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This paper is concerned with the dynamic analysis and parameter optimization of both

passive and active piezo-electrical dynamic vibration absorbers that are strongly

coupled with a single degree of freedom vibrating structure. The passive absorber is

implemented by using an RsJLs parallel shunt circuit while the active absorber is

lowpass filter. An impedance-mobility approach is used for the electromechanical

coupling analysis of both types of absorbers coupled with the structure. Using this

approach it is demonstrated that the passive and active absorbers can be made exactly

equivalent. A maximally flat frequency response strategy is used to find the optimal

damping ratio of the passive absorber while a robust, optimal control theory is used to

find that for the active absorber. It is found that the passive optimization strategy

corresponds to an optimal, robust feedback control of 2 dB spillover. Simulations and

experiments are conducted to support the theoretical findings.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric materials, such as PZT ceramics, are widely used to suppress vibrations in many actively controlled
engineering structures. One of the reasons for this is because they are relatively easy to install. When they are embedded in
a structure they are electromechanically coupled with the structure due to the piezoelectric effects producing an electrical
field (i.e., charge) in response to a mechanical stress and vice versa. A passive or active electrical network is usually
connected to the two electrodes of such a piezoceramic material to suppress structural vibration. By using a shunt resistor
with the piezoceramic element, for example, electrical damping is imposed on the structure. Adding an inductor means
that there is an electrical resonance circuit because of the inherent capacitance of the piezoceramic element, which can
then be strongly coupled to a particular vibration mode of concern [1–3]. The vibration suppression mechanism in this
resonant shunt damping has been thought to be similar to that of the mechanical dynamic vibration absorber [1]. Such a
dynamic absorber effect can also be realized actively by feeding back the acceleration of the structure through a second-
order lowpass filter [4]. Here, the resonant shunt circuit is referred to as a passive electrical dynamic absorber (EDA) while
the active control circuit is referred to as an active EDA. In this paper, single degree-of-freedom passive and active EDAs are
considered as in the Refs. [1–3]. Unlike the work reported in these publications, however, here an impedance-mobility
approach [5] is used to analyze the dynamics of both types of EDA, each of which is then designed separately using
optimization strategies for passive [3] and active [4] systems to finally reveal the relationship between the two strategies.
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The results obtained from these unified approaches employed for analysis and design (or control) are reported in this
paper.

The coupling between structures and passive piezo-electrical networks has been treated extensively in the literature in
applications where shunt resonant control has been used, for example, [1–3], and energy harvesting [6,7]. Regardless of
whether a passive or active EDA is considered, the approach in this paper treats it as a subsystem characterized by an
impedance and combines this impedance with that of the host structure. Thus, the coupling can be analyzed in a
conventional easy way using the mass ratio between the host structure and the absorber. A single degree-of-freedom
(SDOF) host structure is considered throughout the paper for simplicity. For resonant shunt damping, a parallel RsJLs circuit
consisting of a shunt resistor and a shunt inductor is used. Using this approach it is shown that the passive and active
absorbers can be made exactly equivalent.

Various optimization strategies are available to find the optimal absorber damping [2,3] of the RsJLs parallel shunt
circuit. Here, the focus is on the maximally flat frequency response strategy [3], which is to yield the broadest half-power
bandwidth in the mobility response of the coupled structure. An analytical solution is newly derived for the optimal
absorber damping by using conventional mechanical systems analysis, which is then re-examined from the perspective of
robust feedback control theory to expose the relationship between the two methods. Consequently it is straightforward to
determine the optimal parameters for an active EDA. Experimental results are presented to support the theoretical findings
for analysis and control. There is also an Appendix to this paper, which discusses the sign conventions used for the
piezoelectric coupling formulation.

2. Impedance-mobility approach

2.1. Electromechanical coupling formulation

Consider the SDOF structural vibration system (mass ms, spring ks, and damper cs) embedded with a piezoceramic
material of capacitance Cp shown in Fig. 1. Two types of vibration control are considered: a passive technique using a shunt
load impedance ZL as shown in Fig. 1(a) and an active technique feeding back the structural motion to the piezoceramic
actuator (represented as a force actuator FA) via a control filter �H(jo) as shown in Fig. 1(b), where the minus sign
indicates negative feedback. The voltage V across the piezoceramic element is also shown together with the poling
direction, which are required for a consistent mathematical formulation as what follows. In this paper, the general
assumptions and sign conventions in the IEEE standard on piezoelectricity [8] are closely followed with the exception
of the sign convention for the piezoelectric constant dij. Here, this is defined to be always positive, as is often done in
the literature [6,7]. As there is a different sign convention in common use, for example, [3], these two conventions are
compared and the consequences are discussed in the Appendix. Hereafter, the mechanical system is referred to as the
‘structure’ while the passive or active circuit is referred to as the ‘absorber.’

The dynamic equation of the structure subject to an external excitation force F is given by

ZSv¼ F�FA, (1)

where v is velocity with respect to the ground, ZS ¼ jomsþcsþðksþkpÞ=jo is the structural impedance which includes the
mechanical stiffness kp of the piezoceramic element (measured in its short-circuit state), j¼

ffiffiffiffiffiffiffi
�1
p

, the effective force acting
on the structure is FS=F�FA and o is the angular frequency. The force FA=fV is the electrically induced force due to
piezoelectricity that resists the motion, and f (which is always positive—see the Appendix) is the electromechanical (EM)
conversion or coupling factor of the piezoceramic element and has the unit of (N/V). The dynamic equation of the absorber
ZL
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Fig. 1. Passive and active control treatments, the shunt circuit ZL and the control filter �H(o), to a single degree of freedom vibration system embedded

with a piezoceramic actuator of capacitance Cp. The arrow inside the piezoceramic indicates the poling direction: (a) passive control and (b) active

control.
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subject to excitation v can be written as

Z�1
A V ¼fv, (2)

where ZA ¼ ðZ
�1
p þZ�1

L Þ
�1 is the impedance of the absorber, V is voltage as indicated in Fig. 1(a), Zp=(joCp)�1 is the electrical

impedance of the piezoceramic with Cp being the capacitance, and ZL=V/IL is the shunt load impedance with current IL. The
excitation term fv acts as a current source to the piezoceramic Cp and the load element ZL. The factor f now indicates the
relationship between a motion and the electric current or charge developed and has the unit of (A/m s�1) or (C/m),
respectively. Eq. (1) is related to the actuator equation while Eq. (2) to the sensor equation of a piezoelectric material [8].

Combining Eqs. (1) and (2) yields

ZS f
�f Z�1

A

" #
v

V

� �
¼

F

0

� �
, (3)

from which the familiar solution form of the impedance-mobility approach [5] is obtained as

v¼
YS

1þYSZCA
F, (4)

where the structural mobility is YS ¼ Z�1
S and the mechanically coupled absorber impedance is ZCA=f2ZA. The strength of

coupling between the structure and the absorber is governed by the term 9YSZCA9 in the denominator [5], where 9�9 denotes
the absolute value. This term is examined further, later in this section with a specific model of the absorber. From a
negative feedback control perspective, Eq. (4) can be rewritten as

v¼
GðjoÞ

1þGðjoÞHðjoÞ
F, (5)

in which G(jo)=YS is the plant and H(jo)=ZCA is the controller. Eq. (4) is a view of the system from the impedance-mobility
approach while Eq. (5) is a feedback control view. These two different views of the passive absorber are, respectively,
illustrated in Fig. 2(a) and (b).

Now, consider the active control system in Fig. 1(b). Eq. (1) is then ZSv=F+FA in which FA=�H(jo)v is now the active
control force. Substituting FA and G(jo)=YS yields Eq. (5). Eq. (4) is also valid (in control terms, absolutely stable), as long as
H(jo) is of the same form as ZCA in terms of number and locations of poles and zeros so as to have minimum phase
characteristics [9]. Stability analysis for this case is trivial as the combined system is in theory completely passive. In
practice, however, such unconditionally stable systems are realizable only approximately due to non-ideal operations of
elements in the feedback loop including sensors, actuators, control filters and amplifiers [4,10].

2.2. Electrical and mechanical analogous models

Three shunt circuits are generally employed in the literature, which are illustrated in Fig. 3: (a) Rs shunt circuit
using a resistor Rs, (b) Rs�Ls series circuit using a resistor and an inductor Ls [1–3], and (c) RsJLs parallel circuit [2,3],
where ‘� ’ denotes a series connection and ‘J’ is a parallel connection. The corresponding analogous mechanical models
consisting of lumped mechanical elements (mass ma, spring ka, and damper ca) are also shown in Fig. 3, where the velocity
input vE and the force FE correspond to current I and voltage V, respectively, and the subscript E denotes an electrically
induced variable. The conversion rules are given in Table 1. The electrical absorber impedances for the three cases are
tabulated in Table 2 for reference. As the RsJLs circuit is most widely used, and because it has a similar performance to the
Rs�Ls circuit [3], it is considered for the remainder of this paper.

Connecting the electrically analogous model for the SDOF structure to the RsJLs circuit gives the complete analogous
model shown in Fig. 4(a), where the structural mass, spring and damper are indicated by the analogous inductor, capacitor,
and resistor, following the conversion rules in Table 1. An ideal transformer is used to match the dimensions between the
F
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−
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Fig. 2. Two different viewpoints to the passive and active control of the system in Fig. 1. The equality relations are G(jo)=YS with YS ¼ Z�1
S and H(jo)=ZCA:

(a) impedance-mobility view and (b) feedback control view.
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Fig. 3. Various shunt circuits and their analogous mechanical models: (a) Rs circuit, (b) Rs�Ls series circuit, and (c) RsJLs parallel circuit.

Table 1
Electro-mechanical conversion rules for the electrical dynamic absorbers in Fig. 3.

Elements Spring Mass Damping Force Velocity

Electrical C�1
p

Ls Rs V I

Mechanical ka ma ca FE vE

Coupled kca=f2ka mca=f2ma cca=f2ca FA=fV v=f�1I

Table 2
Impedances of the electrical dynamic absorber in Fig. 3.

Shunt circuit Electrical impedance, ZA=V/I Mechanical impedance, ZA=FE/vE

Rs Z�1
A ¼ joCpþR�1

s Z�1
A ¼ jo=kaþc�1

a

Rs�Ls Z�1
A ¼ joCpþðRsþ joLsÞ

�1 Z�1
A ¼ ðjo=kaÞþðcaþ jomaÞ

�1

RsJLs Z�1
A ¼ joCpþR�1

s þðjoLsÞ
�1 Z�1

A ¼ ðjo=kaÞþc�1
a þðjomaÞ

�1
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mechanical and electrical systems, which is given by

FA

v

� �
¼

f 0

0 f�1

" #
V

I

� �
: (6)

Some similar analogous models can be found for the Rs and Rs�Ls shunt circuits [1,11,12]. This electrical model can also
be equivalently transformed into a mechanical one as shown in Fig. 4(b), where the new coupled terms (mca, kca, and cca)
are introduced for the absorber and the relevant conversion rules are added to Table 1. Unlike the conventional two DOF
system, it should be emphasized that the connection between spring and damper of the absorber is in series.

The structural mobility, which is the plant response G(jo) in Fig. 2, can be written as

GðjoÞ ¼ YS ¼
1

ms

jo
o2

s�o2þ j2Bsoso
, (7)

where the natural frequency is defined as os ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðksþkpÞ=ms

p
, and the structural damping ratio can be obtained from

2Bsos=cs/ms. From Table 2, the coupled absorber impedance of the RsJLs shunt circuit can be written as

ZCA ¼f2ka
jo

o2
a�o2þ j2Baoao

, (8)
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Fig. 4. Electrical (a) and mechanical (b) lumped-parameter analogous models of the electrical dynamic absorber using an RsJLs shunt circuit in Fig. 3(c).

The conversion rules are given in Table 1.

S.-M. Kim et al. / Journal of Sound and Vibration 330 (2011) 603–614 607
where the natural frequency is defined as oa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðLsCpÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka=ma

p
, and the damping ratio can be obtained from

2Baoa=1/(RsCp)=ka/ca. For emphasis, the structural and absorber damping ratios in Eqs. (7) and (8) are rewritten as

Bs ¼
cs

2
ffiffiffiffiffiffiffiffiffiffi
msks

p , (9a)

Ba ¼

ffiffiffiffiffiffiffiffiffiffiffi
maka

p
2ca

: (9b)

It is important to note that the absorber damping za has been defined differently from the familiar form for the structure
zs. The two expressions in Eq. (9a, b) correspond to the two different damping ratio descriptions for the Rs�Cs�Ls series
and RsJCsJLs parallel circuits [13].

To be compatible with the passive absorber described in Eq. (8), the active control filter should be of the form:

HðjoÞ ¼ ho2
a

jo
o2

a�o2þ j2Baoao
, (10)

where h is the gain of the control filter, and oa and za are the same as those defined for Eq. (8). Eq. (8) is substituted into
Eq. (4) or Eq. (5) for passive control while Eq. (10) is substituted instead for active control. If the gain is set to be
h¼f2ka=o2

a , Eqs. (8) and (10) are exactly equivalent. Thus the analogous models in Fig. 4 are valid for both passive and
active EDAs.

2.3. Coupling strength analysis

The strength of coupling can be assessed by the term 9YSZCA9, which is, in fact, the modulus of the open-loop frequency
response function (FRF) L(jo)=G(jo)H(jo) in feedback control terms. Combining Eqs. (7), (8) and introducing a
dimensionless frequency O=o/on and the frequency tuning ratio a=os/oa gives the open-loop FRF as

LðjOÞ ¼�sO2
ð1�O2

þ jaOÞ�1
ð1�a2O2

þ jbaOÞ�1, (11)

where a=2zs and b=2za are the dimensionless half-power bandwidths of the structure and the absorber in Eqs. (7) and (8),
normalized by os and oa, respectively, The open-loop FRF is now described in terms of the mass ratio s=mca/ms, with mca

being the coupled absorber mass for passive control. If the natural frequency of the absorber is exactly tuned to that of the
structure (i.e., oa=os), as a special case, this also represents the stiffness ratio s=kca/ks, with kca being the coupled absorber
stiffness. The strength of coupling can now be judged by examining the mass ratio, which is frequency-independent and is
more precisely written as

s¼f2=ðmsCpo2
nÞ ¼f2=ðksCpÞ: (12a)

The mass ratio s, which has been interpreted as the generalized electromechanical coupling coefficient in the literature,
is measurable from simple vibration tests with the piezoelectric element being in the open- and short-circuited conditions
as given by [1,3]

s¼ ðo2
open�o

2
s Þ=o

2
s , (12b)
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where the natural frequencies oopen and os correspond to the open and short electrical conditions, respectively. In the
active EDA, the mass ratio is given by

s¼ h=ms (12c)

and thus the gain of the filter in Eq. (10) is, in fact, the coupled absorber mass h=mca.

3. Parameter optimization

3.1. Active absorber

To assess the control performance, the velocity ratio S(jO)=v/v0 of the structure with (v) and without (v0) control is
used. This is, in fact, the sensitivity function S in feedback control terms. The velocity v0 can be obtained by setting V=0
(e.g., short circuiting the piezoceramic) in Eq. (1). Since the sensitivity function is given by S(jO)=[1+L(jO)]�1, the vibration
reduction ratio (RR) is given in decibels by

RRðdBÞ ¼ �20log10 1þLðjOÞ
�� ��: (13)

Following the robust control theory developed by Kim et al. [4], a control system is defined to be stable and robust with
the degree of r if and only if the open-loop FRF locus L(jO) does not enclose or cross the circle of robustness of radius r

centered at the instability point (�1, 0), where 0oro1, that is

RRðdBÞrð�20log10rÞ, (14)

where the maximum level on the right of Eq. (14) can be interpreted as the allowable amount of vibration increase
(i.e., maximum control spillover) after control. Thus the system can be optimized for the best performance within the limit
of the given control spillover RRðmaxÞ ¼ ð�20log10rÞ.

In the optimization process, it is assumed that the natural frequency of the absorber is exactly tuned to that of the
structure, i.e., on=oa=os [4], where on indicates the tuned natural frequency. It is convenient to introduce a new variable
x=O�O�1 to further reduce Eq. (11) to a more manageable form for hand calculation as

LðjxÞ ¼ sðaþ jxÞ�1
ðbþ jxÞ�1: (15)

For a real positive value of x, the corresponding roots of O are O2,1 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ4
p

7xÞ=2, where x=O2�O1 because O1=1/O2,
where O241. Thus the variable x is, in fact, a frequency bandwidth, which is bounded by O1rxrO2. Note that the
introduction of x transforms the fourth-order equation in Eq. (11) to the second-order form in Eq. (15). The normalized
control bandwidth xc, within which vibration reduction occurs, can be obtained from 91+L(jx)9=1, and is given by [4]

yc ¼ nþðs=2Þ, (16)

in which n=ab, and xc ¼
ffiffiffiffiffi
yc
p

. The simplified expression in Eq. (15) greatly facilitates solving the optimization problem with
the robustness constraint given by Eq. (14). If the task is to find the optimal damping ratio g=cca/cs for a given bandwidth b

under a prescribed robustness degree r, the exact solution is known and is given by [4]

g ¼ ðZþ1Þð1�r2Þ=r2
� �

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2ððZ�1Þ=ðZþ1ÞÞ

q� 	
, (17)

where Z=m/n in which m¼ ða2þb2Þ=2. Since s=gab, Eq. (17) can be rearranged by assuming that a5b to give the optimal
absorber damping ratio for a given mass ratio s under a prescribed robustness degree r:

Ba,active �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m

2m2
s

r
, (18)

where m2 ¼ 1�r2.

3.2. Passive absorber

The optimization parameter with the RsJLs shunt circuit is the resistor Rs only, as the inductor is used for frequency
tuning (i.e., oa=os). In this paper, the so-called maximally flat FRF strategy [3], which yields the maximally flat FRF of the
structural velocity with the absorber in place, is re-examined. An explicit analytical form for the optimal absorber damping
ratio is newly determined. Let YCS=v/F denote the coupled structural mobility response in Eq. (4) and write it in terms of
the new variable x:

YCS ¼
1

cs

aðbþ jxÞ

ðaþ jxÞðbþ jxÞþs : (19)

The condition to have the maximally flat FRF may be expressed mathematically as

YCSð0Þ
�� ��¼ YCSðjxcÞ

�� ��, (20)
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which means that the velocity amplitude response at the uncoupled natural frequency when x=0 (equivalently, O=1) is
the same as those at the boundary frequencies (i.e., Oc1 and Oc2) of the control bandwidth. Since 9YCS(jxc)9=9YS(jxc)9 because
of 91+L(jxc)9=1 by definition, Eq. (19) can be rewritten as

YCSð0Þ
�� ��¼ 1

cs

ab

abþs , YCSðjxcÞ
�� ��¼ 1

cs

a

aþ jxc

����
���� (21)

and applying Eq. (20) gives the exact explicit solution of the optimal damping ratio for the maximally flat FRF strategy,
when oa=os, as

Ba,passive ¼
ffiffiffiffiffiffiffiffiffi
s=2

p
: (22)

The procedure employed here is, in essence, Den Hartog’s fixed-point theory [14], but with an aim to achieve a
maximally flat coupled mobility FRF response for a serially connected mass–spring–damper absorber. The maximum
reduction (i.e., minimum reduction ratio) and the normalized control bandwidth can also be calculated. Combining
Eqs. (13), (15) and (22) with x=0 gives

RRpassiveðminÞ ¼ �20log10 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=ð8B2

s Þ

q� 	
dB (23)

and combining Eqs. (16) and (22) gives

xc,passive ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=2ÞþBs

ffiffiffiffiffiffi
8s
pq

: (24)

The control performance can be predicted from Eqs. (23) and (24) in which the terms s and zs can be easily identified by
simple vibration tests. Eqs. (23) and (24) suggest that the EDA is effective for lightly damped structures. In other words,
adding electrical damping may not be effective for highly damped structures unless the mass ratio s can be made to be
very large.

Finally, comparing Eqs. (18) and (22) reveals that the maximally flat FRF strategy corresponds to the optimal, robust

control strategy with the robustness degree of r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffi
5
p
�1Þ=2

q
or equivalently with the maximum spillover amount of

RRpassiveðmaxÞ � 2dB, (25)

provided that Bs5
ffiffiffiffiffiffiffiffiffi
s=2

p
. For a lightly damped structure with a moderate amount of absorber mass or spring, the maximally

flat FRF strategy can thus be interpreted as the ‘‘optimal, robust control of 2 dB spillover’’ in feedback control parlance.

4. Experiments and simulations

For the experimental SDOF vibration system, a commercial piezoelectric inertial actuator (PCB Piezoelectronics 712A02)
with a proof mass of 100 g was used; it was fixed in a heavy optical measurement table. Inside the actuator, piezoelectric
materials are bonded to the upper and lower plates and generate a pulsating motion in response to the voltage input so as
to vibrate the inertial mass [15]. Impact hammer tests (Endevco 2302-10) were conducted in four different cases as
illustrated in Fig. 5. They are (1) when the input channel to the piezoelectric actuator was electrically shorted (i.e., the
switch in Fig. 5 was connected to Terminal A), (2) when the channel was electrically opened, (3) when the switch was
connected to a shunt resonant circuit, and finally (4) when the switch was connected to an active control filter. In all cases,
impacts were applied directly on the top surface of the accelerometer (B&K 4393) placed at the center of the cylindrical
mass in order to avoid exciting non-symmetric modes of the circular-shaped actuator.

Fig. 6 shows the experimentally obtained velocity responses to 1 N force for the short- (dash-dot line) and open-circuit
(dashed) conditions, which are tests (1) and (2) in Fig. 5, respectively. The simulation result (dotted) for each case is also overlaid
using the parameters summarized in Table 3, where all the parameters were identified from the test results. The peak at around
1320 Hz is an inherent characteristic of the actuator itself. The most important parameter that can be identified from these tests is
the mass ratio s using Eq. (12b), and subsequently the EM conversion factor f using Eq. (12a). They are also given in Table 3.

For test (3) with the passive EDA, an RsJLs shunt circuit was designed and the parameters were determined using the
maximally flat FRF strategy. The optimal inductor of as high as about 3.9 H was synthesized by using Antoniou’s gyrator
circuit [3,16]. The gyrator circuit was built using two OP amps (Burr-Brown OPA445) with input supply voltages of 740 V
[17], a capacitor, three cement resistors, and a variable resistor to set the effective inductance. All electrical components
were chosen to withstand the high voltage from the piezoceramic actuator. Another variable resistor was used to set the
resistance of the RsJLs shunt circuit to the optimal value of about 14.8 kO. The test velocity response (solid line) is
compared with the original short-circuit plant response (dash-dot) in Fig. 7, where the responses are normalized by the
maximum magnitude of the original response. The corresponding simulation result (dashed) is also overlaid for
comparison. The simulation and experimental responses are quite flat within the control bandwidth as designed, and there
is good agreement between them.

For the last test, the active EDA filter was designed by using the acceleration position feedback (APF) method as the
acceleration signal was readily available from the accelerometer [4]. The control filter was implemented digitally in a
target PC equipped with a DAQ board (NI PCI-6251), by using the Matlab s xPC Target module. A signal conditioner (B&K
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Fig. 5. Experimental setup for impact hammer tests in four different conditions: (1) short circuit, (2) open circuit, (3) passive EDA circuit, and

(4) active EDA circuit.

Table 3
Mechanical and electrical parameters of the plant (PCB 712A02) with a proof mass of 100 g.

ms fs fopen zs Cp s f

117 g 304 Hz 323 Hz 0.018 69.8 nF 0.13 0.062 N/V

Effective structure mass ms; short-circuit natural frequency fs; open-circuit natural frequency fopen; short-circuit damping ratio zs; capacitance of the

piezoceramic actuator Cp; mass ratio s; and EM conversion factor f.
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Nexus) for the accelerometer and a voltage amplifier (PCB 790A01) of fixed gain of 30 were also used as shown in Fig. 5.
The discrete form for the control filter is given by [4,9]

HðzÞ ¼ Kdo2
a

T

od

zAsinodT

z2�zð2AcosodTÞþA2
(26)

where od ¼oa

ffiffiffiffiffiffiffiffiffiffiffiffi
1�z2

a

q
, A¼ expð�zaoaTÞ, and the sampling time is T=1/Fs with the sampling frequency Fs=30 kHz. The

mass ratio for the active EDA is determined by

s¼ KTaeTef =ms, (27)
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Fig. 7. Measured (solid line) and simulated (dashed) passive electrical dynamic absorber performances in terms of normalized velocities, compared with

the original short-circuit plant response (measured, dash-dot) in Fig. 6, between 200 and 450 Hz.
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where ms is the structure mass, K=KdKa in which the gains for the digital filter and the analog voltage amplifier were set to
be Kd=15 and Ka=30, respectively, the transformation factor from acceleration to voltage in the signal conditioner was
Tae=10 mV/m s�2, and the transformation factor from voltage to force in the inertial actuator (i.e., the EM conversion
factor) was Tef=f=0.062 N/V. The control algorithm used was again to achieve the maximally flat FRF using Eq. (22) that
corresponds to the 2 dB (spillover) robust, optimal control strategy. The experimental (solid lines) and theoretical (dashed)
velocity and acceleration responses after control are shown in Fig. 8(a) and (b), respectively, together with the
corresponding original responses (dash-dot) in Fig. 6 and the corresponding passively controlled responses in Fig. 7 for
comparison. There are slight differences between simulation and measurement because of the time delays due to the xPC
target PC (53 ms=1.6/Fs) and the voltage amplifier (14 ms). Such time delays should be avoided as much as possible, for
example, by employing an analog control filter as they reduce control performance and can threaten stability [4,10].
Fig. 8(b) clearly shows that the resonance due to the inertial actuator can be dramatically reduced by the passive and active
methods. Some important features of the passive and active EDAs designed are summarized in Table 4. The optimal passive
EDA gave a maximum vibration reduction of about 18 dB and a control bandwidth of 88 Hz (=351�263), while the active
EDA with the gains (Kd=15 and Ka=30) gave about 30 dB reduction and a bandwidth of 344 Hz. In terms of the damping
ratio, the original damping ratio of 1.8% turned to 25% by the passive method and turned to 109% by the active method. The



Table 4
Passive and active electrical dynamic absorbers designed.

Type Mass ratio Damping ratio Max. reduction (dB) Control bandwidth (Hz)

Passive 0.13 0.25 18 [263–351]

Active 2.39 1.09 30 [177–521]
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Fig. 9. Nyquist plots of the open-loop FRFs (a) and reduction ratios (b) of the active electrical dynamic absorber with measurement (solid line) and

simulation (dashed), compared with the 2 dB robustness boundary (dotted).
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control performances of the passive system were the maximum that could be achieved, whereas those for the active
system could be improved upon. Unlike that for the passive method, note that the gain (Kd=15) used for the active system
was arbitrarily chosen. It should be emphasized that the active EDA method employed is passivity-based control and thus
it is, in principle, unconditionally stable.

To examine the robustness of the active system shown in Fig. 8, the open-loop FRFs (Nyquist plots) from simulation (dashed
line) and measurement (solid) are plotted in Fig. 9(a), where the dotted circle around the instability point (�1, 0) indicates the
2 dB robustness boundary. The open-loop FRF was measured from the voltages between the xPC target controller (input) and
the signal conditioner (output) in Fig. 5. The reduction ratios were also calculated by dividing the controlled response by the
uncontrolled response, and are shown in Fig. 9(b), together with the 2 dB spillover line (dotted). The simulation locus almost
exactly touches the 2 dB circle in Fig. 9(a) as was designed, supporting the optimization formulation developed. However, the
measurement locus crosses the circle at high frequencies because of the time delays, as discussed earlier.
5. Concluding remarks

The dynamics of passive and active electrical dynamic absorbers (EDAs) have been analyzed using the impedance-
mobility approach. The passive absorber was implemented by using an RsJLs parallel shunt circuit while the active absorber
was implemented by feeding back the acceleration of the structure through a second-order lowpass filter. A simple but
exact analogous model was presented, which was a serially connected mass–spring–damper oscillator. Such a mechanical
analogy was possible, because of the introduction of the absorber damping ratio which is analogous to that for an RsJLsJCs

parallel electric circuit. Using the impedance approach, it was demonstrated that the passive and active EDAs can be made
exactly equivalent. Thus, the theoretical analysis framework and the analogous models developed are applicable to both
types of EDAs. It should be emphasized that, although a SDOF vibration system has been examined, the theory is directly
applicable to the coupling with a single vibration mode of a continuous system. It can be also extended to the coupling
with multiple modes in a similar way conducted for vibroacoustic coupling [18].

The passive EDA was designed optimally by using Den Hartog’s fixed-point theory with the aim to achieve a maximally
flat coupled mobility FRF response of the structure (i.e., a maximally flat FRF strategy). The results state that the natural
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frequency oa and the damping ratio za of the absorber must be

oa ¼os and Ba ¼
ffiffiffiffiffiffiffiffiffi
s=2

p
,

where os is the natural frequency of the host structure and s¼mca=ms is the mass ratio between the absorber mca and the
structure ms. The active EDA was designed using an optimal and robust control theory. By comparing the results from the
two different methods for passive and active absorbers, it was concluded that the strategy for passive absorbers is
compatible to the optimal, robust control of 2 dB control spillover. It should be noted that the analytical derivations
became straightforward because of the introduction of the variable x, a normalized frequency bandwidth, for describing
the related functions. Finally, simulations and experiments were conducted with a commercial inertial actuator that
behaved as a single DOF oscillator, as the host structure to control. The results obtained clearly demonstrate good
agreement between the theory and the experiments.

Appendix A. Two formulation methods for a piezoelectric shunt circuit

This appendix is a supplement to the impedance-mobility formulation in Section 2. Two formulation methods are
compared, in common use for the dynamic equations of the piezoelectric shunt circuit shown in Fig. 1, with a particular
emphasis on assigning signs: one based on the d33 piezoelectric effect and the other based on the d31 effect, where the first
subscript denotes the poling direction and the second denotes the direction of motion of interest. The common sign
conventions used are: (i) force and displacement are positive for tensions and expansions, respectively and (ii) voltage
potential is assigned to be higher at the positively poled electrode.

The case based on the d33 effect is depicted in Fig. A1(a), where an external force is applied to a piezoceramic element.
A negative voltage is then induced between the electrodes to resist the positive motion x, and the dynamic equation is given by

FP ¼ kpx�jV , (A1)

where kp is the stiffness of the short-circuited element and j is an arbitrary electromechanical conversion factor that must
be positive in this case. From Fig. A1(b), the charge q is related to motion and voltage as

q¼jxþCpV , (A2)

where Cp is the capacitance of the piezoceramic element. Eq. (A1) can be written as x¼ ðFAþjVÞ=kp. This and Eq. (A2)
match with the general constitutive equations of piezoelectricity [8,19] with consistent signs (i.e., all positive). Since
IL ¼� _q in Fig. A1(c) due to Kirchhoff’s current law, IL ¼ Z�1

L V with ZL being an arbitrary load impedance connected to the
electrodes, and v¼ dx=dt, Eq. (A2) can be written as

�j v¼ ðjoCpþZ�1
L ÞV : (A3)

The formulation above can describe a d31 piezoelectric effect such as that shown in Fig. 1(a), if a negative value is
allowed for j, as in the standard [8].

Similarly, the case based on the d31 effect is illustrated in Fig. A2 in the same form as Fig. A1. The same procedure can be
followed to give

FP ¼ kpxþfV , (A4)

q¼�fxþCpV , (A5)

fv¼ ðjoCpþZ�1
L ÞV , (A6)

where f is the conversion factor for this case and is positive. Some authors use Eqs. (A1)–(A3) [3], and some others use
Eqs. (A4)–(A6) including the authors of this paper [6,7]. The two sets equivalently represent a d31 piezoelectric effect when
replacing �j by f in Eqs. (A1)–(A3), or equivalently specifying a negative value for j as in the standard [8]. Since this
.
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negative conversion factor in the first formulation is rather cumbersome in an intuitive sense for the purpose of this paper,
however, the d31 case is used in this paper.
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