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a b s t r a c t

We study the motion and sound generated when a line vortex is convected in a uniform

low-Mach flow parallel to a thin elastic sheet. The linearized sheet motion is analyzed

under conditions where the unforced sheet (in the absence of the line vortex) is

stationary. The vortex passage above the sheet excites a resonance mode of motion,

acoustic problem include the sheet velocity and fluid vorticity. It is shown that the

release of trailing-edge vortices, resulting from the satisfaction of the Kutta condition,

has two opposite effects on sound radiation: while trailing-edge vortices act to reduce

the pressure fluctuations occurring owing to the direct interaction of the line vortex

with the unperturbed sheet, they extend and amplify the acoustic signal produced by

the motion of the sheet. The sheet motion radiates higher sound levels as the system

approaches its critical conditions for instability, where the effect of resonance becomes

more pronounced. It is argued that the present theory describes the essential

mechanism by which sound is generated as a turbulent eddy is convected in a mean

flow past a thin elastic airfoil.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamics of a thin elastic sheet subject to fluid loading is a classical problem in fluid–structure interactions and has
been studied extensively over the years [1,2]. Apart from its fundamental significance, the problem has attracted growing
interest owing to its relevance in modeling biological phenomena as well as addressing engineering applications. These
include, among others, the dynamics of paper flutter and its importance in amending production processes in commercial
printing [3]; the role of flapping motion in improving propulsive efficiency of swimming [4]; the relation between wavy
body motions and turbulent drag reduction during locomotion [5]; the impact of flutter phenomenon on aircraft control
[6]; and the potential use of flow-induced motion of flexible bodies as a source of ‘‘green’’ energy [7–9].

Motivated by the above and other studies, a major part of the works analyzing fluid–sheet interactions have considered
the motion of a sheet subject to uniform axial flow. The dynamical problem in this case is governed by a balance between
sheet inertia, elasticity and fluid loading. Linearized stability analyses have been carried out to determine the critical
conditions for the onset of sheet motion [10–14]. Additional works have then considered the non-linear motion evolving at
super-critical conditions [15–17].

The forced motion of a flexible thin body, resulting from unsteadiness of the incoming flow or other forms of external
forcing, has been studied in a separate set of works. The problem to be solved in this case is qualitatively different from the
one described above: instead of seeking for a non-trivial homogeneous solution, a private solution satisfying the particular
ll rights reserved.
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form of an inhomogeneous forcing term is required. Crighton and Oswell [18], Lucey [19] and Peake [20] considered the
response of an elastic plate to a localized external force. Tang et al. [21] studied the effects of gravity and oscillating angle
of attack on a plate motion. Golubev et al. [22] analyzed the response of a flexible airfoil to impinging gust, motivated by
the severe effect this might have on light-weight micro-air-vehicles. Manela and Howe [23] revisited the classical flag
problem and calculated the flag motion induced by the action of von-Kármán vortex street released from the flag
cylindrical pole.

The counterpart acoustic problem, namely the calculation of sound produced by fluid–sheet interactions, has been
studied as a simplified model problem for describing more complex phenomena. These include, among others, the sound
produced during palatal snoring [11,24] and the effects of an acoustic field on the aerodynamic performances of micro-air-
vehicle wings [25]. The sources of sound in this problem include the body motion and any vortical-flow components. Howe
[26] focused on the case of a rigid (stationary) plate and studied the acoustic field produced by the interaction of an
incident line vortex with the plate end-points. A later work [27] considered the case of a semi-infinite plate and focused on
the noise produced by an elastic trailing-edge. Abrahams [28,29] studied the low-Mach acoustic scattering from a plate
clamped at both edges and subject to heavy fluid loading. Dowling [30] extended Lighthill’s theory to determine the noise
induced by a turbulent boundary layer over a flexible surface. Crighton [31] investigated the relation between vibration
and sound by applying a line force and geometrical inhomogeneities to the structure. Evers and Peake [32] studied the
noise generated by the interaction of a gust with a rigid airfoil in transonic flow. Abrahams and Wickham [33] followed the
work by Crighton and Oswell [18] and examined the sound produced by the response of an infinite plate to impulse
forcing. Manela and Howe [14] calculated the sound produced by the flapping of a flag in uniform flow and studied the
effect of boundary conditions on the onset of motion.

The fully combined effect of structure elasticity and incoming-flow unsteadiness on sound radiation has been examined
in relatively few works. Howe [34] considered the problem qualitatively by assuming a simplified harmonic form for the
body deflection and fluid loading. Shah and Howe [35] studied the sound produced when a line vortex translates over an
infinite rib-stiffened elastic plate. More recently, Schäfer et al. [36] calculated numerically the sound produced by the
interaction of a thin flexible plate, clamped at both ends, with turbulent flow excited by obstacles located upstream. The
authors divided the contributions to the acoustic radiation into ‘‘structural vibration’’ and ‘‘stream noise’’ components and
studied each of them separately using finite-difference schemes.

The objective of the present work is to analyze the mechanism of sound radiation resulting from the coupling between
the motion of thin structures and stream-flow non-uniformities. We focus on the case of a finite sheet subject to small
Mach-number flow, where the acoustic wavelength is considerably larger than the sheet length. We model the flow non-
uniformity by an incident line vortex convected in the mean stream and interacting with the sheet. At first we analyze the
linearized sheet motion forced by the vortex. The analysis is then applied to predict the far-field acoustic radiation, taking
into account both structure dynamics and vortex-induced noise. By completing this calculation, we aim at providing a
description of the essential mechanism by which sound is generated as a turbulent eddy is convected in a mean flow past a
thin flexible airfoil. Such analysis may be useful in situations where both vortex flow and structure elasticity are important,
as in the design of flapping-based active noise control systems for the reduction of blade–vortex interaction noise [37,38];
or in monitoring the acoustic signature of underwater vehicles in naval applications [39]. In addition, strong coupling
between structure elasticity and flow vorticity is also common in insect flight, where low thickness-to-chord wing ratios
enable significant active and passive flapping motions [40]. These motions result in the radiation of sound waves,
responsible for a wide variety of noises known as ‘‘insect songs’’ [41,42]. In this context, the present theory supplies
preliminary examination of the sound generated by the passive flow-induced motion of a thin wing.

The paper is organized as follows: in Section 2 the dynamical problem is formulated and analyzed. The acoustic
radiation is calculated in Section 3. The results for both sheet dynamics and sound field are presented in Section 4.
A summary of our conclusions is given in Section 5.

2. Dynamical problem

Consider a thin flexible sheet of thickness l, length L, span l and mass per unit area rsl clamped at one end and free at
the other (Fig. 1). The sheet is subject to a parallel low-Mach high-Reynolds number uniform stream flow of speed U in the
x1-direction and to an incident line vortex of strength G parallel to its edge and in the negative x3-direction (into the plane
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Fig. 1. Schematic setup of the problem. The sheet xðx1 ,tÞ is clamped at x1=0 and free at x1=L. The incident clockwise line vortex of strength G convects at

the mean free stream U along x2=h and the inertial fluid loading on the sheet is DP¼ P��Pþ .
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of Fig. 1). It is assumed that the sheet length L is much smaller than its span l such that the motion may be regarded as two-
dimensional. In addition, our analysis is based on linearized airfoil theory, where the vortex strength G is assumed
sufficiently weak such that it is convected with the mean flow U¼ îU along a straight line x2 ¼ h parallel to the undisturbed
sheet. For simplicity, we consider only the impact of the incident vortex on the body and neglect any back reaction of the
body on the vortex. We define t¼ 0 to be the time at which the vortex passes above the clamped (x1 ¼ 0) leading-edge of
the body.

Under the above assumptions, small-amplitude unsteady deflections of the sheet in the x2-direction of amplitude
xðx1,tÞ5L are taken to satisfy the linearized equation

rsl
q2x
qt2
þEI

q4x
qx4

1

�DP¼ 0, (1)

where EI is the sheet bending rigidity (E being Young’s modulus and I¼ l3=12ð1�s2Þ the moment of inertia per unit span;
s is the Poisson ratio of the material) and DP denotes the pressure force exerted by the fluid across the sheet in the
direction of increasing x. Following a previous study [23], the effect of boundary layer drag force is omitted, as its
magnitude is small compared with all other forces in the present high Reynolds-number setup.

2.1. The fluid loading DP

In accordance with our linear theory assumption, the inertial pressure jump DP is determined as a superposition of the
potential flow associated with the large-scale flow induced by the motion of the sheet, and the wake-induced flow, arising
from vortices released from the trailing-edge of the filament. The corresponding velocity potential f, satisfying the two-
dimensional Laplace equation together with impermeability and proper far-field attenuation conditions, may be written as

fðx,tÞ ¼

Z
S

Aðs,tÞ

jx�sj
ds, (2)

where A(s,t) is a distribution of point sources representing the sheet and trailing-edge wake.
The modeling of fluid loading over thin bodies immersed in streaming flow has been the subject of many works. In what

follows, we regard the sheet as a flexible wing and adopt the classical solution based on linearized thin-airfoil theory [43].
The solution applies conformal mapping technique and Söhngen’s formula to express the pressure jump across the
filament. According to the theory, the sheet surface and trailing-edge wake are represented by thin vortex sheets of
vorticities

xx ¼ k̂dðx2Þgxðx1,tÞ and xw ¼ k̂dðx2Þgwðx1,tÞ, (3)

corresponding to the sheet (0rx1rL) and wake (Lox1o1) surfaces, respectively. Here d denotes the Dirac delta
function. The pressure jump across the sheet is given by

DPðx1,tÞ ¼ r0 Ugxðx1,tÞþ
q
qt

Z x1

0
gxðs,tÞds

� �
, (4)

where r0 is the fluid density. The actual value of gxðx1,tÞ is specified through the satisfaction of the impermeability
condition on the sheet,

vnðxðx1,tÞÞ ¼
qx
qt
þU

qx
qx1
¼�

1

2p
�

Z L

0

gxðs,tÞ

x1�s
ds�

1

2p

Z 1
L

gwðs,tÞ

x1�s
ds, (5)

which couples the wake and sheet vorticity distributions. The amount of vorticity released at the trailing-edge wake is
specified, in turn, through the Kutta condition, ensuring that the velocity at the sheet trailing-edge remains finite and that
the pressure jump across the wake vanishes,

DPwðx1,tÞ ¼ r0 Ugwðx1,tÞþ
q
qt

Z L

0
gxðs,tÞdsþ

q
qt

Z x1

L
gwðs,tÞds

� �
¼ 0: (6)

To obtain an expression for the pressure jump DP in terms of the sheet deflection xðx1,tÞ, Eqs. (5) and (6) are solved to
express gx ¼ gxðxðx1,tÞ; x1,tÞ. Substituting this result into (4) and then into (1) yield a single equation for the sheet
deflection. The explicit expression for the Fourier decomposition of the pressure jump (4) as a function of the sheet
deflection is given in (23).

2.2. The forced problem

The incident line vortex of strength G, convected at the mean flow velocity U¼ îU along x2 ¼ h, is represented by the
singular distribution of vorticity

xG ¼�k̂Gdðx2�hÞdðx1�UtÞ, (7)
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where k̂ is a unit vector in the positive x3�direction (out of the plane of Fig. 1). The vortex (7) can be written in the form

xG ¼

Z 1
�1

xGexp½�iot�do, (8)

where

xG ¼�
G

2pU
k̂dðx2�hÞexp½iox1=U�, �1ox1o1: (9)

The potential foG
induced by xG follows from the appropriate solution of Laplace’s equation. This supplies

foG
¼�

G
4pio exp½iox1=Uþjojðx2�hÞ=U�, jx2joh: (10)

This formula can be used to calculate the corresponding fluid displacement xG induced at the mean position of the sheet by
satisfying the kinematic condition

DxG
Dt
¼�ioxGþU

qxG
qx1
¼
qfoG

qx2

����
x2 ¼ 0

, (11)

or explicitly

�ioxGþU
qxG
qx1
¼�

G signðoÞ
4piU

exp iox1=U�jojh=U
� �

: (12)

Integrate (12) and choose the particular solution

xGðx1,oÞ ¼�G signðoÞ
4piU2

x1exp½iox1=U�jojh=U�, (13)

which vanishes at x1 ¼ 0. This choice of the particular solution, which is equivalent to setting the homogeneous response in
(12) to zero, can be made without loss of generality as other choices of the constant of integration will not affect the final
result for xðx1,t�x1=UÞ (see (15) et seq.). The overall ‘‘vortex-induced’’ deflection xGðx1,t�x1=UÞ is given by integration of
(13) over all frequencies ð�1,1Þ

xGðx1,t�x1=UÞ ¼

Z 1
�1

xGðx1,oÞexp½�iot�do¼� Gx1ðt�x1=UÞ

2pU2½ðt�x1=UÞ2þh2=U2�
: (14)

Eq. (14) can now be used to formulate a ‘‘forced’’ equation of motion of the sheet in the presence of the incident line vortex.
Let the overall sheet deflection x be partitioned into its ‘‘self’’ and ‘‘vortex-induced’’ parts

xðx1,t�x1=UÞ ¼ xoðx1,t�x1=UÞþxGðx1,t�x1=UÞ (15)

and substitute this into (1). Note that in the linearized approximation the vortex convecting in the mean flow does not
produce a pressure load on the sheet (see (10) at x2 ¼ 70). The equation for xo therefore assumes the inhomogeneous form

rsl
q2xo

qt2
þEI

q4xo

qx4
1

�DPðxoÞ ¼ FeðxGÞ, (16)

where

FeðxGÞ ¼�rsl
q2xG
qt2
�EI

q4xG
qx4

1

: (17)

Four boundary conditions are required to complete the formulation of the problem. We consider a clamped-free sheet
setup, for which

ðxÞx1 ¼ 0 ¼
qx
qx1

� �
x1 ¼ 0

¼
q2x
qx2

1

 !
x1 ¼ L

¼
q3x
qx3

1

 !
x1 ¼ L

¼ 0, (18)

requiring that the sheet displacement and slope vanish at the leading-edge, and the trailing-edge is moment- and force-
free. The effect of boundary conditions different from (18) on the onset of motion and acoustic radiation of a flexible flag
has been studied in Ref. [14]. It was found that when the clamped end is replaced by a supported end (i.e., the zero slope
condition at x1 ¼ 0 is replaced by a zero moment condition), the stability properties of the system change considerably.
However, no significant difference was found in the overall acoustic behavior between the clamped-free and supported-
free cases. In the following we consider the clamped-free conditions (18) since they are most common in applications and
can be studied in experiments relatively easily. Our analysis can be easily modified to study the impact of other boundary
conditions.
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The ‘‘forced’’ form of the boundary conditions is obtained by substituting (15) into (18), to yield

ðxoÞx1 ¼ 0 ¼ 0,
qxo

qx1

� �
x1 ¼ 0

¼�
qxG
qx1

� �
x1 ¼ 0

,
q2xo

qx2
1

 !
x1 ¼ L

¼�
q2xG
qx2

1

 !
x1 ¼ L

,
q3xo

qx3
1

 !
x1 ¼ L

¼�
q3xG
qx3

1

 !
x1 ¼ L

: (19)

Eqs. (16), (17) and (19) together with (14) complete the problem formulation for xoðx1,tÞ.

2.3. Analysis

To find the inhomogeneous solution of (16) we define the Fourier time transform g ðx1,oÞ of a function gðx1,tÞ

g ðx1,oÞ ¼ 1

2p

Z 1
�1

gðx1,tÞexp½iot�dt: (20)

The transformed equation is

�rslo
2xoþEIxou

0000�DPðxoÞ ¼ F eðxGÞ, (21)

where primes denote differentiation with x1.
Explicit expression for the Fourier transform of the pressure jump, DPðxoÞ, is obtained by writing the Fourier

decomposition of gwðx1,tÞ in (3) in the form

gwðx1,oÞ ¼ gw0
ðoÞexp½iox1=U� (22)

and following the steps outlined in Section 2.1. This yields [43]

DPðxoÞ ¼
4r0U

pL
½1�CðLo=2UÞ�

ffiffiffiffiffiffiffiffiffiffiffi
L�x1

x1

s Z L

0

ffiffiffiffiffiffiffiffiffi
s

L�s

r
ð�ioxoþUxuoÞdsþ

2r0U

p �

Z L

o

ffiffiffiffiffiffiffiffiffiffiffi
L�x1

x1

s ffiffiffiffiffiffiffiffiffi
s

L�s

r
1

x1�s
þ

io
U

Lðx1,sÞ

" #
ð�ioxoþUxuoÞds,

(23)

where

Lðx1,sÞ ¼
1

2
log

Lx1þLs�2x1sþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ðL�x1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðL�sÞ

p
Lx1þLs�2x1s�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1ðL�x1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðL�sÞ

p
" #

: (24)

The function CðoÞ, known as Theodorsen function [44], is given by

CðLo=2UÞ ¼
Hð2Þ1 ðLo=2UÞ

Hð2Þ1 ðLo=2UÞþ iHð2Þ0 ðLo=2UÞ
, (25)

where Hn
(m) denotes the Hankel function of the mth kind and nth order.

The forcing term in (21) is

F eðxGÞ ¼ rslo
2xG�EIx0000G : (26)

Substitute (13) into (26) to obtain

F eðxGÞ ¼�
G signðoÞ

4piU2
rslo

2x1�EI �
4io3

U3
þ
o4

U4
x1

� �� 	
exp½iox1=U�jojh=U�: (27)

The Fourier transform of the end conditions (19) is

xoð0Þ ¼�xGð0Þ, xuoð0Þ ¼�xuGð0Þ, x00oðLÞ ¼�x00G ðLÞ, x000o ðLÞ ¼�x
000
G ðLÞ: (28)

The solution xoðx1,oÞ of the above problem is obtained numerically by the Chebyshev collocation method [45]. Once
calculated, the ‘‘self’’ deflection of the sheet is given by the inverse Fourier transform

xoðx1,t�x1=UÞ ¼

Z 1
�1

xoðx1,oÞexp½�iot�do: (29)

In practice, the infinite integral in (29) is confined to an integral over a finite interval. This is owing to the exponential
decay of the integrand at large frequencies, resulting from the exponential dependence (� exp½�jojh=U�) of the forcing
term (27).

The calculation of the total sheet displacement xðx1,t�x1=UÞ is completed by taking the sum of (29) and (14) in (15).

3. Acoustic radiation

The acoustic pressure is given in the linearized approximation by the sum of four source-term contributions [46,47]

pðx,tÞ ¼ px1
ðx,tÞþpx2

ðx,tÞþpG1
ðx,tÞþpG2

ðx,tÞ: (30)
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In (30),

px1
ðx,tÞ ¼ r0

q
qt

Z 1
�1

I
Sp

v?ðy,tÞGaðx,y,t�tÞdSðyÞdt (31)

and

px2
ðx,tÞ ¼ �r0

Z 1
�1

Z
Vw

ðxw �UÞ � rGaðx,y,t�tÞd3y dt (32)

are the pressure fluctuations resulting from the sheet motion and the outcome release of trailing-edge vorticity,
respectively. Also appearing in (30) is

pG1
ðx,tÞ ¼�r0

Z 1
�1

Z
VG

ðxG � UÞ � rGaðx,y,t�tÞd3y dt, (33)

expressing the pressure perturbation produced by the interaction of the incident line vortex and the sheet, and its outcome
trailing-edge vortex pressure contribution

pG2
ðx,tÞ ¼�r0

Z 1
�1

Z
Vg

ðxGv
� UÞ � rGaðx,y,t�tÞd3y dt: (34)

In (31)–(34), Sp is the sheet surface, v?ðy,tÞ is the normal sheet velocity directed into the fluid,

v?ðy,tÞ ¼ 7
qx
qt
¼ 7

qxo

qt
7

qxG
qt

on y2 ¼ 70, (35)

and Gaðx,y,t�tÞ is the acoustic Green’s function having a vanishing normal derivative on the undisturbed sheet. The
volumes Vw and VG denote the fluid regions occupied by the trailing-edge wake and the line vortex, respectively, and xGv

is
the vortex-induced trailing-edge vorticity (cf. (3))

xGv
¼ k̂dðy2ÞgGv

ðy1,tÞ: (36)

When the Mach number based on the mean stream velocity is small enough that the sheet is acoustically compact, the
compact approximation of Green’s function [46,47]

Gaðx,y,t�tÞ ¼ 1

4pjX�Yj
d t�t� jX�Yj

c0

� �
(37)

is applied to evaluate the far-field acoustic radiation. Here X(x) and Y(y) are the Kirchhoff vectors for the sheet and c0 is the
speed of sound. We approximate Y(y) by the Kirchhoff vector for a strip

YðyÞ ¼ y1,Re �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1�

L

2
þ iy2

� �2

�
L2

4

s2
4

3
5,y3

0
@

1
A: (38)

In what follows we focus on the far field (jXj � jxj-1) radiation and approximate the above Gaðx,y,t�tÞ by

Gaðx,y,t�tÞ � 1

4pjxjd t�t� jxj
c0

� �
þ

x � Y

4pc0jxj
2

q
qt

d t�t� jxj
c0

� �� 	
, jxj-1: (39)

Note that while the analysis of the dynamical problem in Section 2 is strictly two-dimensional, the evaluation of the
sound radiation is based on a three-dimensional formulation. This is made consistent by assuming a finite sheet span lbL

(see the beginning of Section 2) and neglecting any inhomogeneities in the spanwise direction caused by the sheet edges.
Consequently, the description of the sheet motion is assumed to be independent of the spanwise location and any
integration along the y3-direction of the sheet in the acoustic problem is replaced by multiplication with its span l. The
counterpart two-dimensional acoustic problem for a rigid plate, where the y3-source coordinate extends to infinity, was
studied by Howe in Refs. [26,46,47]. The results presented in Section 4.2.1 show that the present and Howe’s calculation
yield similar descriptions for the acoustic field generated in the rigid-plate case.

3.1. The sheet-motion sound

The ‘‘sheet-motion sound’’ corresponds in the following to the pressure fluctuations resulting directly from the sheet
motion and its outcome trailing-edge wake,

pxðx,tÞ ¼ px1
ðx,tÞþpx2

ðx,tÞ: (40)

To calculate px1
ðx,tÞ, substitute (39) into (31) to obtain

px1
ðx,tÞ �

r0

4pjxj
q
qt

I
Sp

v?ðy,½t�ÞdSðyÞþ
r0xj

4pc0jxj
2
�
q2

qt2

I
Sp

v?ðy,½t�ÞYjðyÞdSðyÞ, (41)
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where ½t� ¼ t�jxj=c0 denotes the acoustic retarded time. The first integral, representing a monopole, vanishes because the
volume of the sheet is constant. The leading order of the acoustic far field is therefore of a dipole type, determined by the
second integral. Along the sheet y2 ¼ 70, dS¼ dy1dy3, 0ry1rL and 0ry3r l. Substitute (38) into (41) to obtain

px1
ðx,tÞ �

r0lx2

2pc0jxj
2

q2

qt2

Z L

0
v?ðy1,½t�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ðL�y1Þ

p
dy1: (42)

Substituting (35) and the definition x2 ¼ jxjcosy (with 0ryrp indicating the observer direction) into (42) yields

px1
ðjxj,y,tÞ �

r0lcosy
2pc0jxj

q3

qt3

Z L

0
xðy1,½t�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ðL�y1Þ

p
dy1: (43)

To calculate px2
ðx,tÞ, substitute (3) together with the inverse Fourier transform of (22) into (32) and expand for jxj-1.

Following a procedure similar to the one carried out for px1
ðx,tÞ, obtain

px2
ðjxj,y,tÞ � �

r0Ulcosy
2pc0jxj

q
qt

Z 1
�1

gw0
ðoÞe�io½t�

Z 1
L

qY2

qy2

� �
y2 ¼ 0

exp
ioy1

U

� 	
dy1 do, (44)

where gw0
ðoÞ is determined from the satisfaction of the Kutta condition at the free end [43],

gw0
oð Þ ¼

8

Z L

0

ffiffiffiffiffiffiffiffiffi
s

L�s

r
½ioxðs,oÞ�Uxuðs,oÞ�ds

pL½Hð2Þ1 ðLo=2UÞþ iHð2Þ0 ðLo=2UÞ�
: (45)

Making use of (38) we find

qY2

qy2

� �
y2 ¼ 0

¼
y1�L=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y1ðy1�LÞ

p , (46)

and the y1-integration in (44) yieldsZ 1
L

qY2

qy2

� �
y2 ¼ 0

exp
ioy1

U

� 	
dy1 ¼�

pL

2
exp

iLo
2U

� 	
Hð1Þ1

Lo
2U

� �
: (47)

Substitute (47) and (45) into (44) to obtain

px2
ðjxj,y,tÞ ��

ir0Ulcosy
pc0jxj

Z 1
�1

oHð1Þ1 ðLo=2UÞ

Hð2Þ1 ðLo=2UÞþ iHð2Þ0 ðLo=2UÞ
exp �io ½t��

L

2U

� �� 	Z L

0

ffiffiffiffiffiffiffiffiffi
s

L�s

r
½ioxðs,oÞ�Ux uðs,oÞ�ds do: (48)

The total sheet-motion acoustic pressure (40) is given by the sum of (43) and (48).

3.2. The incident-vortex sound

The ‘‘incident-vortex sound’’ corresponds in the following to the pressure perturbations caused by the vortex
interaction with the unperturbed sheet and the subsequent release of trailing-edge vorticity,

pGðx,tÞ ¼ pG1
ðx,tÞþpG2

ðx,tÞ: (49)

To evaluate pG1
ðx,tÞ and pG2

ðx,tÞ, start by expressing xG and xGv
in (7) and (36) as linear arrays of harmonic line

vortices,

xG ¼�
G

2pU
k̂

Z 1
�1

dðy2�hÞexp io y1

U
�t


 �h i
do (50)

and

xGv
¼ k̂

Z 1
�1

dðy2ÞgG0
ðoÞexp io y1

U
�t


 �h i
do: (51)

The trailing-edge circulation per unit length gG0
ðoÞ is determined by the Kutta condition applied to the velocity field

induced by the line vortex motion over the sheet [26]

gG0
ðoÞ ¼ G signðoÞ

pU
exp �

jojh
U

� 	
J0ðoL=2UÞþ iJ1ðoL=2UÞ

Hð1Þ0 ðoL=2UÞþ iHð1Þ1 ðoL=2UÞ
, (52)

where Jn are Bessel functions of the first kind and nth order. Substitution of (50) and (51) into (33) and (34), respectively,
together with the far-field approximation of Green’s function (39), yield

pG1
ðx,tÞ ��

ir0Glcosy
8p2c0jxj

Z 1
�1

oe�io½t� do
Z 1
�1

qY2

qy2

� �
y2 ¼ h

exp
ioy1

U

� 	
dy1 (53)
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and

pG2
ðx,tÞ �

ir0Ulcosy
2pc0jxj

Z 1
�1

ogG0
ðoÞe�io½t�do

Z 1
L

qY2

qy2

� �
y2 ¼ 0

exp
ioy1

U

� 	
dy1: (54)

The y1-integrals in (53)–(54) can be calculated explicitly using (47) and contour integration. Substituting (52) into (54), the
resulting o�integral expressions for pG1

and pG2
are

pG1
ðjxj,y,tÞ �

ir0GlLcosy
8pc0jxj

Z 1
�1

o signðoÞJ1
oL

2U

� �
exp �io ½t��

L

2U

� �
�
jojh

U

� 	
do (55)

and

pG2
ðjxj,y,tÞ ��

ir0GlLcosy
8pc0jxj

Z 1
�1

o signðoÞ J0ðoL=2UÞþ iJ1ðoL=2UÞ

Hð1Þ0 ðoL=2UÞþ iHð1Þ1 ðoL=2UÞ
Hð1Þ1

oL

2U

� �
exp �io ½t��

L

2U

� �
�
jojh

U

� 	
do: (56)

The total incident-vortex acoustic pressure (49) is given by the sum of (55) and (56).
4. Results

4.1. Dynamical response

A non-dimensional representation of the problem is obtained by normalizing distances with the sheet length L and time
with the convective time L/U. The problem is then governed by four non-dimensional parameters,

m¼ rsl
r0L

, a¼ U

Ub
, R¼

h

L
and g¼ G

UL
, (57)

corresponding, respectively, to the normalized sheet mass density, wind speed (with Ub ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rslL2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
El2=12rsL

2ð1�s2Þ

q
being a characteristic bending wave speed), vortex–body distance and vortex strength. In consistence with our linear
theory we focus on the case of a weak vortex (g51) and fix g¼ 0:1. Note that the sheet displacement is linear in g and
results for other values of g51 can be obtained by simple manipulation of the data presented below. For later reference we

focus on a parameter combination typical for insect wings, and take rs � 1100 kg=m3, l=L� 5� 10�3, E� 100 MPa and

s� 0:3 [40,42]. Substituting these together with the value of air density r0 � 1:2 kg=m3 into m and a in (57) yield m� 4:5

and a�U=0:45 (U measured in SI units). This can be considered as a limit case of a very thin and flexible sheet; it should be
noted, however, that similar qualitative results to those presented below are obtained for stiffer sheets with larger

thickness ratios l=L.
Our objective is to study the motion of the body forced by the incident line vortex. We therefore focus on conditions

where the unforced flat sheet is stable to exclude any non-linear effects arising from coupling between the homogeneous
and inhomogeneous sheet responses. The unforced sheet response has been studied in several works, both experimentally
[3,11] and numerically [10–17]. For completeness, we calculated the critical conditions for instability according to our
model. We skip the details of calculation here, as they are not the main focus of our work. Typically, the onset of sheet
motion is characterized by a ‘‘neutral surface’’, marking the critical value of normalized wind speed ac ¼ acðm,Loc=UÞ,
above which sheet flapping starts. Fig. 2 presents the projections of the calculated neutral surface on the ðm,aÞ (Fig. 2a) and
ðm,Lo=UÞ ( Fig. 2b) planes. According to our calculation, at m¼ 4:5 instability sets in for ac � 6:5 at a critical frequency of
Loc=U � 2:97. In what follows, we focus on subcritical conditions (aoac) and present results for a¼ 3,5,5:9 and 6.3,
marked by the circle, cross, triangle and square, respectively, in Fig. 2a. In reference to the above value of Ub � 0:45 m=s,
these values of a correspond to a wind speed of Uo2:9 m=s, consistent with the low-Mach assumption set for the
calculation of the sound radiation.

Before we turn to describe the forced sheet motion, some discussion of the expected behavior is in place. Schematically,
we may write the self-induced plate motion xo in the form

xoðx1,t�x1=UÞ ¼

Z 1
�1

F e0
ðx1,oÞexp½�ioðt�x1=UÞ�jojh=U�do

DðoÞ , (58)

where F e0
ðx1,oÞ is the function multiplying the exponent in (27), and DðoÞ represents the dispersion relation

characterizing the unforced sheet motion. While (58) may not be mathematically exact (owing to the x1-dependence of
the pressure jump operator in (21)), it gives some qualitative prediction of the expected results. Specifically, when the
vortex is located at large distances from the sheet (jx1�Utj-1), the value of (58) is dominated by residue contributions
from the poles of the integrand (i.e., the zeros of DðoÞ). Denoting the least stable pole by O¼Orþ iOi and recalling that we
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focus on subcritical conditions (Oio0), we find that

xoðx1,t�x1=UÞ �
zoexp½iOrðx1=U�tÞ�Oiðx1=U�tÞ�jOjh=U�, x1�Ut-�1,

0, x1�Ut-þ1,

(
(59)

where zo is determined by the residue of the integrand at the pole. The oscillatory motion at late times is therefore
governed by the unforced eigenvalue frequency Or and decay rate Oi, while it vanishes at early times. Moreover,
the late-time resonance behavior predicted by (59) is expected to decay slower (and therefore to extend over
a longer period of time) at subcritical conditions closer to the critical conditions of Fig. 2, owing to the decreasing value
of jOij.

Fig. 3 presents the time variation of the free-end displacement, xðx1=L¼ 1,tÞ, for m¼ 4:5, R=1 and g¼ 0:1. The results are
calculated at various subcritical values of a, corresponding to the points marked in Fig. 2a. The free-end has been chosen to
represent the entire sheet motion. Similar results with reduced amplitudes were found at other points along the filament.
At the lowest value of a presented (a¼ 3, Fig. 3a), the conditions are much below critical (see the cross in Fig. 2a). As a
result, the value of jOij is too large to allow for any significant oscillations. At early times (Ut=Lt0), the displacement is
small and negative in accordance with the clockwise velocity field induced by the vortex. Then, at 0tUt=Lt5, the close-
field interaction between the vortex and the filament, not captured by (59), is reflected through a non-monotonic rapid
change in the free-end displacement. At later times (Ut=L\5) the far-field approximation is recaptured and the sheet
resumes its initial flat state.

Qualitatively different results are presented in Fig. 3b–d, where larger values of a are considered. Here, the late-time
oscillatory motion of the sheet is clearly observed. The amplitude of oscillations increases with increasing a towards
ac � 6:5, resulting from the decreasing value of jOij. The frequency Or of oscillations, reflecting the excitation of a
resonance mode at the sheet least stable eigenmode, varies from LOr=U � 3:89 at a¼ 5, through LOr=U � 3:25 at a¼ 5:9, to
LOr=U � 3:07 at a¼ 6:3. With further increasing a towards ac � 6:5, our results confirm that LOr=U approaches the critical
frequency of Loc=U � 2:97. The close-field interaction of the vortex and the sheet becomes more complex at large a. In
addition, the behavior at early times (Ut=Lt�5) also includes oscillations at similar frequencies. It will be shown that
these vibrations affect the resulting acoustic signature at early times (see Figs. 6 and 7).

To complement the above description, Fig. 4 shows the effect of non-dimensional vortex–body distance R on the free-
end displacement. The results are presented for m¼ 4:5, g¼ 0:1, a¼ 5 and three values of the non-dimensional vortex–
body distance, R¼ 0:5,0:7 and 1. With decreasing R, corresponding to a smaller vertical distance between the vortex and
the body, the amplitude of motion increases while the frequency of oscillations remains nearly constant. This result is in
accordance with the qualitative predictions of (59), where Or is independent of R (since it does not appear in the unforced
sheet problem) and the amplitude of motion is proportional to exp½�jOjR� (the non-dimensional equivalent of
exp½�jOjh=U� in (59)).

In general, it is expected that the dynamical response of the filament should reflect the unforced (homogeneous)
properties of the system. In the present subcritical investigation, the unforced sheet properties are manifested through a
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resonant mode excited by the infinite spectrum of the incident vortex. Owing to the subcritical conditions considered, this
resonance behavior decays to zero at early and late times. This situation is expected to change qualitatively when
considering the forced motion under super-critical (a4ac) conditions, which may require a separate non-linear
investigation.



A. Manela / Journal of Sound and Vibration 330 (2011) 416–430426
4.2. Acoustic radiation

Following the non-dimensionalization introduced in Section 4.1, the normalized acoustic pressure (30) can be written
as the sum of Eqs. (40) and (49),

pxðjxj,y,½t�Þ

r0U2
¼

Mlcosy
2pjxj ½Fx1

ð½~t �ÞþFx2
ð½~t �ÞþFG1

ð½~t �ÞþFG2
ð½~t �Þ�, (60)

where M¼U=c051 are the mean stream Mach number and tildes denote non-dimensional quantities. Appearing in (60) is
the scaled pressure components

Fx1
ð½~t �Þ ¼

d3

d~t
3

Z 1

0

~xð ~y1,½~t �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~y1ð1� ~y1Þ

p
d ~y1, (61)

Fx2
ð½~t �Þ ¼�2i

Z 1
�1

~o

R 1
0

ffiffiffiffiffiffiffiffiffi
s

1�s

r
½i ~o ~x ðs, ~oÞ� ~x uðs, ~oÞ�ds

Hð2Þ1 ð
~o=2Þþ iHð2Þ0 ð

~o=2Þ
Hð1Þ1

~o
2

� �
exp �i ~o ½~t ��

1

2

� �� 	
d ~o, (62)

FG1
ð½~t �Þ ¼

ig
4

Z 1
�1

~o signð ~oÞJ1

~o
2

� �
exp �i ~o ½~t ��

1

2

� �
�j ~ojR

� 	
d ~o (63)

and

FG2
ð½~t �Þ ¼ �

ig
4

Z 1
�1

~o sign ð ~oÞ J0ð ~o=2Þþ iJ1ð ~o=2Þ

Hð1Þ0 ð
~o=2Þþ iHð1Þ1 ð

~o=2Þ
Hð1Þ1

~o
2

� �
exp �i ~o ½~t ��

1

2

� �
�j ~ojR

� 	
d ~o (64)

originating from (43), (48), (55) and (56), respectively.

4.2.1. Incident-vortex sound

We start by examining the normalized pressure FG ¼ FG1
þFG2

generated by the interaction of the vortex with the
undisturbed sheet. This can be regarded as a limit case of a very ‘‘heavy’’ ðmb1Þ or ‘‘stiff’’ ða51Þ sheet, where the vortex
effects the sound radiation only through the release of trailing-edge vortices from the sheet free end. In this case both
Fx1

and Fx2
vanish (as both x and its derivatives become negligibly small) and the only contributions to the sound arise from

FG1
and FG2

.
Fig. 5 presents the retarded-time dependence of the scaled pressure components FG1

and FG2
(Fig. 5a, c) and their sum FG

(Fig. 5b, d) for g¼ 0:1 and two vortex–plate distances, R=0.5 (Fig. 5a, b) and R¼ 1 (Fig. 5c, d). In all cases FG1
and FG2

vanish
when the vortex is located upstream (U½t�=Lo�3 in retarded-time units), consistent with the weak vortex–structure
interaction at this stage. For R=0.5, as the incident vortex approaches the sheet leading-edge (at U½t�=L� 0), the pressure
component FG1

, associated with the direct vortex–body interaction, decreases sharply (solid line in Fig. 5a).
Simultaneously, the associated trailing-edge wake component FG2

increases, acting to reduce the pressure fluctuation
generated by the direct interaction. This minimization of FG1

is only partial: the vortex is located relatively far upstream
(x1=L� 0) from the sheet trailing-edge (x1=L¼ 1) and the release of trailing-edge vortices does not suffice for complete
sound cancellation. The effect of trailing-edge vortices becomes more pronounced when the vortex approaches x1=L¼ 1:
FG1

and FG2
nearly cancel out each other, leading to vanishingly small pressure fluctuations for U½t�=LZ1. This

can be verified analytically by calculating the R51 approximations of FG1
and FG2

in (63) and (64), using the method of
stationary phase [26]. Note that at the higher R¼ 1 case (Fig. 5c, d), significantly lower pressure levels occur and the
acoustic signal extends over a wider time interval, owing to the less singular character of vortex–body interaction in
this case.

Similar results to those in Fig. 5 were reported in Refs. [26,46,47], where a two-dimensional calculation of the acoustic
field generated by the interaction between a line vortex and a rigid plate with infinite span was carried out (cf. Fig. 3.3.2 in
Ref. [46]). In this respect, the present finite-span calculation is described mainly for validation of our theory and for easy
reference to the following sheet-motion radiation analysis.

4.2.2. Sheet-motion sound

Fig. 6 shows the retarded-time dependence of the normalized acoustic pressure generated by the direct sheet motion
Fx1

, its accompanying trailing-edge wake component Fx2
and their sum Fx ¼ Fx1

þFx2
for m¼ 4:5, g¼ 0:1 and a¼ 5 (denoted

by the circle in Fig. 2a). As in Fig. 5, two values of the non-dimensional vortex–sheet vertical distance R are presented:
R=0.5 (Fig. 6a, b) and R=1 (Fig. 6c, d).

The total sheet-motion waveform Fx (Fig. 6b, d) is closely correlated to the forced motion presented in Section 4.1 and
Fig. 4. At early times prior to the passage of the vortex above the sheet the acoustic signal vanishes. Small-amplitude
oscillations are observed as the vortex approaches the sheet in the R¼ 0:5 case (Fig. 6b at U½t�=Lo0). These oscillations
originate from the small (nearly invisible) counterpart forced-motion fluctuations (see the dashed line in Fig. 4 at Ut=Lo0).
The acoustic signal undergoes rapid variations at ‘‘intermediate times’’, when the vortex passes above and close to the
sheet (0tU½t�=Lt5). These variations occur primarily owing to the trailing-edge wake component Fx2

(see below). At later
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times (U½t�=L\5), the acoustic pressure follows the resonance-motion behavior and is dominated by constant-frequency
oscillations at the resonance frequency LOr=U � 3:89 found in Fig. 4. The amplitude of these oscillations decays with
increasing time, in accordance with the qualitative prediction of Eq. (59).

The decomposition of Fx into Fx1
and Fx2

in Fig. 6a and 6c reveals an interesting feature: while Fx1
is responsible mainly

for the late-time fluctuations, the trailing-edge wake component Fx2
is the dominant source of sound at intermediate times,

when ‘‘close-field’’ sheet–vortex interactions take place. In contrast to the mechanism of trailing-edge noise cancellation
found for a rigid plate (see Section 4.2.1), an opposite effect is revealed here: the trailing-edge component adds to the direct
motion signal, resulting in increasing noise levels that extend over a longer period of time (see also Fig. 7). Our numerical
calculations indicate that the increase in Fx2

at intermediate times stems from the relatively large values of trailing-edge
vortex strength gw0

. Typically, when the vortex passes close to the sheet, the largest trailing-edge deflections occur. When
these deflections are transmitted into sound, they are amplified through the square-root singularity of the s-integrand in
(62). Physically, this is reflected through an increased release of trailing-edge vorticity (see (45)), which magnifies the
relative effect of Fx2

.
Comparison between Figs. 5 and 6 presents two main differences between incident-vortex and sheet-motion sound:

first, the sheet-motion signature is oscillatory, resulting from the excitation of the sheet resonance mode; second, the
sound-motion noise extends over a time interval much longer than the incident-vortex signal. These differences become
more evident with increasing a towards ac � 6:5. To demonstrate that, Fig. 7 shows the sheet-motion acoustic signature at
m¼ 4:5, R=1 and a¼ 5:9 (denoted by the triangle in Fig. 2). Owing to the larger value of a, the effect of resonance becomes
more distinct, leading to sound levels larger than in the a¼ 5 case (cf. Fig. 6c, d). In particular, the trailing-edge pressure
contribution Fx2

becomes larger at both early and late times. This trend continues with increasing a towards ac � 6:5,
where px2

becomes the main source of sound at all times. A similar finding was obtained in the study of the unforced flag
sound [14], where the radiated acoustic field at critical conditions was dominated by the trailing-edge noise component.
The mechanism here is similar to the one described above at intermediate times: at near-critical conditions the amplitude
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of trailing-edge motion increases considerably, causing an increase in the release of trailing-edge vorticity. This increased
vorticity levels, in turn, result in higher values of Fx2

.
To complement the examination of sheet-motion pressure signature, Fig. 8 shows the power spectrum magnitude

of Fx for m¼ 4:5, g¼ 0:1, a¼ 5:9 and R¼ 1 (as in Fig. 7). The spectrum is normalized to have a maximum value of unity.
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As expected from the above results, the sheet-motion acoustic pressure is dominated by the resonance frequency
Lo=U � 3:25 found in Fig. 3c. Making use of the velocity-scale U � 2:7 m=s (based on the values of a¼U=Ub ¼ 5:9 and
Ub � 0:45 m=s estimated in the beginning of Section 4.1) and taking L� 2 cm (typical chord size of insect wing), we find
that the acoustic field in this case is dominated by sound of frequency o=2p� 70 Hz. Further investigation is required to
study the acoustic field at higher supercritical values of a, where it is expected that the acoustic signature will become
more complex and may include additional higher-frequency sound components.
5. Conclusion

We studied the motion and sound generated by the linearized interaction between a thin flexible sheet and an incident
line vortex convected in a uniform stream. Analysis of the dynamical problem showed that the passage of the vortex above
the sheet excites a resonance mode of motion, where the sheet oscillates at its least stable eigenmode. The magnitude of
sheet motion decreases as the vortex is convected away from the sheet, in accordance with the decay rate of the respective
eigenvalue.

The acoustic radiation in the compact-sheet case was formulated as a superposition of the ‘‘incident-vortex noise’’,
resulting mainly from the interaction of the line vortex with the sheet end points, and the ‘‘sheet-motion noise’’, generated
by the sheet motion. The satisfaction of the Kutta condition in each case revealed two opposite effects of trailing-edge
vortices on sound production: while these vortices reduce the direct vortex–body interaction noise, they extend and
amplify the sheet-motion sound radiation. The latter becomes increasingly dominant as the system approaches its critical
conditions for instability, where the effect of resonance becomes more pronounced. Sheet-motion sound was found to be
well correlated with the dynamical response of the structure. It is worthwhile to note that sound radiation of a resonance
type, similar to the one found here, was also found by Howe in Ref. [34] (see Fig. 4 therein). In his work, the sound
produced by the interaction of a line vortex with a spring-supported rigid plate was analyzed. Yet, the comparison
between the two works can only be qualitative, owing to the different geometrical setups and boundary conditions
considered.

Our analysis has focused on a case where the unforced sheet does not deflect; in other words, on conditions where the
sheet motion is driven entirely by the incident vortex. The assumption made on the low strength of the vortex (g51)
enabled the use of superposition to describe the acoustic radiation as a sum over the various pressure contributions (30).
A desirable extension of the present theory would therefore be an examination of the acoustic field at critical and
supercritical conditions, where the homogeneous sheet response is not trivial, or in cases where the incident-vortex
strength is large. Such analysis would require investigation of the non-linear problem, including a full coupling between
the incident-vortex motion and sheet deflection. Additional study is also required for the extension of the present theory to
the analysis of insect-flight sound. Apart from considering large-amplitude non-linear motion, such an extension may also
incorporate the effect of active actuation of the structure (equivalent to active flapping of an insect wing), as well as
incorporation of three-dimensional effects.
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