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a b s t r a c t

This paper presents a novel device capable of generating three-dimensional vibrations

with a single-axis of rotation. The device resembles a vibration motor with an eccentric

weight, but the weight is allowed to move up and down in parallel to the axis of

rotations. While spinning of the eccentric weight causes lateral vibrations, vertical

frequency and magnitude of vertical oscillations can be independently regulated. Since

the vertical natural frequency is sensitive to rotational speeds, maximum vertical

oscillations can be achieved by properly adjusting the rotational speed according to the

excitation frequency. Relations between the excitation torque and the vertical shaking

force are examined using the frequency response for the linearized system. Numerical

simulations on the original nonlinear system are conducted to verify the performance of

vertical oscillations.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration generators such as vibration motors or shakers have been found in various applications for the laboratories,
the industry, and in commercial products. For example, mobile phones use vibration motors to generate the silent ring
tone. In haptic technology, which exploits the sense of touch for tactile feedback, vibrotactile devices are used as
mechanical stimuli to enhance the sense of existence of virtual parts or remote motions [1–4]. Vibrotactile stimulation is
also a tool in neurophysiological research [5]. In industry, vibratory feeders are commonly used in automatic assembly
lines for parts conveyance and alignment [6–9], and other similar applications such as food packaging, precision mixing of
chemical and pharmaceutical ingredients, or material conveying for mineral processing [10].

The vibration motor is a simple electric motor with an eccentric weight; when turning it generates circular oscillations.
Directional vibrations can be produced by a linear actuator such as a voice-coil motor, which operates around its natural
frequency determined by the shaft’s inertia and an installed spring [2,4]. For vibratory bowl feeders, however, neither an
eccentric-weight vibration motor nor a linear voice-coil motor is adequate because the required vibrations are spiral, that
is, a combination of circular and linear (up and down) oscillations. That is why a bowl feeder utilizes rather complicated
mechanism to produce the helical vibrations [11]. The sophisticated velocity fields in the bowl feeders were also
investigated in the literature [7,12,13]. As an alternative to electromagnet-based actuators used in conventional vibratory
feeders, piezoelectric actuators were explored to simplify mechanism design and improve the dynamic response [14,15].

This paper presents a novel mechanism that is capable of generating vertical and horizontal oscillations simultaneously.
The device resembles a vibration motor with an extra degree of freedom for the eccentric weight, which is allowed to move
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up and down freely in parallel to the axis of rotations. While lateral vibrations are generated by turning the weight at a
desired speed, axial vibrations can be excited by applying a periodically varying torque to the rotary shaft. It is thus
possible to produce oscillations of 3-D patterns, such as a spiral, with this single-input device. In addition, both the
frequency and amplitude of axial oscillations can be independently controlled by separately setting the frequency and
peak-to-peak value of the input signal. The device is inspired by the rotational-pendulum vibration absorber presented in
[16], and can be seen as a reverse mechanism of the vibration absorber. While the frequency of vertical oscillations is
determined by the excitation frequency, the magnitude is sensitive to the rotational speed. This is because the natural
frequency for vertical motion is dependent on the rotational speed. This vibration generator may thus operate effectively
over a wide range of frequencies by varying the rotational speed accordingly.

In the next section the 3-D vibration generator will be introduced. The nonlinear dynamic equations are derived using
Lagrange’s equations. Relationship between the excitation torque and the vertical shaking force is analyzed in Section 3 by
studying the frequency response for the linearized system. In Section 4 numerical simulations on the original nonlinear
system are conducted to verify the performance of vertical oscillations. Concluding remarks are given in Section 5.
2. 3-D vibration generator

Fig. 1 compares the construction of a vibratory motor and that of the proposed 3-D vibration generator. The rotational
arm of Fig. 1b is allowed to move freely up and down in parallel to the axis of rotation. The arm’s rotation generates
periodic forces in the lateral directions (FX and FY in Fig. 2). By superposing a periodic signal onto the torque that maintains
the arm at a target speed, one may disturb the rotational speed and excite vertical oscillations for the revolving arm. An
axial shaking force is thus generated as indicated by FZ in Fig. 2. Since the lateral forces are a direct result of the rotation
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Fig. 1. Schematic comparison of a conventional vibration motor (a) and the proposed 3-D vibration generator (b); the rotational arm in the 3-D generator

has an additional freedom of motion.
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Fig. 2. Free body diagram for the 3-D vibration generator. The rotational arm would oscillate up and down when a periodic torque is superposed on the

rotary shaft.
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Fig. 3. Three axes for the moment of inertia.
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and are self-evident, we will focus on the issue of how to excite the vertical oscillations in a way that the axial force can be
effectively generated.

The governing equations for the 3-D vibration generator will be derived using Lagrange’s equation. From Fig. 1b, the
kinetic and potential energy of the system are, respectively, obtained to be

T ¼ 1
2 m0½‘

2 _y
2
þð‘ _fsinyÞ2�þ1

2ðJa
_y

2
þ Jbð

_fcosyÞ2þ Jcð
_fsinyÞ2Þ, (1)

V ¼m0g‘ð1�cosyÞ, (2)

where y is the vertical angle of the rotational arm, _f is the angular speed of rotation, m0 is the mass of the arm, ‘ is the length of
the arm measured from the hinge to the center of mass. As illustrated in Fig. 3, Ja is the moment of inertia about the axis passing
through the center of mass, perpendicular to both the link (connecting the hinge and the center of mass) and the vertical line; Jb
is the moment of inertia about the axis going through the link, and Jc is about the third Cartesian coordinate axis.

Let L¼ T�V . From

d

dt

qL
q _y

� �
�
qL
qy
¼�b0

_y, (3)

where b0 is the damping coefficient for vertical motions, we have

ðm0‘
2þ JaÞ

€yþm0‘gsiny�1
2ðm0‘

2þ Jc�JbÞ
_f

2
sin2y¼�b0

_y: (4)

From

d

dt

qL
q _f

 !
�
qL
qf
¼ u�b1

_f, (5)
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where u is the torque applied to the shaft of rotation and b1 is the rotational damping coefficient, we have

ðm0‘
2þ JcÞð

€fsin2 yþ _f _ysin2yÞþ Jbð
€fcos2 y� _f _ysin2yÞ ¼ u�b1

_f: (6)

To simplify the analysis, in what follows the arm is assumed to be a solid spherical body connected by a massless link to
the spinning shaft. The mass of the solid ball is m0 and the radius is r, and ‘ is now the distance from the hinge to the center
of the ball. For the moment of inertia, we have Ja ¼ Jb ¼ Jc ¼

2
5 m0r2. Eqs. (4) and (6) can thus be expressed to be

m0ð‘
2þ2

5 r2Þ €yþm0‘gsiny�1
2m0‘

2 _f
2

sin2yþb0
_y ¼ 0, (7)

m0‘
2ð €fsin2 yþ _f _ysin2yÞþ2

5m0r2 €fþb1
_f ¼ u: (8)

Equilibrium angles: The equilibrium vertical angle y0 given a constant rotational speed o0 can be determined by setting
€y ¼ _y ¼ 0, y¼ y0 and _f ¼o0 in Eq. (7):

m0‘gsiny0�
1
2m0‘

2o2
0 sin2y0 ¼ 0: (9)

From Eq. (9), we have

siny0 ¼ 0 (10)

or

‘o2
0 cosy0 ¼ g: (11)

A nonzero equilibrium angle can be solved from Eq. (11) to be

y0 ¼ cos�1 g

‘o2
0

, (12)

provided that

o04

ffiffiffi
g

‘

r
(13)

Physically, Eq. (13) means that, in order to reach a nonzero equilibrium angle, the angular speed must be larger than the
radian natural frequency of a corresponding simple pendulum. Since the frequency of lateral oscillations is determined by
the rotational speed, the length of the rotational arm should be chosen according to the desired frequency range: The lower
the frequencies, the longer the length of arm. Furthermore, it will be shown in the next section that, given an excitation
torque, the magnitude of vertical vibrations is sensitive to the rotational speed.
3. Frequency response for vertical oscillations

The relation between a periodic excitation torque on the shaft and vertical oscillations will be studied by examining the
frequency response of the system. For this purpose the nonlinear equations of Eqs. (7) and (8) are first linearized about the
equilibrium angle (y¼ y0) corresponding to a rotational speed o0 that is larger than

ffiffiffiffiffiffiffiffi
g=‘

p
. The input variable will be a

harmonic torque superposed on the constant level that maintains the spinning arm at a constant speed, and the output
variable will be the axial periodic force exerted on the support (FZ) resulted from vertical oscillations of the arm.

Linearization about the equilibrium angle and speed: Denote the deviations about the equilibrium associated with y, _f
and u to be, respectively, q, p and v such that

y¼ y0þq, (14)

_f ¼o0þp, (15)

u¼ u0þv, (16)

where u0 is the torque required to keep the arm at the constant rotational speed o0. From Eq. (8) we have

u0 ¼ b1o0: (17)

Substitute Eqs. (14)–(17) into Eqs. (7) and (8) and we have

m0ð‘
2þ2

5 r2Þ €qþm0‘gsinðy0þqÞ�1
2m0‘

2ðo0þpÞ2 sin2ðy0þqÞþb0 _q ¼ 0, (18)

m0‘
2ð _psin2

ðy0þqÞþðo0þpÞ _qsin2ðy0þqÞÞþ2
5m0r2 _pþb1ðo0þpÞ ¼ b1o0þv: (19)
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The nonlinear terms in Eq. (18) are each expanded to be

m0‘gsinðy0þqÞ ¼m0‘gsiny0þm0‘gqcosy0þH:O:T:; (20)

�1
2 m0‘

2ðo0þpÞ2 sin2ðy0þqÞ ¼�1
2m0‘

2ðo2
0 sin2y0þ2o0psin2y0þo2

0ð2qcos2y0ÞþH:O:T:Þ, (21)

where H.O.T. denotes terms associated with q2, p2, pq and the higher-order products of p and q. From Eq. (9), Eqs. (20) and
(21) can be combined to be

m0‘gsinðy0þqÞ�1
2m0‘

2ðo0þpÞ2 sin2ðy0þqÞ ¼m0‘gqcosy0�m0‘
2ðo0psin2y0þo2

0qcos2y0ÞþH:O:T: (22)

In Eq. (22) the terms m0‘gqcosy0�m0‘
2o2

0qcos2y0 can be further simplified to be

m0‘ðgqcosy0�‘o2
0 qcos2y0Þ ¼m0‘ðgqcosy0�‘o2

0 qðcos2 y0�sin2 y0ÞÞ ¼m0‘
2o2

0qsin2 y0, (23)

where gqcosy0�‘o2
0qcos2 y0 were canceled using Eq. (11).

Substituting Eqs. (22) and (23) back into Eq. (18) and dropping H.O.T. lead to

m0 ‘2þ2
5r2

� �
€qþm0‘

2o2
0 sin2y0q�m0‘

2o0 sin2y0 pþb0 _q ¼ 0: (24)

For Eq. (19), the nonlinear terms can each be expressed to be

_psin2
ðy0þqÞ ¼ _psin2 y0þH:O:T:, (25)

ðo0þpÞ _qsin2ðy0þqÞ ¼o0 _qsin2y0þH:O:T:, (26)

where H.O.T. denotes terms associated with _pq, p _q, q2 and other higher-order products.
Substituting Eqs. (25) and (26) back into Eq. (19) and dropping H.O.T. yield

m0 ‘2 sin2 y0þ
2
5r2

� �
_pþm0‘

2o0sin2y0 _qþb1 p¼ v: (27)

Eqs. (24) and (27) are therefore the linearized equations of Eqs. (7) and (8) about the equilibrium angle y0 and equilibrium
rotational speed o0. Note that siny0 and sin2y0 can be expressed in terms of o0 using Eq. (12):

siny0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2 y0

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

g

‘o2
0

 !2
vuut , (28)

sin2y0 ¼ 2siny0cosy0 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

g

‘o2
0

 !2
vuut g

‘o2
0

: (29)

Transfer function: The transfer function between vertical oscillations and the excitation torque can be derived by taking
Laplace transform on Eqs. (24) and (27).

From Eq. (24),

p

q
ðsÞ ¼

m0ð‘
2þ 2

5 r2Þs2þb0sþm0‘
2o2

0 sin2 y0

m0‘2o0 sin2y0
: (30)

Substitution of the above equation into Eq. (27) leads to

q

v
ðsÞ ¼

m0‘
2o0 sin2y0

d3s3þd2s2þd1sþd0
, (31)

where

d3 ¼m2
0ð‘

2 sin2 y0þ
2
5 r2Þð‘2þ2

5r2Þ, (32)

d2 ¼m0b0ð‘
2 sin2 y0þ

2
5 r2Þþm0b1ð‘

2þ2
5r2Þ, (33)

d1 ¼m2
0ð‘

2 sin2 y0þ
2
5r2Þ‘2o2

0 sin2 y0þm2
0ð‘

2o0 sin2y0Þ
2
þb0b1, (34)

d0 ¼m0b1‘
2o2

0 sin2 y0: (35)

The axial force exerted on the support (referring to Fig. 2) can be expressed to be

FZ ¼m0‘ €qsiny0: (36)

Note that the nonlinear term, m0‘ _q
2 cosy0, has been dropped.

From Eqs. (36) and (31)

FZ‘

v
s¼

m2
0‘

4o0 sin2y0 siny0s2

d3s3þd2s2þd1sþd0
: (37)
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Note that FZ‘=v is a dimensionless group. Denote the excitation frequency in radian per second to be o, and define the
normalized frequency ô (also a dimensionless group) to be

ô ¼ offiffiffiffiffiffiffiffi
g=‘

p : (38)

It will be shown that the normalized frequency response, ðFZ‘=vÞðjôÞ, is dependent on the four dimensionless groups
defined below:

ô0 ¼
o0ffiffiffiffiffiffiffiffi
g=‘

p , (39)

r̂ ¼ r=‘, (40)

b̂0 ¼
b0

m0‘
ffiffiffiffiffi
‘g
p , (41)

b̂1 ¼
b1

m0‘
ffiffiffiffiffi
‘g
p : (42)

Substituting s by jo in Eq. (37) we have

FZ‘

v
ðjoÞ ¼

�m2
0‘

4o0 sin2y0 siny0o2

jð�d3o3þd1oÞ�d2o2þd0
: (43)

Divide both the numerator and the denominator of Eq. (43) by m2
0g‘2 ffiffiffiffiffi

g‘
p

and we have

FZ‘

v
ðjôÞ ¼ �ô0 sin2y0 siny0ô

2

jð�d̂3ô
3
þ d̂1ôÞ�d̂2ô

2
þ d̂0

, (44)

where

d̂3 ¼ ðsin2 y0þ
2
5 r̂

2
Þð1þ2

5r̂
2
Þ, (45)

d̂2 ¼ b̂0ðsin2 y0þ
2
5 r̂

2
Þþ b̂1ð1þ

2
5r̂

2
Þ, (46)

d̂1 ¼ ðsin2 y0þ
2
5r̂

2
Þô2

0 sin2 y0þô
2
0 sin2 2y0þ b̂0b̂1, (47)

d̂0 ¼ b̂1ô
2
0 sin2 y0: (48)

Since siny0 and sin2y0 can be expressed in term of ô0 (Eqs. (28) and (29)), it is verified from Eqs. (44)–(48) that ðFZ‘=vÞðjôÞ
is indeed determined by the four independent groups defined in Eqs. (39) and (42).

Figs. 4 and 5 show a set of response curves for r̂ ¼ 0 and with ô0 varying from 2 to 4. In Fig. 4, b̂1 is 0.1 and the

responses with b̂0 ¼ 0:1,0:3,1,3 are compared. In Fig. 5, b̂0 is fixed at 0.1 and the responses with b̂1 ¼ 0:1,1,2,5 are
compared. Note that in practice the rotational damping associated with an electric motor may not be neglected due to the
motor’s back electromotive force (back emf), which adds to the effective damping when operated in voltage mode. By

comparing Figs. 4 and 5 it can be seen that, unlike vertical damping coefficient b̂0, which has about the same effect for all

rotational speeds, the rotational damping coefficient b̂1 affects the response significantly when the rotational speed is low,
but has diminishing effect on vertical oscillations for higher-speed rotations. Physically this is because vertical vibrations
are induced by variations in the rotational speed. At high excitation frequencies the speed variations are dominated by the
inertia of the arm; that is, the inertia force (torque) is more significant than the damping force (torque) at high frequencies

(refer to Eq. (27)). Fig. 6 shows the cross effect of vertical damping and rotational damping by varying b̂0 from 0.1 to 1 with

b̂1 set first to be 0.1 and then 3, for a rotational speed of ô0 ¼ 3.
Fig. 7 shows the effect of r̂ on the frequency response by comparing the curves with r̂ ¼ 0,0:4 and 0.8. It is seen that the

resonant frequency decreases with r̂ . This can be explained by the fact that, for a solid ball of mass m0, the rotational inertia
increases with the radius of the ball, and natural frequency decreases as inertia increases.

From Figs. 4 and 5 it is seen that given an excitation frequency, the magnitude of response is substantially affected by
the rotational speed. To achieve maximum output to input ratio, the rotational speed should be adjusted in such a way that
the resonant (natural) frequency of vertical oscillations is close to the excitation frequency. A detailed examination on the
natural frequency is in order.

Natural frequencies of vertical oscillations: Given a rotational speed, the natural frequency of vertical oscillations
(denoted by on) can be determined from the undamped dynamic equations. Setting b̂0 ¼ b̂1 ¼ 0 in Eqs. (45)–(48), we have

d̂3 ¼ ðsin2 y0þ
2
5 r̂

2
Þð1þ2

5r̂
2
Þ, (49)



Fig. 4. Frequency responses for ô0 ¼ 2,3,4 with b̂0 ¼ 0:1,0:3,1,3 (b̂1 ¼ 0:1).

Fig. 5. Frequency responses for ô0 ¼ 2,3,4 with b̂1 ¼ 0:1,1,2,5 (b̂0 ¼ 0:1).
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d̂2 ¼ 0, (50)

d̂1 ¼ ðsin2 y0þ
2
5r̂

2
Þô2

0 sin2y0þô
2
0 sin2 2y0, (51)

d̂0 ¼ 0, (52)

and Eq. (44) is reduced to

FZ‘

V
ðjôÞ ¼ �jô0 sin2y0 siny0 ô

ðsin2 y0þ
2
5 r̂

2
Þð1þ2

5 r̂
2
Þô2
�ððsin2 y0þ

2
5r̂

2
Þ sin2 y0þsin2 2y0Þô

2
0

: (53)



Fig. 6. Frequency responses for b̂0 ¼ 0:1,0:3,1 with b̂1 ¼ 0:1 (solid curves) and b̂1 ¼ 3 (dashed curves) (ô0 ¼ 3).

Fig. 7. Frequency responses for r̂ ¼ 0,0:4 and 0.8, with ô0 ¼ 3 and b̂0 ¼ 0:1,b̂1 ¼ 1 (solid curves); the dashed curves are for r̂ ¼ 0:4 with higher damping

coefficients (as indicated).
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Define the normalized natural frequency ôn to be

ôn ¼
onffiffiffiffiffiffiffiffi
g=‘

p : (54)

From Eq. (53) we have

ô2
n ¼
ðsin2 y0þ

2
5r̂

2
Þ sin2 y0þsin2 2y0

ð1þ 2
5 r̂

2
Þðsin2 y0þ

2
5 r̂

2
Þ

ô2
0: (55)
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As a confirmation of the above derivation, the natural frequency can be alternatively obtained from Eqs. (24) and (27)
directly. Setting v=0 and dropping the term associated with damping (b1 p) in Eq. (27), we have

p¼�
‘2o0 sin2y0

‘2 sin2 y0þ
2
5 r2

q: (56)

Substitution of Eq. (56) into Eq. (24) leads to

‘2þ
2

5
r2

� �
€qþ ‘2o2

0 sin2 y0þ
ð‘2o0 sin2y0Þ

2

‘2 sin2 y0þ
2
5 r2

 !
q¼ 0, (57)

where the damping term (b0 _q) has been dropped. From the last equation the natural frequency is obtained to be

o2
n ¼
ð‘2 sin2 y0þ

2
5 r2Þð‘siny0Þ

2
þð‘2 sin2y0Þ

2

ð‘2þ 2
5 r2Þð‘2 sin2 y0þ

2
5 r2Þ

o2
0: (58)

Divide the denominator and the numerator of Eq. (58) both by ‘4, then divide both sides of the equation by g=‘, and we
reach Eq. (55). This confirms the previous derivation.

If the radius of the solid ball is negligible compared to the link’s length, i.e., r̂ ¼ 0, from Eq. (55) the natural frequency
can be simplified to be

ô2
n ¼ ô

2
0ðsin2 y0þsin2 2y0Þ ¼ ô

2
0ð1þ3cos2 y0Þ ¼ ô

2
0þ

3

ô2
0

, (59)

where the identity cos2 y0 ¼ 1=ô4
0 (from Eq. (12)) has been used.

Fig. 8 shows the curves relating ôn to ô0 for r̂ varying from 0 to 0.9. In general the natural frequency increases with
the rotational speed. For small r̂ (r̂ o0:35), however, the curves move downward initially and then upward as ô0 increases
beyond certain values. The concavity is most significant when r̂ ¼ 0, for which we have the following observations
from Eq. (59):
(i)
 ôn decreases with ô0 for 1oô2
0o

ffiffiffi
3
p

.ffiffiffip

(ii)
 ôn increases with ô0 for ô2

04 3.

(iii)
 ôn � ô0 if ô0b1.
Note that (i) and (ii) can be verified by differentiating ô2
n with respect to ô2

0. From the above observations and in view of
Fig. 8, the natural frequency increases monotonically with the rotational speed if ô2

04
ffiffiffi
3
p

, which is a sufficient condition
for all r̂ ’s.
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Fig. 8. Vertical natural frequency versus rotational speed for r̂ ¼ 0,0:3,0:6 and 0.9.



2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
10-1

100

101

102

2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
-100
-80
-60
-40
-20
0
20
40
60
80
100

∠
F Z

l
�

F Z
l �

�̂

Fig. 9. Phase-frequency relations: at resonance, the vertical oscillation force is in phase with the excitation torque (the phase angle is 0).

Fig. 10. Time response with a square-wave input: (a) vertical angle; (b) rotational speed; and (c) input torque.
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Resonance detection by phase angles: Besides rotational speeds, the natural frequency of vertical oscillations is also
affected by the configuration of the rotational arm such as the radius of the ball. In practice it may not be precisely
calculated in advance. However, by studying the phase-frequency relationship (Fig. 9), we find that at resonance the output
signal is in phase with the excitation input. Since the resonance frequency is sensitive to the rotational speed, it can be
tuned by adjusting the speed according to the phase angle between input and output. This issue will be elaborated further
in the next section.

4. Simulation of the nonlinear system

Excitation on the original nonlinear system (Eqs. (7)–(8)) will be performed via numerical simulation with a simple
square-wave input, as is practically done in motor control. Since the nominal speed of rotation is proportional to the level
(or mean) of the square input, it will be observed how the response is sensitive to the level of input.

The parameters of the rotational arm used in the simulations are as follows: m0=0.2 kg, ‘¼ 0:05 m, r=0.02 m,
b0 ¼ 7� 10�4 N m s and b1 ¼ 1� 10�2 N m s. (Note that b̂0 ¼ 0:1,b̂1 ¼ 1:43 from Eqs. (41) and (42).) The excitation frequency
is set at 42 rad/s, to which the corresponding normalized frequency (ô) can be calculated to be

ô ¼ 42ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:8=0:05

p ¼ 3: (60)

It will be examined how the response is affected by different rotational speeds given this excitation frequency.
Fig. 10 shows the time response with a square-wave input shown in Fig. 10c. The closeup view at steady state is shown

in Fig. 11. Since the mean value of input is 0.42, the average rotational speed is 42 rad/s (=0.42/0.01). (Note that the
average rotational speed, o0, is equal to the mean value of u divided by b1.)

In Fig. 12, the level of input is shifted from 0.28 (Curve 1), to 0.42 (Curve 2), and finally to 0.56 (Curve 3) while the
peak-to-peak value of the input waveform is kept unchanged. The average rotational speed is therefore shifted from
28, to 42, and then to 56 rad/s, corresponding to ô0 ¼ 2, 3, and 4, respectively. From Eqs. (12) and (55) the (normalized)
natural frequency of vertical vibrations for ô0 ¼ 3 and r̂ ¼ 0:4ð ¼ r=‘Þ is 2.96, which is close to the excitation frequency.
Consequently it is seen that Curve 2 has by far the largest magnitude compared to the under-driven and over-driven cases
Fig. 11. Closeup view for the time response of the previous figure. Note that the vertical oscillations (y) are near sinusoidal even though variations in the

rotational speed are not.



Fig. 12. Vertical-force responses (a) for various levels of input (b). When the level of input is such that o0 ¼ 42 rad=s (Curve 2), the resonant frequency

(almost) matches the excitation frequency, resulting in maximum magnitude of response.

Fig. 13. Vertical-force responses for o0 set to be 42 rad/s, with b̂0 varying from 0.1 to 0.3 (solid curves) and b̂1 from 0.1 to 5 (dashed curves):

(1) b̂0 ¼ b̂1 ¼ 0:1; (2) b̂0 ¼ 0:2, b̂1 ¼ 0:1; (3) b̂0 ¼ 0:3, b̂1 ¼ 0:1; (4) b̂0 ¼ 0:3, b̂1 ¼ 0:5; (5) b̂0 ¼ 0:3, b̂1 ¼ 2:5; and (6) b̂0 ¼ 0:3, b̂1 ¼ 5.
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Fig. 14. Vertical-force responses for o0 set to be 56 rad/s, with b̂0 varying from 0.1 to 0.3 (solid curves) and b̂1 from 0.1 to 5 (dashed curves):

(1) b̂0 ¼ b̂1 ¼ 0:1; (2) b̂0 ¼ 0:2, b̂1 ¼ 0:1; (3) b̂0 ¼ 0:3, b̂1 ¼ 0:1; (4) b̂0 ¼ 0:3, b̂1 ¼ 0:5; (5) b̂0 ¼ 0:3, b̂1 ¼ 2:5; and (6) b̂0 ¼ 0:3, b̂1 ¼ 5.
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(Curves 1 and 3). Also notable in Fig. 12 is that the output signal lags the input when the input’s level is lower than the
target (Curve 1), while the output leads the input when the input’s level is higher (Curve 3). The result is consistent with
the frequency response of Fig. 9. This property is significant because it indicates that the level of input can be adjusted
upward or downward according to the measured phase angle in order to yield the strongest shaking force.

To observe the damping effects on the time response, b0 and b1 are varied over a certain range given a nominal
rotational speed. Fig. 13 shows the vertical force response for o0 ¼ 42 rad=s (such that ô0 ¼ 3) with b̂0 varying from 0.1 to
0.3 and b̂1 from 0.1 to 5. In Fig. 14 the rotational speed is raised to be 56 rad/s (ô0 ¼ 4). These figures confirm previous
observations in the frequency response that vertical vibrations are more sensitive to the magnitude of vertical damping.
Besides, the rotational damping has diminishing effect on vertical vibrations as the rotational speed increases. Note,
however, with higher rotational damping the level of control input must be raised accordingly in order to maintain the
same rotational speed.
5. Conclusion

It was shown that 3-D vibrations can be generated by applying an input torque to a single axis of rotation. The input
signal contains two components: a constant level that maintains the average speed of the eccentric weight at a desired
value that results in lateral vibrations, and a fluctuating torque to excite vertical oscillations. From the frequency response
it was seen that the magnitude of vertical oscillations is significantly affected by the level of the rotational speed. That is
because vertical natural frequencies are dependent on the speed of rotation. This vibration generator may therefore be
operable over a wide range of frequencies by varying the rotational speed according to the excitation frequency. The
performance was confirmed by numerical simulations on the original nonlinear system.

The length of eccentricity (i.e., length of the rotational arm) may be reduced or extended according to the desired
frequency range: the higher the frequency, the shorter the length. This mechanism may be used in vibratory feeders for
generation of helical vibrations. It may also be used as a haptic feedback device to provide sophisticated vibrotactile
signals.

References

[1] J. Ryu, J. Jung, S. Kim, S. Choi, Perceptually transparent vibration rendering using a vibration motor for haptic interaction, Proceedings of the 16th IEEE
International Conference on Robot & Human Interactive Communication, Jeju, Korea, 2007, pp. 310–315.



S.-T. Wu / Journal of Sound and Vibration 330 (2011) 567–580580
[2] S. Kim, G. Park, S. Yim, S. Choi, S. Choi, Gesture-recognizing hand-held interface with vibrotactile feedback for 3D interaction, IEEE Transactions on
Consumer Electronics 55 (3) (2009) 1169–1177.

[3] V. Hayward, O.R. Astley, M. Cruz-Hernandez, D. Grant, G. Robles-De-La-Torre, Haptic interfaces and devices, Sensor Review 24 (1) (2004) 16–29.
[4] A. Halmai, A. Lukacs, New linear-electromagnetic actuator used for cellular phones, Periodica Polytechnica, Mechanical Engineering 51 (1) (2007)

19–22.
[5] S.M. Golaszewski, F. Zschiegner, C.M. Siedentopf, J. Unterrainer, R.A. Sweeney, W. Eisnerf, S. Lechner-Steinleitner, F.M. Mottaghyg, S. Felber, A new

pneumatic vibrator for functional magnetic resonance imaging of the human sensorimotor cortex, Neuroscience Letters 324 (2002) 125–128.
[6] G. Boothroyd, Assembly Automation and Product Design, second ed., Taylor and Francis, Boca Raton, Florida, 2005.
[7] G.P. Maul, M.B. Thomas, A systems model and simulation of the vibratory bowl feeder, Journal of Manufacturing Systems 16 (5) (1997) 309–314.
[8] R.-P. Berretty, K. Goldberg, M.H. Overmars, A.F. Van der Stappen, Trap design for vibratory bowl feeders, The International Journal of Robotics Research

20 (11) (2001) 891–908.
[9] A. Mitani, N. Sugano, S. Hirai, Micro-parts feeding by a saw-tooth surface, IEEE/ASME Transactions on Mechatronics 11 (6) (2006) 671–681.

[10] M.C. Fuerstenau, K.N. Han (Eds.), Principle of Mineral Processing, Society for Mining Metallurgy & Exploration, Littleton, Colorado, 2003, pp. 400–406.
[11] J.A. Vilan Vilan, A. Segade Robleda, P.J. Garcia Nieto, C. Casqueiro Placer, Approximation to the dynamics of transported parts in a vibratory bowl

feeder, Mechanism and Machine Theory 44 (2009) 2217–2235.
[12] H.V. Thomas, P. Umbanhowar, K.M. Lynch, Friction-induced velocity fields for point parts sliding on a rigid oscillated plate, The International Journal

of Robotics Research 28 (8) (2009) 1020–1039.
[13] M. Ramalingam, G.L. Samuel, Investigation on the conveying velocity of a linear vibratory feeder while handling bulk-sized small parts, The

International Journal of Advanced Manufacturing 44 (3–4) (2009) 372–382.
[14] P.C.-P. Chao, C.-Y. Shen, Dynamic modeling and experimental verification of a piezoelectric part feeder in a structure with parallel bimorph beams,

Ultrasonics 46 (2007) 205–218.
[15] S.B. Choi, D.H. Lee, Modal analysis and control of a bowl parts feeder activated by piezoceramic actuators, Journal of Sound and Vibration 275 (2004)

452–458.
[16] S.-T. Wu, Active pendulum vibration absorbers with a spinning support, Journal of Sound and Vibration 323 (2009) 1–16.


	Three dimensional vibration generators with a single rotational input
	Introduction
	3-D vibration generator
	Frequency response for vertical oscillations
	Simulation of the nonlinear system
	Conclusion
	References




