
þo2
�sin½oIInT�sinj�2oIIncos½oIInT�cosj

o2
IIn�ðnpÞ

2
�o2

h i2
�4ðnpÞ2o2

sinnpx, (50)

and

o2
IIn ¼

ðnpÞ2þko

Z2
:

The aperiodic vibration wA
I ðx,TÞ given by Eq. (46) is also a solution of the ordinary differential equation

ð1�Z2Þ
2
½wA

I ðx,TÞ�IVþ2Z2 ~o2
ð1þZ2Þ½wA

I ðx,TÞ�IIþZ4 ~o4wA
I ðx,TÞ

¼�Posinð ~oTþjÞ½ð1�Z2ÞdII
ðx�TÞþZ2 ~o2dðx�TÞ�þ2PoZ2 ~ocosð ~oTþjÞdI

ðx�TÞ, (51)

and satisfies the boundary conditions

wA
I ð0,TÞ ¼wA

I ð1,TÞ ¼ 0, ½wA
I ð0,TÞ�II ¼ ½wA

I ð1,TÞ�II ¼ 0: (52)

After taking into account the boundary conditions (52), the solution to Eq. (51) for the case Za1 takes the form

wA
I ðx,TÞ ¼

Po

2Z ~o
cos½að1�TZ�1Þ�j�sinax

sina
�

cos½bð1þTZ�1Þþj�sinbx
sinb

� �

þ
Po

2Z ~o ðcos bðxþTZ�1Þþj
� �

�cos aðx�TZ�1Þ�j
� �

ÞHðx�TÞ, (53)

where a¼ Z ~o=1�Z, b¼ Z ~o=1þZ.
In the particular case if Z=1 instead of Eq. (51) one has

4 ~o2
½wA

I ðx,TÞ�IIþ ~o4wA
I ðx,TÞ

¼�Po ~o2sinð ~oTþjÞdðx�TÞþ2Po ~o cosð ~oTþjÞdI
ðx�TÞ: (54)

After taking into account the boundary conditions (52), the solution to Eq. (54) takes the form

wA
I ðx,TÞ ¼

�Po

4 ~osin ~o
2

sin
~o
2
ðx�1�TÞ�j

� �
þsin

~o
2
ðxþ1þTÞþj

� �� �

þ
Po

4 ~o sin ~o
2

sin
~o
2
ðxþ1þTÞþj

� �
�sin

~o
2
ðx�1þTÞþj

� �� �
Hðx�TÞ: (55)
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Also the function wS
I x,Tð Þ can be presented in a closed, analytical form. For the interval iZrTr(i+1)Zr1 where

i =0, 2, 4, y, n, and Zo1 (vovs) the function wS
I ðx,TÞ is also a solution of the equation

ð1�Z2Þ
2
½wS

I ðx,TÞ�IVþ2Z2 ~o2
ð1þZ2Þ wS

I ðx,TÞ
� �II

þZ4 ~o4wS
I ðx,TÞ

¼ PoZsinjfð1�Z2ÞdII
½x�ðTZ�1�iÞ��Z2 ~o2d½x�ðTZ�1�iÞ�g�2PoZ2 ~o cosjdI

½x�ðTZ�1�iÞ�, (56)

and for iZrTr(i+1)Zr1, where i=1,3,5, y, n+1, respectively, of the equation

ð1�Z2Þ
2
½wS

I ðx,TÞ�IVþ2Z2 ~o2
ð1þZ2Þ½wS

I ðx,TÞ�IIþZ4 ~o4wS
I ðx,TÞ

¼ PoZsinjfð1�Z2ÞdII
½x�ðiþ1�TZ�1Þ��Z2 ~o2d½x�ðiþ1�TZ�1Þ�g�2PoZ2 ~o cosjdI

½x�ðiþ1�TZ�1Þ�: (57)

After solving Eq. (56) for Za1 one obtains for the boundary conditions (52)

wS
I ðx,TÞ ¼

Po

2Z ~o
cos½bðiþ1�TZ�1Þ�j�sinbx

sinb
�

cos½aðiþ1�TZ�1Þ�j�sinax
sina

� �

þ
Po

2Z ~o
ðcos aðxþ i�TZ�1Þ�j

� �
�cos bðxþ i�TZ�1Þ�j

� �
ÞUHðxþ1�TZ�1Þ: (58)

The solution to Eq. (57), for Za1, has the form

wS
I ðx,TÞ ¼

Po

2Z ~o
cos½bði�TZ�1Þ�j�sinbx

sinb
�

cos½aði�TZ�1Þ�j�sinax
sina

� �

þ
Po

2Z ~o
cos aðx�i�1þTZ�1Þþj
� �

�cos bðx�i�1þTZ�1Þþj
� �	 


H x�ðiþ1�TZ�1Þ
� �

: (59)

The function wA
IIðx,TÞ can also be obtained in a closed form but it would have a compound form that depends on the

values of the parameters; for this reason it has been presented in Appendix.

5. Numerical results

Figs. 3–10 present some results of vibration of the strings under moving, constant force. Two dimensionless parameters
are assumed to be the same on all graphs, namely P0=1 and k0=5.On all figures the displacements of the top string
(loaded by force) are presented by the solid line and the displacement of the bottom string is presented by the dashed line.
Figs. 3–7 present the displacement of the strings if the velocity of the force is less than the velocity of the wave (Zo1) for
Fig.3. Displacements of the springs for Z=0.4 and time T=0.25.

Fig.4. Displacements of the springs for Z=0.4 and time T=0.5.



Fig.5. Displacements of the springs for Z=0.4 and time T=0.75.

Fig.6. Displacements of the springs for Z=0.8 and time T=0.5.

Fig.7. Displacements of the springs for Z=0.8 and time T=0.75.

Fig.8. Displacements of the springs for Z=1.2 and time T=0.5.
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Fig.9. Displacements of the springs for Z=1.2 and time T=0.75.

Fig. 10. Displacement of the springs for Z=0.2 and x=0.5 as the function of time.
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time T=0.25, T=0.5, and T=0,75. Figs. 8 and 9 present the displacement of the strings if the velocity of the force is bigger
than the velocity of the wave (Z41) for the time T=0.5 and T=0.75. Fig. 10 presents the displacement of the strings in the
midpoint (x=0.5) as a function of time. The graphs for the loaded string (the top string) have two characteristic points,
namely, in Figs. 3–9, the position of the moving force and the wave-front, in Fig. 10 the time when the force is directly at
the midpoint and the time when the wave-front is directly at the midpoint.

6. Conclusions

The dynamics response of an elastically connected double-string complex system loaded by a constant or a harmonic
oscillation force moving with a constant velocity has been studied. The classical solutions for transverse displacement of
the strings have the form of sums of two infinite series. It has been shown that a part of the solution can be presented in a
closed, analytical form. The closed, analytical solutions are derived from the fact that the solutions in the form of series are
integrals not only of partial differential equations but also of some ordinary differential equations. The closed solutions
take different forms depending if the velocity v of the moving force is smaller than, equal to or bigger than the wave
velocity in the strings. This follows from the fact that in a string wave phenomena may occur. The presented closed
solutions have an important meaning in the case when we consider the tension force in the string. The closed solutions
allow one to analyze the vibrations phenomena due to moving forces without performing numerical calculations, see Fig. 2.
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Appendix

The function wA
IIðx,TÞ can be also presented in a closed form after solving the equation

ð1�Z2Þ
2
½wA

IIðx,TÞ�IV�2½ð1�Z2Þko�Z2 ~o2
ð1þZ2Þ�½wA

IIðx,TÞ�IIþðko�Z2 ~o2
Þ
2wA

IIðx,TÞ

¼�Posinð ~oTþjÞ½ð1�Z2ÞdII
ðx�TÞþðZ2 ~o2

�koÞdðx�TÞ�þ2PoZ2 ~o cosð ~oTþjÞdI
ðx�TÞ, (1A)
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for Za1 and taking into account the boundary conditions (52).
Let us introduce the constants and functions

b¼ 2
ð1�Z2Þko�Z2 ~o2

ð1þZ2Þ

ð1�Z2Þ
2

, gðTÞ ¼
Posinð ~oTþjÞ
ð1�Z2Þ

,

hðTÞ ¼
Posinð ~oTþjÞðZ2 ~o2

�koÞ

ð1�Z2Þ
2

,

qðTÞ ¼
2PoZ2 ~o cosð ~oTþjÞ

ð1�Z2Þ
2

, c¼
ðko�Z2 ~o2

Þ
2

ð1�Z2Þ
2

,

d2
1 ¼

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c
p

2
, d2

2 ¼
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4c
p

2
: (2A)

The closed solution to Eq. (1A) for d2
140 and d2

240 has the form

wA
IIðx,TÞ ¼

1

d1d2 d2
1�d2

2

� � d1d2qðTÞ cosh½d1ðx�TÞ��cosh½d2ðx�TÞ�ð ÞHðx�TÞ
	

þ d2 hðTÞ�d2
1gðTÞ

� �
sinh½d1ðx�TÞ��d1 hðTÞ�d2

2gðTÞ
� �

sinh½d2ðx�TÞ�
� �

Hðx�TÞ

�
d1d2qðTÞcosh½d1ð1�TÞ�þd2 hðTÞ�d2

1gðTÞ
� �

sinh½d1ð1�TÞ�

sinhd1
sinhd1x

þ
d1d2qðTÞcosh½d2ð1�TÞ�þd1 hðTÞ�d2

2gðTÞ
� �

sinh½d2ð1�TÞ�

sinhd2
sinhd2x

)
, (3A)

for d2
1o0 and d2

240

wA
IIðx,TÞ ¼

1

d1d2 d2
1þd2

2

� � �d1d2qðTÞðcos½d1ðx�TÞ��cosh½d2ðx�TÞ�ÞHðx�TÞ
	

� d2 hðTÞþd2
1gðTÞ

� �
sin½d1ðx�TÞ��d1 h�d2

2g
� �

sinh½d2ðx�TÞ�
� �

Hðx�TÞ

þ
d1d2qðTÞcos½d1ð1�TÞ�þd2 hðTÞþd2

1gðTÞ
� �

sin½d1ð1�TÞ�

sind1
sind1x

�
d1d2qðTÞcosh½d2ð1�TÞ�þd1 hðTÞ�d2

2gðTÞ
� �

sinh½d2ð1�TÞ�

sinhd2
sinhd2x

)
(4A)

and for d2
1o0, d2

2o0

wA
IIðx,TÞ ¼

1

d1d2 d2
1þd2

2

� � �d1d2qðTÞðcos½d1ðx�TÞ��cos½d2ðx�TÞ�ÞHðx�TÞ
	

� d2 hðTÞþd2
1gðTÞ

� �
sin½d1ðx�TÞ��d1 hðTÞþd2

2gðTÞ
� �

sin½d2ðx�TÞ�
� �

Hðx�TÞ

þ
d1d2qðTÞcos½d1ð1�TÞ�þd2 hðTÞþd2

1gðTÞ
� �

sin½d1ð1�TÞ�

sind1
sind1x

�
d1d2qðTÞcos½d2ð1�TÞ�þd1 hðTÞþd2

2gðTÞ
� �

sin½d2ð1�TÞ�

sind2
sind2x

)
: (5A)

In the particular case if Z=1, Eq. (1A) is reduced to the form

4 ~o2
½wA

IIðx,TÞ�IIþðko� ~o2
Þ
2wA

IIðx,TÞ

¼�Posinð ~oTþjÞð ~o2
�koÞdðx�TÞþ2Po ~ocosð ~oTþjÞdI

ðx�TÞ, (6A)

and the closed solution has the form

wA
IIðx,TÞ ¼

�Po

4 ~osina
sin aðxþ1�TÞ� ~oT�j
� �

þsin aðx�1þTÞþ ~oTþj
� �	 


þ
Po

4 ~osina
sin aðxþ1�TÞ� ~oT�j
� �

�sin aðx�1�TÞ� ~oT�j
� �	 


Hðx�TÞ, (7A)

where

a¼
ko� ~o2

2 ~o : (8A)

For the general integral wS
IIðx,TÞ, similarly as in the case of a constant moving force, one cannot find a closed solution by

the method presented above.
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[19] Z. Kączkowski, Vibration of a beam under a moving load, Proceedings of Vibration Problems 4 (4) (1963) 357–373.
[20] Z. Reipert, Vibration of a beam arbitrarily supported on its edges under moving load, Proceedings of Vibration Problems 2 (10) (1969) 249–260.
[21] Z. Reipert, Vibration of Frames Under Moving Load, Archiwum Inżynierii Lądowej XVI (3) (1970) 419–447.
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