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using the frequency-domain formulations based on discrete Fourier transform (DFT)

data, this new approach uses the time-domain measurements directly to estimate the
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1. Introduction

The Volterra series model, first proposed by Volterra [1], is a direct generalization of the linear convolution integral and
provides an intuitive representation in a simple and easy to apply way. Volterra theory quickly received a great deal of
attention in the field of electrical engineering, mechanical engineering, and later in the biological field, as a powerful
approach for modeling nonlinear system behaviors. From the late 1950s, there has been a continuous effort in the
application of Volterra series to a nonlinear systems theory. Summaries of major contributions in the application of
Volterra series modeling for the representation, analysis, and design of nonlinear systems can be found in [2–5].

The Volterra series is associated with the so-called weakly nonlinear systems, which can be well described by the first
few kernels with the higher order kernels falling off rapidly. The estimation of Volterra kernels in the time-domain has
been studied in a specific form [6]. Recently, the problem of estimating the Volterra kernels for special classes of nonlinear
system, Wiener–Hammerstein systems, was also studied [7].

The frequency-domain version of the Volterra kernels, called generalized frequency response functions (GFRFs), which
can be obtained by taking the multiple Fourier transform of the Volterra kernels, has also been extensively studied. Usually
people are more interested in frequency-domain Volterra kernels over the time-domain Volterra kernels because the
former have an intuitive interpretation of many important nonlinear phenomena [8]. There are generally two classes
of methods for the estimation of GFRF – parametric and non-parametric methods. For the parametric method, the
input–output data measurements are used to identify a NARMAX model, from which a NARX (Nonlinear AutoRegressive
Moving Average with eXogenous input) model, including purely input–output terms, after discarding the terms associated
with the noise model, can be derived. Then the probing method [9] can be applied on this NARX model to obtain the GFRFs.
The non-parametric method usually makes use of higher order spectral analysis based on the frequency-domain Volterra
model [10–14]. Boyd et al. [15] proposed a non-parametric method of estimating the GFRFs based on the separation of
the contribution of each Volterra kernel, using harmonic inputs. Due to the computational complexity associated with non-
parametric methods, the Volterra kernels had to be restricted to low orders, for example, up to cubic nonlinearities.
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This paper is primarily concerned with the problem of estimating the GFRFs from harmonic input–output data for
quadratically and cubically nonlinear systems. By expanding the algebraic expression of the response analysis in the
frequency-domain, it is shown that the GFRFs can be estimated directly from the input–output time-domain
measurements, which can significantly reduce the length of the data sets needed, compared with previous purely
frequency-domain based methods.

2. Preliminaries

Volterra series modeling has been widely studied for the representation, analysis and design of nonlinear systems. For
an SISO nonlinear system, where u(t) and y(t) are the input and output, respectively, the Volterra series can be expressed as

yðtÞ ¼
X1
n ¼ 1

ynðtÞ ¼
X1
n ¼ 1

Z 1
�1

� � �

Z 1
�1

hnðt1,. . .,tnÞ
Yn

i ¼ 1

uðt�tiÞdti (1)

where hnðt1,. . .,tnÞ is called the ‘nth-order kernel’ or ‘nth-order impulse response function’. If n=1, this reduces to the
familiar linear convolution integral.

The discrete time-domain counterpart of the continuous time-domain SISO Volterra expression (1) is

yðkÞ ¼
X1
n ¼ 1

ynðkÞ ¼
X1
n ¼ 1

X1
�1

� � �
X1
�1

hnðZ1,. . .,ZnÞ
Yn

i ¼ 1

uðk�ZiÞ, k 2 Z (2)

In practice only the first few kernels are used on the assumption that the contribution of the higher order kernels falls
off rapidly. Systems that can be adequately represented by a Volterra series with just a few terms are called weakly
nonlinear systems.

For a weakly nonlinear system up to third-order Volterra series representation, the frequency-domain expression of the
discrete time Volterra model (2) is given as

YðoÞ ¼H1ðoÞUðoÞþ
X

p,q

pþq¼o

H2ðp,qÞUðpÞUðqÞþ
X

l,m,n

lþmþn¼o

H3ðl,m,nÞUðlÞUðmÞUðnÞ (3)

where Y(o) and U(o) are the Fourier transforms of the output response and input, respectively, and Hnðo1,. . .,onÞ is called
the nth order GFRF which is obtained by taking the multidimensional Fourier transform of hn(U):

Hnðo1,. . .,onÞ ¼

Z 1
�1

� � �

Z 1
�1

hnðt1,. . .,tnÞexpð�jðo1t1þ � � � þontnÞÞdt1,. . .,dtn (4)

The GFRFs represent an inherent and invariant property of the underlying system, and have proved to be an important
analysis and design tool for characterizing nonlinear phenomena.

In practice, by taking into account the output measurement noise (generally zero-mean white noise), (3) is replaced by

~Y ðoÞ ¼ YðoÞþeðoÞ (5)

where Y(o) is in the form of (3).
The excitations used in the application of non-parametric methods can be either Gaussian white noise or non-Gaussian

harmonic inputs. For instance, Ref. [12] investigated the problem of estimation of GFRFs and system identification of a
cubically nonlinear system based on (5), subject to a non-Gaussian input. Although (5) is nonlinear between the spectrum
of the measured input/output u(k) and y(k), i.e., U(o) and Y(o), it is linear between Y(o) and the unknown GFRFs H1(U),
H2(U), and H3(U), and the standard least squares type algorithms can be readily applied to obtain different orders of transfer
functions. The possible disadvantages of the above purely frequency-domain based approaches are that large data sets are
often needed and also the frequency-domain noisy term e(o), obtained from time-domain white Gaussian noise e(k), may
no longer be white, potentially resulting in bias in the estimates obtained from a least squares procedure.

Alternatively, the steady-state response of the nonlinear system that can be adequately represented by up to third-
order Volterra kernels, excited by a harmonic signal at frequency o, is given [2] by

yðkÞ ¼ ŷðkÞþeðkÞ ¼ ARe H1ðoÞejok
n o

þ2
A

2

� �2

Re H2ðo,oÞej2ok
n o

þ2
A

2

� �2

Re H2ðo,�oÞ
� �

þ2
A

2

� �3

Re H3ðo,o,oÞej3ok
n o

þ6
A

2

� �3

Re H3ðo,o,�oÞejok
n o

þeðkÞ (6)

where A is the amplitude of the input signal and e(k) is a zero-mean Gaussian white noise. ‘Re’ represents the real part of a
complex number.

Eq. (6) forms the basis of the current study which suggests an alternative and simple non-parametric approach of
estimating GFRFs directly from noisy time-domain data. The study begins with quadratic nonlinear systems in Section 3,
followed by cubic nonlinear systems in Section 4.
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3. Estimation of frequency response functions of quadratically nonlinear systems

Because it is the simplest special case of the finite Volterra series model, the quadratic Volterra model class has been
studied fairly extensively.

By considering the first two Volterra kernels in (6), the output response y(k) can be expressed as

yðkÞ ¼ ŷðkÞþeðkÞ ¼ ARe H1ðoÞejok
n o

þ2
A

2

� �2

Re H2ðo,oÞej2ok
n o

þ2
A

2

� �2

Re H2ðo,�oÞej0k
n o

þeðkÞ (7)

Defining

H1ðoÞ ¼ R1ðoÞþ jI1ðoÞ (8)

where R1(o) and I1(o) are the real and imaginary parts of H1(o), respectively. For simplicity, R1(o)and I1(o) will be
written in abbreviated form as R1 and I1.

Then the first term in the right-hand side of (7) can be expanded as

ARefH1ðoÞejokg ¼ ARef½R1þ jI1�½cosðokÞþ jsinðokÞ�g ¼ AR1 cosðokÞ�AI1 sinðokÞ (9)

Similarly by defining

H2ðo,oÞ ¼ R2ðo,oÞþ jI2ðo,oÞ (10)

and noting that H2(o,�o)=R0 is a constant, the second and the third terms on the right-hand side of (7) can be expanded
as

2
A

2

� �2

Re H2ðo,oÞej2ok
n o

þ2
A

2

� �2

Re H2ðo,�oÞej0k
n o

¼ 2
A

2

� �2

R2 cosð2okÞ�2
A

2

� �2

I2 sinð2okÞþ2
A

2

� �2

R0 (11)

Combining (9) and (11) yields

yðkÞ ¼ R1 AcosðokÞ
� �

þ I1 �AsinðokÞ
� �

þR2 2
A

2

� �2

cosð2okÞ

" #
þ I2 �2

A

2

� �2

sinð2okÞ

" #
þR02

A

2

� �2

þeðkÞ (12)

For k=1 to N, (12) can be arranged in the matrix form as

Y¼XhþE (13)

where Y¼ ½yðNÞ � � � yð1Þ�T , h¼ ½R1I1R2I2R0�
T , E¼ ½eðNÞ � � � eð1Þ�, and X¼ ½x1x2x3x4x5� with

x1 ¼ ½AcosðoNÞ � � �AcosðoÞ�T

x2 ¼ ½�AsinðoNÞ � � � �AsinðoÞ�T

x3 ¼ 2
A

2

� �2

cosð2oNÞ � � �2
A

2

� �2

cosð2oÞ
" #T

x4 ¼ �2
A

2

� �2

sinð2oNÞ � � � �2
A

2

� �2

sinð2oÞ
" #T

x5 ¼ 2
A

2

� �2

� � �2
A

2

� �2
" #T

(14)

The estimation of the unknown frequency response functions ĥ¼ ½R1I1R2I2R0�
T can now be derived from (13) using a

standard least squares procedure. If the truncation error is sufficiently small, on the assumption that third and higher
orders of Volterra kernels make a negligible contribution to the output, then the estimation ĥ will be unbiased. Unlike the
previous complex estimator based on (5), the new estimator is in the real domain based on time-domain measurements.
The new approach is illustrated using a simulation example.

Consider a system described as

€yþa _yþbyþcy2 ¼ uðtÞ (15)

where uðtÞ ¼ AcosðotÞ.
In the continuous time-domain, the GFRFs can be derived [16] as

H1ðsÞ9s ¼ jo ¼
1

s2þasþb

H2ðs1,s2Þ s1 ¼ jo1

s2 ¼ jo1

¼�cH1ðs1ÞH1ðs2ÞH1ðs1þs2Þ

������� (16)

System (15), which has a quadratic nonlinear term y2, is not a quadratically but infinitely nonlinear system in terms of
the Volterra series representation because the nonlinearity is on the output. However for a considerable range of input
level the system can be adequately represented by up to second-order Volterra kernels, and importantly all the coefficients



Table 1

Estimation of Ĥ1 and Ĥ2 of system (15) using the new approach.

From Eq. (15)—true From new approach

H1(o)=R1+ jI1 �0.6151–0.1262j �0.6100–0.1250j

H2(o,o)=R2+ jI2 0.0038+0.0019 j 0.0043+0.0022j

H2(o,�o)=R0 �0.0394 �0.0397

Table 2
Estimation of the original continuous time system (15) using (17).

a b c

True value 0.2 1.0 0.1

Estimates from new approach 0.2015 0.9867 0.1011
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of the underlying system (15) can be fully characterized by the first two orders of Volterra kernels or the associated
frequency response functions.

To illustrate the new GFRF estimation algorithm, system (15) was excited by a single sinusoidal input at A=2
ando¼ 1:6rad=s for a=0.2, b=1, and c=0.1. A total amount of 2000 input and output data were collected at a sampling
time Ts=0.01 s and a zero-mean white noise was added to the output with SNR=40 dB.

The proposed new procedure (12)–(14) is applied to obtain the Ĥ1and Ĥ2 using a least squares estimator. The results are
shown in Table 1 which are very satisfactory.

To induce a further verification of the accuracy of the above estimation, the original continuous time system
parameters, from a simple quadratic format as in (15), can be extracted from the estimates of Ĥ1 and Ĥ2 in Table 1
using (16), as

â¼
1

o
Im

1

Ĥ1ðoÞ

" #

b̂¼ Re
1

Ĥ1ðoÞ

" #
þo2

ĉ¼
�Ĥ2ðo,�oÞ

Ĥ1ðoÞĤ1ð�oÞĤ1ð0Þ
¼
�b̂Ĥ2ðo,�oÞ
Ĥ1ðoÞĤ1ð�oÞ

(17)

The reconstructed parameters of the continuous time model (15) from the estimates of Ĥ1 and Ĥ2 in Table 1 using (17)
are shown in Table 2, which are very satisfactory compared with the true parameters.

4. Estimation of frequency response functions of cubically nonlinear systems

The literature associated with the cubic Volterra series model is substantially smaller compared with that associated
with the quadratic Volterra model due to the significantly greater complexity induced. In terms of frequency response
function estimation for up to third-order Volterra representation, this procedure is not as straightforward as the quadratic
case in Section 3. In fact, the main complication is that, unlike the quadratic Volterra model case where the first harmonics
in the output are all due to the linear response function, for a cubic Volterra model both first and third-order frequency
response functions make contributions to the first harmonics. Therefore, additional efforts are needed to solve the
separation of contributions between H1 and H3.

First, by defining

H3ðo,o,oÞ ¼ R3ðo,o,oÞþ jI3ðo,o,oÞ (18)

the fourth term in (6) can be expanded as

2
A

2

� �3

Re H3ðo,o,oÞej3ok
n o

¼ 2
A

2

� �3

R3 cosð3okÞ�2
A

2

� �3

I3 sinð3okÞ (19)

which makes a contribution purely to the third harmonics (3o) in the response.
The problem arises with the fifth term in (6). By defining

H3ðo,o,�oÞ ¼ R31ðo,o,�oÞþ jI31ðo,o,�oÞ (20)
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the fifth term in (6) can be expanded as

6
A

2

� �3

Re H3ðo,o,�oÞejok
n o

¼ 6
A

2

� �3

R31 cosðokÞ�6
A

2

� �3

I31 sinðokÞ (21)

which makes a contribution to the first harmonics, mixed up with the contribution from the linear kernel, shown in (9).
The overall expansion of (6) for the first three Volterra kernel terms, by combining (12), (19), and (21), is given as

yðkÞ ¼ AR1þ6
A

2

� �3

R31

" #
cosðokÞþ AI1þ6

A

2

� �3

I31

" #
�sinðokÞ
� �

þR2 2
A

2

� �2

cosð2okÞ

" #
þ I2 �2

A

2

� �2

sinð2okÞ

 !

þR02
A

2

� �2

þ2
A

2

� �3

R3 cosð3okÞ�2
A

2

� �3

I3 sinð3okÞþeðkÞ (22)

It is possible to define

AR1þ6
A

2

� �3

R31 ¼ R

AI1þ6
A

2

� �3

I31 ¼ I (23)

Then for k=1–N, (22) can be arranged in the matrix form as

Y¼XhþE (24a)

where Y¼ ½yðNÞ � � � yð1Þ�T , h¼ ½RIR2I2R0R3I3�
T , E¼ ½eðNÞ � � � eð1Þ�, and X¼ ½x1x2x3x4x5x6x7� with

x1 ¼ ½cosðoNÞ � � � cosðoÞ�T

x2 ¼ ½�sinðoNÞ � � � �sinðoÞ�T

x3 ¼ 2
A

2

� �2

cosð2oNÞ � � �2
A

2

� �2

cosð2oÞ
" #T

x4 ¼ �2
A

2

� �2

sinð2oNÞ � � � �2
A

2

� �2

sinð2oÞ
" #T

x5 ¼ 2
A

2

� �2

� � �2
A

2

� �2
" #T

x6 ¼ 2
A

2

� �3

cosð3oNÞ � � �2
A

2

� �3

cosð3oÞ
" #T

x7 ¼ �2
A

2

� �3

sinð3oNÞ � � � �2
A

2

� �3

sinð3oÞ
" #T

(24b)

from which the unknown frequency response function data ĥ¼ ½R I R2 I2 R0 R3 I3�
T can be derived using a standard Least

Squares procedure. In order to separate in (23) the R1 and R31 from R, and the I1 and I31 from I, two tests at different input
levels, denoted by A(1) and A(2), at the same frequency, are required to obtain two sets of estimates, R(1), R(2), and I(1) and I(2),
respectively. This results in the following expressions:

Að1ÞR̂1þ6
Að1Þ

2

� �3

R̂31 ¼ Rð1Þ, Að1Þ Î1þ6
Að1Þ

2

� �3

Î31 ¼ Ið1Þ

Að2ÞR̂1þ6
Að2Þ

2

� �3

R̂31 ¼ Rð2Þ, Að2Þ Î1þ6
Að2Þ

2

� �3

Î31 ¼ Ið2Þ (25)

Then the final estimates of Ĥ1 ¼ R̂1þ jÎ1 and Ĥ3ðo,o,�oÞ ¼ R̂31þ jÎ31 can be calculated from (25) as

R̂1 ¼
6 Að2Þ=2
	 
3

Rð1Þ�6 Að1Þ=2
	 
3

Rð2Þ

Að1Þ6 Að2Þ=2
	 
3

�Að2Þ6 Að1Þ=2
	 
3

R̂31 ¼
Að2ÞRð1Þ�Að1ÞRð2Þ

Að2Þ6 Að1Þ=2
	 
3

�Að1Þ6 Að2Þ=2
	 
3

Î1 ¼
6 Að2Þ=2
	 
3

Ið1Þ�6 Að1Þ=2
	 
3

Ið2Þ

Að1Þ6 Að2Þ=2
	 
3

�Að2Þ6 Að1Þ=2
	 
3

Î31 ¼
Að2ÞIð1Þ�Að1ÞIð2Þ

Að2Þ6 Að1Þ=2
	 
3

�Að1Þ6 Að2Þ=2
	 
3

(26)

The above procedure will be illustrated using the well-known Duffing oscillator.
Consider a Duffing oscillator, with cubic nonlinearity, subject to a sinusoidal excitation as

m €yþc _yþk1yþk3y3 ¼ AcosðotÞ (27)

where m, c, k1, and k3 are the mass, the damping, the linear stiffness, and nonlinear stiffness, respectively. The nonlinear
stiffness parameter k3 in (27) needs to stay small in order to be ‘weakly’ nonlinear for the existence of the Volterra series
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representation. The corresponding GFRFs from (27) are

H1ðsÞ s ¼ jo ¼
1

s2þcsþk1

����
H2ðs1,s2Þ s1 ¼ jo1

s2 ¼ jo2

¼ 0

�������

H3ðs1,s2,s3Þ s1 ¼ jo1

s2 ¼ jo2

s3 ¼ jo3

¼�k3H1ðs1ÞH1ðs2ÞH1ðs3ÞH1ðs1þs2þs3Þ

����������
(28)

System (27) was excited at o=1.5 rad/s and Ts=0.02 s with the parameters

m¼ 1, c¼ 1:5, k1 ¼ 0:5, k3 ¼ 0:1 (29)

The excitation is chosen as AðiÞ cosðotÞ, i¼ 1,2 where A(1)=2 and A(2)=3. A zero-mean white noise was added to each of
the outputs with a SNR=40 dB. The length of the data was 2000. The estimation results for Ĥ1and Ĥ3 using the new
algorithm are given in Table 3.

Again, for the simple cubic format presented in (27), the original continuous time system parameters can be extracted
from Ĥ1 and Ĥ3 using the relationship in (28), as

ĉ¼
1

o
Im

1

Ĥ1ðoÞ

 !

k̂1 ¼ Re
1

Ĥ1ðoÞ

 !
þo2

k̂3 ¼
�Ĥ3ðo,o,�oÞ

Ĥ1ðoÞĤ1ðoÞĤ1ðoÞĤ1ð�oÞ
(30)

which are shown in Table 4. It is clear from Table 4 that again the reconstructed continuous time system parameters,
compared with the true system parameters in (29), are very satisfactory, which further confirms the effectiveness of the
new approach.

In [12], a simulation study on the motion of a simple pendulum (expressed in the form of Duffing’s equation) was
presented using the higher order spectral analysis based approach using (5) to estimate the GFRFs and subsequently the
continuous time equation parameters subject to a single tone sinusoidal input. The Duffing equation was expressed as

€yþa _yþbyþcy3 ¼ AcosðotÞ (31)

where a=3, b=2, and c=�1/3.
For comparison, system (31) was studied using the new approach proposed in this study, with the simulation

parameters o¼ 1rad=s and Ts ¼ p=60, at two different excitations A(1)=1 and A(2)=1.5. 2000 data points were used in each
realization. Three different levels of noise were added to the responses. The estimated final results are listed in Table 5. It
can be seen that the results from the new approach produce slightly more accurate estimates than those in [12] (Section 5)
where a large number of realizations at different amplitude are employed, each of the realization needing 600 segments of
64 data points. This suggests that the proposed new approach is potentially more efficient in terms of data length. This is
likely to be especially useful in situations where it is not possible to obtain a sufficiently large set of data samples such that
conventional frequency-domain methods can be applied. Apart from the large data samples needed, the conventional
Table 3
Estimation of H1 and H3 for the Duffing equation (27) using the new approach.

Eq. (27)—true From new approach

H1(o)=R1+ jI1 �0.2154–0.2769j �0.2159–0.2776j

H3(o,o,o)=R3+ jI3 2.0616e�04–1.7152e�05j 2.011e�04–1.8124e�04j

H3(o,o,�o)=R01+ jI31 0.3729e�03–0.1468e�02j 0.4595e-03–0.1579e�02j

Table 4
Estimation of parameters of original continuous time system (27) using (30).

c k1 k3

True value from (29) 1.5 0.5 0.1

Estimates from (30) 1.4960 0.5037 0.0991



Table 5
Comparison of the estimation of system (31) using the new and the conventional approaches.

Noise level (SNR) (dB) True values of the parameters Estimation results in [12] Estimation result using the new approach

30

a=3 2.939 3.0068

b=2 1.956 1.9911

c=�1/3 N/A
�0.3403

20

a=3 2.939 3.0119

b=2 1.955 1.9836

c=�1/3 N/A
�0.3421

10

a=3 2.940 3.0209

b=2 1.954 1.9703

c=�1/3 N/A �0.3455
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approach involves additional procedures in mapping the time-domain data into the frequency-domain and separating
discrete Fourier transforms at different frequency components, whereas the new approach avoids the frequency-domain
manipulations. The results in Table 5 also suggest that this new approach is quite robust to different levels of white noise.

5. The selection of level of excitation using OLS

The new algorithm introduced in the previous sections is based on the assumption that the underlying system is weakly
nonlinear in the sense that it can be well described by the first few Volterra kernels, with the higher order kernels fading off
rapidly. The accuracy of the results of the new procedure is largely dependant on this assumption as are all other non-
parametric methods, and the significance of the nonlinearity of the system, reflected by the Volterra kernel order, is
associated with the level of the excitation. It is generally agreed that estimating the rapidly decreasing coefficients of a
noisy polynomial is inherently difficult [15, 17–20]. Either under-excitation or over-excitation may result in inaccuracy in
the estimates. It is therefore essential to have a measure that can provide an indication of the order of the Volterra kernels
under certain levels of excitation before the final application of the new algorithm. One possible measure is based on using
the orthogonal least squares method (OLS) [21], which is briefly reviewed below.

Consider a general system expressed by the linear-in-the-parameters model

z¼
XM
i ¼ 1

yipiþe (32)

where yi,i=1,y,M are unknown parameters.
Reformulating Eq. (32) in the form of an auxiliary model yields

z¼
XM
i ¼ 1

giwiþe (33)

where gi,i=1,y,M are the auxiliary parameters and wi, i=1,y,M are constructed to be orthogonal over the data record
such that

XN

t ¼ 1

wjðtÞwkþ1ðtÞ ¼ 0, j¼ 0,1,. . .,k (34)

where N is the length of the data record.
Multiplying the auxiliary model (33) by itself, using the orthogonal property (34) and taking the time average gives

1

N

XN

t ¼ 1

z2ðtÞ ¼
1

N

XN

t ¼ 1

XM
i ¼ 0

g2
i w2

i ðtÞ

( )
þ

1

N

XN

t ¼ 1

e2ðtÞ (35)

Finally define

ERRi ¼

PN
t ¼ 1 g2

i w2
i ðtÞPN

t ¼ 1 z2ðtÞ�1=Nf
PN

t ¼ 1 zðtÞg
2
� 100 (36)

for i=1,2,y,M. The quantity ERRi is called the error reduction ratio and provides an indication of which terms should be
included in the model in accordance with the contribution each term makes to the energy of the dependent variable. Terms
with associated ERR values which are less than a pre-defined threshold value can be considered to be insignificant and
negligible.

For simplicity, the quadratic system (15), with a=0.2, b=1, and c=0.1, was used as an example to illustrate the use of
OLS in the selection of the amplitude of excitation A. Two tests were conducted at different excitation amplitudes
at frequency o=2 rad/s. First, the amplitude of the input was chosen at A=0.3 and the response was corrupted by a



Table 6
Estimation of H1 and H2 of system (15) at A=0.3 using OLS.

Result by Eq. (15)—true Result by OLS ERRi (%)

R1 �0.3275 �0.3276 97.3370

I1 �0.04367 �0.04349 1.6999

R2 6.902e�04 �9.519e�04 1.867e�05

I2 2.275e�04 1.980e�03 7.8622e�05

R0 �0.01092 �0.01459 8.704e�03

Table 7
Estimation of H1 and H2 of system (15) at A=5 using OLS.

Result by Eq. (15)—true Result by OLS ERRi (%)

R1 �0.3275 �0.3246 96.117

I1 �0.04367 �0.04315 1.5499

R2 6.902e�04 5.753e�04 1.892e�03

I2 2.275e�04 2.485e�03 3.437e�04

R0 �0.01092 �0.01096 1.3518
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zero-mean white noise with SNR=40 dB. The OLS was applied to obtain the estimates of linear and quadratic frequency
response functions, together with the values ERRi, shown in Table 6.

It can be seen from Table 5 that at this level of excitation, the contributions by the quadratic term H2, i.e., R2, I2, and R0,
are extremely small compared with the contributions from the linear term. This means that the quadratic kernel
contribution has a very small SNR, consequently the least squares estimation results for the quadratic terms are more
affected by the presence of noise, leading to unreliability in the estimates. The almost negligible sum of ERR of the
quadratic terms, i.e., from terms R2, I2, and R0, suggests that the system can be regarded as linear at this level of excitation,
therefore this can be considered as under-excited.

Now the amplitude of input was chosen at A=5 and again a zero-mean white noise was added to the response with
SNR=40 dB. The OLS results are given in Table 7.

The sum of the values ERRi of all the linear and quadratic terms is 99.0214%, indicating that this system at this
amplitude level can be sufficiently described by up to second-order Volterra kernels. It is also clear by looking at the ERRi

values from Table 7 that the overall contributions by the quadratic terms, especially the R0 term are no longer negligible. As
a result, the accuracy of the estimates of the quadratic response functions becomes very satisfactory, but the accuracy of
the estimates of the linear response function is a little bit poorer compared with the lower excitation result in Table 6.

The above analysis suggests that in real applications of the proposed new approach, a sequential procedure could be
employed, by firstly estimating the linear response function at a relatively low level of excitation, and then estimating the
quadratic frequency response function at a higher level of excitation where the nonlinear part plays a more significant role,
etc. The appropriate choice of the level of excitation in each step can be guided by the values of ERRi.
6. Generalization to multitone inputs

It needs to be pointed out that the approach presented in the above sections can be easily extended to admit 2-tone or
multitone sinusoidal inputs. The complexity, however, will inevitably increase dramatically as the number of the tones and
the order of the nonlinearity grow, like the cases in all other Volterra kernel related estimation problems. For simplicity,
assume the input is a 2-tone signal in the form

uðkÞ ¼
X2

i ¼ 1

Ai cosðoikÞ, o24o140 (37)

and the system can be sufficiently described by first and quadratic Volterra kernels, then the single-tone response
expression (7) can be extended to

yðkÞ ¼
X2

i ¼ 1

Ai RefH1ðoiÞe
joikgþ

X2

i ¼ 1

2
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2

� �2
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n o
þ
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i ¼ 1

2
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2

� �2

Re H2ðoi,�oiÞ
� �

þ4
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2

A2

2

� �
Re H2ðo1,o2Þe

jðo1þo2Þk
n o

þ4
A1

2

A2

2

� �
Re H2ð�o1,o2Þe

jðo2�o1Þk
n o

þeðkÞ (38)

Eq. (38) can be further expanded to a form similar to (12) involving real and imaginary parts of the individual GFRFs,
from which H1(o1), H1(o2), H2(o1,o1), H2(o2,o2), and H2(o1,o2), etc. can be estimated using the least squares procedure
illustrated in Section 3. If the separation of the contributions by H2(o1,�o1) and H2(o2,�o2), which are two d.c.



Fig.1. Response of system (15) under the excitation of a 2-tone input.

Table 8

Estimation of Ĥ1 and Ĥ2 of system (15) using the new approach.

From Eq. (15)—true Estimates from new approach

H1(o1) �0.6151–0.1262j �0.5958–0.1119j

H1(o2) �0.3275–0.0437j �0.3191–0.0418j

H2(o1,o1) 0.0038+0.0019j 0.0052+0.0014j

H2(o2,o2) 0.0007+0.0002j 0.0008+0.0002j

H2(o1,o2) 0.0016+0.0007j 0.0017+0.0008j

H2(�o1,o2) �0.0243+0.0040j �0.0233+0.0025j

d.c. component �0.2892 �0.2784
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components, are of interest, then the 2-tone signal at 2 levels for each frequency will be applied and the similar procedure
like those in (25)–(26) in Section 4 can be followed to separate H2(o1,�o1) and H2(o2,�o2).

System (15) is used as an example to demonstrate the direct estimation of H2(o1,o2), etc. by using a 2-tone input.
System (15), with a=0.2, b=1, and c=0.1, was excited by a 2-tone sinusoidal input in the form of (37) with

A1 ¼ 3:2, o1 ¼ 1:6rad=s and A2 ¼ 4, o2 ¼ 2rad=s. A total amount of 2000 input and output data were collected at a sampling
time Ts=0.01 s and a zero-mean white noise was added to the output with SNR=40 dB.

The observation on the collected response samples, shown in Fig. 1, reveals that the response contains significant noise
and contains a number of frequency components.

The proposed new procedure is applied to obtain the Ĥ1and Ĥ2 using a least squares estimator. The results are shown
in Table 8 which are quite satisfactory. Please note that the d.c. component in Table 7 is the mixed contribution of
H2(o1,�o1) and H2(o2,�o2). A separation of the H2(o1,�o1) and H2(o2,�o2)contribution would require another 2-tone
excitation at different levels.

For a cubically nonlinear systems, a 3-tone excitation can be applied, which will generate a response possessing up to 22
different frequencies at 3 orders of kernels. In order to obtain the full spectrum estimation of GFRFs for a cubically nonlinear
system, at least 3 levels of excitation at each harmonics are needed for the separation of the GFRFs at different orders.
7. Conclusions

A new non-parametric algorithm, which directly uses the time-domain input–output measurements but avoids the
direct differentiation of these data, has been derived to estimate up to the third-order GFRFs and subsequently identify the
associated continuous time model. This is achieved by expanding the algebraic expression in the analysis of the output
response using the real and imaginary parts of each order of Volterra kernels. The new algorithm has the advantage of
admitting smaller data sets than the traditional spectral analysis based frequency-domain non-parametric methods.

Like many other general parameter estimation problems, the accuracy of the estimation of the GFRFs in this new
approach depends on the fact that the level of excitation is appropriate. That is, the relevant order of nonlinearity needs to
be adequately excited. The OLS method has superior numerical properties compared with the ordinary least squares
method, in the sense that it can provide vital information on the suitability of the excitation level, indirectly from the
contribution indicators (ERR) for each Volterra order.

The new approach illustrated using single-tone sinusoidal inputs can be readily extended to accommodate 2-tone or
even multitone inputs, to directly obtain the higher order GFRFs in the full spectrum. Nevertheless in those cases the
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complexity of the procedure will inevitably grow dramatically as the number of tones in the input and the order of Volterra
kernels are increased.

An important aspect of the new method is that the continuous time model can be reconstructed from the estimated
GFRFs. A direct extraction of the continuous time model for the simple low dynamic order system is possible from the
GFRFs at one single frequency point, as illustrated in this paper. When the continuous time model structure is not known a

priori, or is in a more complicated form, this new procedure can be repeated at different excitation frequencies until a
sufficient number of points have been collected, from which the identification of the general form of continuous time
model can be derived using the approach in [22].
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