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a b s t r a c t

In this paper the excited vibrations of a truly nonlinear oscillator are analyzed. The

excitation is assumed to be constant and the nonlinearity is pure (without a linear term).

The mathematical model is a second-order nonhomogeneous differential equation with

strong nonlinear term. Using the first integral, the exact value of period of vibration i.e.,

constant excitation is analytically obtained. The closed form solution has the form of

gamma function. The period of vibration depends on the value of excitation and of the

order and coefficient of the nonlinear term. For the case of pure odd-order-oscillators the

approximate solution of differential equation is obtained in the form of trigonometric

function. The solution is based on the exact value of period of vibration. For the case when

additional small perturbation of the pure oscillator acts, the so called ‘Cveticanin’s

averaging method’ for a truly nonlinear oscillator is applied. Two special cases are

considered: one, when the additional term is a function of distance, and the second, when

damping acts. To prove the correctness of the method the obtained results are compared

with those for the linear oscillator. Example of pure cubic oscillator with constant

excitation and linear damping is widely discussed. Comparing the analytically obtained

results with exact numerical ones it is concluded that they are in a good agreement. The

investigations reported in the paper are of special interest for those who are dealing with

the problem of vibration reduction in the oscillator with constant excitation and pure

nonlinear restoring force the examples of which can be found in various scientific and

engineering systems. For example, such mechanical systems are seats in vehicles, supports

for machines, cutting machines with periodical motion of the cutting tools, presses, etc. The

examples can be find in electronics (electromechanical devices like micro-actuators and

micro oscillators), in music instruments (hammers in piano), in human voice producing

folds (voice cords), etc.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the most of textbooks the problem of a linear oscillator with constant excitation F0 is widely discussed and the closed
form analytical solution is given. Based on that solution for the linear oscillator, the approximate analytical solving
procedures are developed for solving systems perturbed with small nonlinearities: the Kryloff–Bogoliuboff method [1] and
the method of slowly varying amplitude and phase [2], the Bogoliuboff–Mitropolski method [3], the multiple scales
method [4], the straightforward expansion method and the Lindstedt–Poincare method [4], combined equivalent
linearization and averaging perturbation method [5] and [6], the series expansion method, the iteration procedure for
calculating approximations to periodic solutions [7] and [8], the homotopy perturbation technique [9–11], the homotopy
ll rights reserved.
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analysis method [12], etc. There are a lot of models where the nonlinearity is much stronger than the linearity and even
where the oscillator is purely nonlinear. The nonlinearity is caused by the geometry of the system but most often by
material properties. Experimentally is proved that the stress–strain law is pure nonlinear for a significant number of
materials: many aircraft materials, e.g., aluminium, titanium, etc., [13], copper and copper alloys [14], aluminium alloys
and annealed copper [15], wood [16], hydrophilic polymers [17], composites [18], polyurethane foam [19], ceramic
materials [20], etc. For such systems the application of the aforementioned methods is not possible. Namely, the
differential equations are without linear terms and also the linearization of the equation is not possible due to the
properties of the system. These oscillators are not the perturbed versions of the linear ones and their behavior is far of
those obtained for linear ones.

The aim of the paper is to combine several known methods, namely, the harmonic balance and averaging procedure, for
solving of the oscillators with strong pure nonlinear term and a strong constant excitation F0. The mathematical model of
the oscillator is

€xþc2
1xjxja�1 ¼ F0, (1)

where aZ1 is a real number and c1
2 is the coefficient of nonlinear term. Using the first integral of (1) the exact period and

angular frequency of vibration is analytically obtained. Based on the exact value of the angular frequency of the system the
approximate analytical solution of (1), when the nonlinearity is of odd-order (a¼ 2n�1, where n=1,2,y), in the form of
circular function for initial conditions

xð0Þ ¼ 0, _xð0Þ ¼ 0, (2)

is introduced. The approximate analytical solution is compared with an accurate numerically integrated solution for
a¼ 1,3 and 5.

For the case when the pure odd-order nonlinear oscillator with constant excitation is perturbed with some small
functions, the mathematical model is

€xþc2
1xjxja�1 ¼ F0þef ðx, _xÞ, (3)

where e51 is a small parameter and ef ðx, _xÞ is the small perturbation function. In this paper the procedure for solving truly
nonlinear oscillations, which has been termed ‘Cveticanin’s averaging method’ (CAM) [21] by Mickens [22], is adopted for
solving the differential Eq. (3). It is assumed that the amplitude and the phase of vibration are time variable. Two problems
are considered: the linear and the pure cubic oscillators with constant excitation and with weak linear damping. The
approximate analytical solutions are compared with those numerically obtained.

Suggested solution procedure requires to calculate the exact period of vibration for the pure nonlinear oscillator with
constant excitation described with (1) with initial conditions (2). Based on the ‘exact’ frequency of vibration O the
approximate solution is assumed as

x¼ Fð1�cosOtÞ, (4)

where F is the amplitude of oscillation, while F0 is the amplitude of forcing term. In spite of the fact that Eq. (3) is a strong
nonlinear one and the method of superposition fails, Burton [23] showed that as long as the waveform is reasonably close
to simple harmonic, it is possible to use the approximative solution for nonlinear oscillations with the form which
corresponds to the linear oscillator. It is the reason that the solution of the strong nonlinear differential Eq. (3) is assumed
in the form (4). Substituting (4) into (1) and using the harmonic balance method the unknown value for F is obtained. Now,
it is at this point where the adopted ‘Cveticanin’s method’ can be applied. The assumption of time variable amplitude and
phase in (4) is introduced. The averaging over the exact period of vibration gives an accurate approximate solution.
2. The exact period of vibration

In general, the first integral of (1) for the initial conditions (2) has the following form

_x2

2
þx c2

1

jxja

aþ1
�F0

� �
¼ 0: (5)

Assuming that the direction of excitation is constant and does not depend on motion direction, the curves in the x� _x plane
are determined

_x2

2
7 jxj c2

1

jxja

aþ1
�F0

� �
¼ 0, (6)

where the upper sign is for xZ0 and the other for xr0. Due to equality of the curves, the analyses is done only for one of
them. The curves in x� _x which correspond to (6), when xZ0 and xr0, are closed ones and it gives the conclusion that the
solution of (1) is periodic.
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For calculating the period of vibration let us rewrite the relation (6) into

dx

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F0jxj�2c2

1

jxjaþ1

aþ1

s
: (7)

i.e.,

dx

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2F0jxj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

c2
1

F0

jxja

aþ1

s
: (8)

For mathematical expediency, we introduce a new variable

u¼
c2

1

F0

jxja

aþ1
, (9)

with time derivative

du

dt
¼

c2
1

F0

a
aþ1

jxja�1 dx

dt
: (10)

Substituting (9) and (10) into (7) and separating the variables the following expression is obtained

dt¼
1

au
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F0ð1�uÞ

p F0ðaþ1Þu

c2
1

 !1=2a

du: (11)

After suitable transformation and integration half the period of vibration is shown to be

T

2
¼

1

a
ffiffiffiffiffiffiffiffi
2F0

p F0ðaþ1Þ

c2
1

 !1=2a Z 1

0
uð1�2aÞ=2að1�uÞ�1=2 du: (12)

According to the definition of the beta function given in the appendixZ 1

0
uð1=2aÞ�1ð1�uÞð1=2Þ�1 du¼ B

1

2a ,
1

2

� �
, (13)

the period of vibration is

T ¼
2

a
ffiffiffiffiffiffiffiffi
2F0

p F0ðaþ1Þ

c2
1

 !1=2a

B
1

2a ,
1

2

� �
: (14)

The practical application of beta function in integral form is connected with many difficulties and is not convenient for use
by engineers and technicians. It is recommended to rewrite the expression (14) by using the gamma function, which is
much more appropriate for practice. Introducing the transformation (A5) the period of vibration is

T ¼

ffiffiffi
2
p

aFða�1Þ=2a
0

ðaþ1Þ

c2
1

 !1=2a G
1

2a

� �
G

1

2

� �

G
1þa
2a

� � : (15)

Analyzing the relation (15) it can be concluded:
(a)
 For higher values of parameter F0, the period of vibrations is shorter. If F0 tends to infinity, the period tends to zero. If F0

is zero the period of vibration is infinitely large and no oscillatory motion exists.

(b)
 For the linear oscillator (a¼ 1) the period of vibration does not depend on the excitation frequency F0 and has the well

known value

T ¼
2

c1
B

1

2
,
1

2

� �
¼

2p
c1

, (16)

as Gð1=2Þ ¼
ffiffiffiffi
p
p

and Gð1Þ ¼ 1. The frequency of vibration is

O¼
2p
T
¼ c1: (17)

Coefficient of the nonlinearity c1 has also a significant influence on the period of vibration. In a certain oscillator higher
(c)

the value of the coefficient, the shorter the period of vibration. The influence of the parameter c1 is not of the same
order for various types of oscillators. Namely, T ¼ f ðF0,aÞðc1Þ

�1=a: for the linear oscillator (a¼ 1) the angular frequency
is directly dependent on c1, for higher order of nonlinearity the influence of c1 on the period of vibration is smaller and
for a tends to infinity the influence of the parameter c1 disappears.
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3. The approximate harmonic solution for odd-order nonlinear oscillators
Based on the exact period of vibration (15) the exact angular frequency is

O¼
2p
T
¼

ffiffiffi
2
p

paFða�1Þ=2a
0

c2
1

aþ1

� �1=2a G
1þa
2a

� �

G
1

2a

� �
G

1

2

� � : (18)

For the case when a is an odd number the approximate solution for (1) is assumed in the form (4), where F is an unknown
value. The assumed solution is the corrected version of the previously used ones, as it includes the exact angular frequency
O to describe the oscillatory motion of the system. Substituting (4) into (1) we have

FO2cosOtþc2
1Fað1�cosOtÞa ¼ F0: (19)

The determination of F using (19) is not an easy task. Namely, the harmonic balance method is not directly applicable due
to the form of the relation (19). For mathematical reasons, let us introduce the series expansion of the power order function
(see [24]) into (19)

F0 ¼ FO2cosOtþFac2
1 1þ

X
n ¼ 1

aða�1Þ . . . ða�2nþ1Þ

ð2nÞ!
cos2nOt:

"

�
X
n ¼ 1

aða�1Þ . . . ða�ð2n�1Þþ1Þ

ð2n�1Þ!
cos2n�1Ot

#
, (20)

and the series expansion for function cos2n�1Ot [24]

cos2n�1ðOtÞ ¼
1

22n�2

Xn�1

k ¼ 0

2n�1

k

� �
cosð2n�2k�1ÞðOtÞ: (21)

Using (20) with (21), and separating only the terms with cosOt the following algebraic equation is obtained

FO2
�Fac2

1

X
n ¼ 1

aða�1Þ . . . ða�ð2n�1Þþ1Þ

ð2n�1Þ!

1

22n�2

2n�1

n�1

� �
¼ 0: (22)

It follows that

F ¼
O2

qc2
1

 !1=ða�1Þ

, (23)

where

q¼
X
n ¼ 1

aða�1Þ . . . ða�ð2n�1Þþ1Þ

ð2n�1Þ!

1

22n�2

2n�1

n�1

� �
: (24)

Substituting (18) into (23) we have

F ¼
1

q

1

aþ1

� �1=a G
1þa
2a

� �
ffiffiffiffiffiffi
2p
p aG 1

2a

� �0
BB@

1
CCA

20
BBB@

1
CCCA

1=ða�1Þ

F0

c2
1

 !1=a

: (25)

For a certain oscillator the amplitude of vibration depends on the excitation value and coefficient of the nonlinear term:
The higher the excitation F0, the higher is the amplitude of vibration F. The influence of the coefficient of nonlinearity c1 on
the amplitude of vibration F is the same as on the frequency of vibration (18).

1. For the linear oscillator (a¼ 1) the amplitude of vibration is, according to (25), F=F0/c1
2 and for O¼ c2

1, the relation (4)
gives the exact solution

x¼
F0

c2
1

½1�cosðc1tÞ�: (26)

2. For the pure cubic oscillator (a¼ 3) the exact period of vibration is

T ¼

ffiffiffi
2
p

3F1=3
0

ð4Þ

c2
1

 !1=6 G
1

6

� �
G

1

2

� �

G
2

3

� � ¼
4:3274ffiffiffiffiffiffiffiffiffi

F0c1
3
p , (27)

and the corresponding angular frequency is

O¼ 1:452
ffiffiffiffiffiffiffiffiffi
F0c1

3
p

: (28)



Fig. 1. Analytical xA and numerical xN solutions of pure cubic oscillator for: in solid line F0=1, xN; dashed line F0=1, xA; dashed–dotted line F0=0.5, xN;

dotted line F0=0.5, xA.
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The amplitude of vibration is according to (25)

F ¼ 0:74981
F0

c2
1

 !1=3

: (29)

In general the approximate solution of the oscillator with a pure cubic term is

x¼ 0:74981
F0

c2
1

 !1=3

ð1�cosð1:452t
ffiffiffiffiffiffiffiffiffi
F0c1

3
p

ÞÞ: (30)

Some numerical examples are considered and the analytical solutions are compared with numerical ones:
(a)
 For F0=1 and c1
2=1 and the differential equation

€xþx3 ¼ 1, (31)

the approximate solution is

xA ¼ 0:74981ð1�cosð1:452tÞÞ: (32)

For F0=0.5 and c1
2=1 the mathematical model of the oscillator is
(b)
€xþx3 ¼ 0:5, (33)

the approximate analytical solution is

xA ¼ 0:59512ð1�cosð1:1525tÞÞ: (34)

In Fig. 1 the analytical (xA) and numerical (xN) solutions for F0=0.5 and F0=1 are plotted. It can be concluded that the
approximate solution is on the top of the numerical one. The maximal difference is for the amplitudes, but even this
difference is smaller than 5percent and is negligible.
2. For the pure fifth-order oscillator

€xþx5 ¼ 0:5, (35)

the approximate analytical solution is

xA ¼ 0:62119ð1�cosð1:2429tÞÞ: (36)

In Fig. 2 the analytical solution xA, (36), is compared with numerical solution xN to (35). The difference between the
solutions is seen to be minimal.

4. The oscillator with additional small nonlinearity

The model of the oscillator with additional small nonlinearity is described with (3). The additional nonlinearity
represent the perturbation of the oscillatory system (1). It is known that in the real oscillatory systems the additional
nonlinearity may cause amplitude and phase variations. Such a phenomena should be included into the assumed solution



Fig. 2. Analytical xA (dashed line) and numerical xN (solid line) solutions of pure fifth order oscillator with constant excitation F0=1.
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of (3). Let us introduce the approximate solution as

x¼ F�F�ðtÞcosCðtÞ � F�F�cosC, (37)

where

C¼OtþyðtÞ �Otþy, (38)

F*(t) and yðtÞ are unknown time t functions. The amplitude and phase of vibration, F*(t) and yðtÞ, are the perturbed values of
the previously calculated one, F and y. The solution (37) with (38) has the same form as (4) for (1) but with time variable
amplitude and phase.

In this section the CAM averaging method suggested for truly nonlinear oscillators [21,22] is adopted for solving of
the differential Eq. (3). The developed method is based on the solution of the generating solution (4) of (1) and its first
time derivative. For the trial solution (37) of (3) the first time derivative has the same form as that for the generating
solution

_x ¼ F�OsinC, (39)

for

F� _ysinC� _F
�
cosC¼ 0: (40)

Substituting the time derivative of (39) and the function (37) into (3) we obtain

_F
�
OsinCþF�O2cosCþF� _yOcosCþc2

1ðF�F�cosCÞa

¼ F0þef ððF�F�cosCÞ,F�OsinCÞ: (41)

The two first-order differential Eqs. (40) and (41) represent the rewritten version of the second-order differential Eq. (3) in
the new variables F* and y. Eqs. (40) and (41) are coupled and linear for _F

�
and _y. Separating the variables _F

�
and _y in (40)

and (41) the two uncoupled equations for _F
�

and _y are obtained

F� _yO¼�c2
1ðF�F�cosCÞacosC�F�O2cos2C

þF0cosCþef ððF�F�cosCÞ,F�OsinCÞcosC, (42)

_F
�
O¼�c2

1ðF�F�cosCÞasinC�F�O2cosCsinC

þF0sinCþef ðF�F�cosC,F�OsinCÞsinC: (43)

In general, the two coupled Eqs. (42) and (43) cannot be solved analytically for F* and y. Observing that the right-hand sides
of (42) and (43) are periodic in C with period 2p, the averaging procedure over this period is introduced. It gives the two
averaged expressions in the new variables F* and y

_F
�
¼

e
O

Z 2p

0
f ððF�F�cosCÞ,F�OsinCÞsinCdC, (44)
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F� _y ¼�
c2

1

O

Z 2p

0
ðF�F�cosCÞacosCdC�

1

2
F�O

þ
e
O

Z 2p

0
f ððF�F�cosCÞ,F�OsinCÞcosCdC: (45)

Solving the averaged differential Eqs. (44) and (45) for the initial conditions (2), i.e.,

F�ð0Þ ¼ F, yð0Þ ¼ 0, (46)

the approximate amplitude and phase of vibration are obtained.
Some special cases of additional terms are considered.
1. For the case when the small additional term is a function only of x the relation (44) transforms into

_F
�
¼ 0, (47)

i.e., for the initial conditions (46), it is

F� ¼ F: (48)

Substituting (48) into (45) and integrating, it follows

y¼�
c2

1Fa�1t

O

Z 2p

0
ð1�cosCÞacosCdC�

1

2
Ot

þ
et
OF

Z 2p

0
f ðF�FcosCÞcosCdC: (49)

The approximate analytical solution is

x¼ F�Fcos
Ot

2
�

c2
1Fa�1t

O

Z 2p

0
ð1�cosCÞacosCdCþ

et
OF

Z 2p

0
f ðF�FcosCÞcosCdC

 !
: (50)

The amplitude of vibration is independent of the value of the additional term, but the frequency of vibration is modified.
2. For the case when the small additional term is a function of damping _x

€xþc2
1xjxja�1 ¼ F0þef ð _xÞ, (51)

the averaged differential equations are

_F
�
¼

e
O

Z 2p

0
f ðF�OsinCÞsinCdC, (52)

_y ¼�
c2

1Fa

OF�

Z 2p

0
1�

F�

F
cosC

� �a
cosCdC�

1

2
O: (53)

The amplitude of vibration is a function of the additional nonlinearity, but the phase angle is independent on that value.
Due to damping during the long time (t-1) the oscillatory behavior of the system disappears and the motion stops at a

fixed position which is the steady-state solution of the equation

c2
1xa ¼ F0,

i.e.,

x¼
F0

c2
1

 !1=a

:

The coefficient of damping has no influence on the steady-state position of the system. The higher the damping coefficient,
the shorter the time for the system to get into the fixed position.

5. Examples

(1) To prove the correctness of the suggested procedure the result of CAM is applied for solving of a linear differential
equation with a constant excitation and a small linear damping

€xþc2
1x¼ F0�eb _x, (54)

where eb50 is the damping coefficient. According to (50) the approximate analytical solution is

x¼
F0

c2
1

1�exp �
ebt

2

� �
cosðc1tÞ

� �
: (55)
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Comparing (55) with the exact analytical solution of (54) for initial conditions (2)

x¼
F0

c2
1

þ
F0

2c2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ðebÞ2

c2
1�
ðebÞ2

4

vuuut exp �
ebt

2

� �

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ðebÞ2

c2
1�
ðebÞ2

4

vuuut
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1�
ðebÞ2

4

s
t

0
@

1
A� ebffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
1þ

3

4
ðebÞ2

r sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1�
ðebÞ2

4

s
t

0
@

1
A

2
666666664

3
777777775

, (56)

it can be concluded that for ðebÞ2 � 0 the expression (56) simplifies into (55). Due to the negligible difference between the
relations (56) and (55), which describe the transient motion to the steady-state position xt-1 ¼ F0=c2

1, it is obvious that the
CAM method, developed in the paper, gives very accurate results.

(2) The suggested CAM procedure is applied for solving a pure cubic oscillator with constant excitation and small linear
damping, too

€xþx3 ¼ F0�eb _x, (57)

where eb is the constant coefficient. According to (52) the approximate amplitude is

F� ¼ Fexp �
eb
2

t

� �
, (58)

and the approximate solution is

x¼ F�Fexp �
eb
2

t

� �
cos

1

2
Oþ

3c2
1F2

2O

� �
tþ

3c2
1F2

8ebO ð1�expð�ebtÞÞ

� �
: (59)

For the numerical case when eb¼ 0:01, F0=1 and c1
2=1 the analytical solution is

xA ¼ 0:74981�0:74981expð�0:005tÞcosðð1:31Þtþ14:233ð1�expð�0:01tÞÞ: (60)

The relation (60) describes the transient motion to a fixed position xA=0.99975. In Fig. 3 the analytical solution xA and the
numerical xN for (57) are compared.

In Fig. 4 the x�t diagrams obtained numerically for eb¼ 0:1; 0.5; 0.75, F0=1 and c1
2=1 for large value of t are plotted. It is

evident that for large t the oscillator tends to a fixed position which is independent on the coefficient of damping. The value
of the damping coefficient has no influence on the steady-state position, as it was previously stated after the analytical
analysis. In Fig. 5 the time-history diagrams for eb¼ 0:1, F0=1 and various values of coefficient of nonlinearity c1

2=0.5; 1;
1.5 are plotted. The result obtained for the steady-state solution is compared with analytically obtained one

xA ¼

ffiffiffiffiffi
F0

c2
1

3

s
¼ const: (61)
Fig. 3. x�t diagrams obtained analytically (solid line) and numerically (dashed line) for the pure cubic oscillator with constant excitation and small

damping.



Fig. 4. x�t diagrams for F0=1, c1
2=1. and various damping coefficients: eb¼ 0:1 (dashed–dotted line); 0.5 (solid line); 0.75 (dashed line).

Fig. 5. x�t diagrams for eb¼ 0:01, F0=1 and c1
2=0.5. (dashed–dotted line); c1

2=1. (solid line); c1
2=0.5 (dashed line).
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The following numerical values are calculated: for c1
2=0.5 the analytical value is 1.2596 and the numerically obtained one is

1.259921; for c1
2=1 we have xA=0.99975 and xN=1 and for c1

2=1.5 we have xA=0.87336 and xN=0.873580. Comparing the
analytical and numerical values it can be seen that the difference is negligible.

6. Conclusions

The following is concluded:
1.
 For the pure nonlinear oscillator with constant excitation the period and angular frequency of vibration in the closed
analytical form can be calculated. The period and also the angular frequency of vibration depend on the order of
nonlinearity, value of excitation and the coefficient of nonlinearity.
For higher values of excitation the period of vibration is shorter and the frequency is higher. If the excitation tends to
zero, the frequency is zero. If the excitation tends to infinity, the period of vibration tends to zero. For the linear
oscillator the period of vibration is independent on the excitation.
Increasing the coefficient of nonlinearity the period of vibration decreases. The influence of the parameter c1 is not of
the same order for various types of oscillators. Namely, for the linear oscillator the angular frequency is directly
dependent on coefficient. For higher order of nonlinearity, the influence of coefficient on the period of vibration is
smaller and tends to disappear for large order (a tends to infinity).
2.
 The amplitude of vibration of the pure nonlinear oscillator with constant excitation also depends on the excitation
value, order and coefficient of nonlinearity. In a certain oscillator the amplitude of vibration increases with increasing of
the excitation value. For the oscillator with fixed excitation the amplitude of vibration is higher for smaller value of
coefficient of nonlinearity when the order of nonlinearity is fixed.
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3.
 For the case when additional small perturbation to the oscillator exists, the amplitude and frequency of vibration are
time dependent.
4.
 If the perturbation of the pure nonlinear and excited oscillator is of damping type, for the long time t, the oscillatory
motion stops, and the system gets into a constant steady-state position. The distance from to zero is smaller for higher
values of coefficient of nonlinearity, smaller excitation and higher order of nonlinearity. Besides, the value of the
damping coefficient has no influence on the steady-state position.
5.
 The suggested ‘Cveticanin averaging method’ gives approximate analytical solutions which describe also the transient
motion. The difference between analytical and ‘exact’ numerical solutions is negligible.
6.
 The investigations reported in the paper are of special interest for engineers who are dealing with the problem of
vibration reduction in the oscillator with constant excitation. It can be seen that the proper choice of material of
oscillator (for example, with high coefficient of nonlinearity) decreases the vibration level and when even small
damping exists the oscillations disappear.
7.
 The Duffing problems represent the special case of (3) when a¼ 2. The future investigation will be directed to Van der
Pol problems and also parametrically excited systems like Duffing ones and Mathie–Hill models.

Appendix A. The Euler’s integrals of the first and second kind

Euler’s integral of the first kind also called beta function, B(p,q), is defined as (see [24])

Bðp,qÞ ¼

Z 1

0
up�1ð1�uÞq�1 du, (A1)

which exists for

ReðpÞ40, ReðqÞ40: (A2)

Introducing the new variable x=1�u into (A1), the beta function is expressed as (see [25])

Bðp,qÞ ¼�

Z 0

1
xq�1ð1�xÞp�1 dx¼

Z 1

0
xq�1ð1�xÞp�1 dx¼ Bðq,pÞ: (A3)

The beta function is symmetric in (p,q).
Euler’s integral of the second kind also called gama function is (see [26])

GðpÞ ¼
Z 1

0
up�1e�u du, (A4)

where p satisfies the relation (A2). The connection between the Euler’s integrals of the first and second kind is

Bðp,qÞ ¼
GðpÞGðqÞ
GðpþqÞ

: (A5)

For (p�1)=n, where n is a whole positive number, the relation (A4) modifies into

Gðnþ1Þ ¼

Z 1
0

une�u du¼ n!: (A6)

Thus,

GðnÞ ¼ ðn�1Þ!, (A7)

and the relation between (A6) and (A7) is

Gðnþ1Þ ¼ nðn�1Þ!¼ nGðnÞ: (A8)

Generalizing (A6) for any value of p we have

Gðpþ1Þ ¼ p!, (A9)

and the corresponding relations

GðpÞ ¼ ðp�1Þ!, (A10)

and

Gðpþ1Þ ¼ pGðpÞ: (A11)

Substituting (A10) into (A3) the transformed version of the beta function is

Bðp,qÞ ¼
GðpÞGðqÞ
GðpþqÞ

¼
ðp�1Þ!ðq�1Þ!

ðpþq�1Þ!
, (A12)

which is suitable for calculation.
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