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a b s t r a c t

Methods of passing through resonance zones in mechanical systems are discussed and a

new method based on the speed-gradient energy control of two subsystems (rotor and

support) is presented. Two typical problems of passing through resonance for one- and

two-dimensional motion of the support are posed and analyzed by computer

allow one to significantly reduce the required level of the controlling torque. The

proposed algorithms have a small number of design parameters. Compared with the

known algorithms the proposed ones are more simple for design and exhibit stronger

robustness properties.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Vibrational units with unbalanced (eccentric) rotors are widely used in the industry. An important problem for their
design is to reduce the maximum power of the driving motor achieved during the spin-up mode [1]. The decrease of the
spin-up power leads to decrease of nominal power and, therefore to decrease of the weight and the size of the motor.
Another problem is that in order to obtain the desired mode of vibration it is necessary to control the rotor speed in a broad
range including both pre-resonance and post-resonance regions. The problem of passage through resonance becomes more
difficult when the power of the motor decreases. Therefore solution of both problems is important for developing
vibrational equipment with improved technological characteristics.

First approaches to the problem were based on open loop (nonfeedback) methods [2–6]. In Refs. [2,3] the so-called
‘‘double start-up method’’ was proposed suggesting to switch off and then to switch on again the electric motor in the
near-resonance zone. Switching instants should be calculated in advance and therefore are sensitive to variations of the
unit parameters. In Ref. [4] variations of the acceleration rate in order to minimize the motion during passage through
resonance were proposed. In Ref. [5] the variations of the acceleration rate were optimized using a gradient-based
optimization method. In Ref. [6] saturation control is proposed; special attention is focused on passage through resonance
when the non-ideal excitation frequency is near the portal frame natural frequency and when the non-ideal system
frequency is approximately twice the controller frequency (two-to-one internal resonance).

More recent solutions are based on interdisciplinary approaches encompassing mechanics, control theory and
computer simulations. The key idea to reduce the spin-up power of the unbalanced rotor is to swing the rotor during the
spin-up period by feedback control. Different approaches to the problem were proposed [7–11]. In Refs. [7,8] the control
law for oscillating eccentric rotor was proposed based on optimal design using Pontryagin maximum principle. However
the practical implementation of this law is difficult because of complex calculations required for solving nonlinear optimal
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control problem. In Refs. [9,10] the phenomenon of resonant capture arising in the dynamics of dual-spin spacecraft was
considered. However the control design proposed in the above mentioned papers is based on the averaged equations
depending on coordinates which represent composite functions of initial variables. The design procedure requires
calculation of the averaged angle coordinate of transformed model which is a very labor-consuming process. In Ref. [11] an
optimal control law is proposed providing passage through the first resonant peak with minimum amplitude of the
main mass.

A new approach to feedback control of passage through resonance was proposed in Refs. [12,13] for one-dimensional
motion of support based on the speed-gradient method with energy-based goal functions [14]. Speed-gradient method
was also extended to synchronization and other problems of oscillations control [15,16]. It was shown [14,16] that the
speed-gradient algorithms for energy control of conservative systems allow to achieve an arbitrary energy level by means
of arbitrarily small level of control power. Using this approach for systems with losses allows to spend energy only to
compensate the losses, and to reduce the power of driving motor significantly. However, reduction of the motor power for
systems with several degrees of freedom may increase the influence of resonance and lead to emergence of Sommerfeld
effect and capture. Note that Sommerfeld effect concerns nonlinear jump and capture phenomena induced due to the
influence of the unbalance response on a non-ideal drive around resonance speed [1]. The case of plane motion was studied
in Ref. [7], where the controller was designed using optimal control technique, see also Ref. [8].

In this paper an approach to the problem of controlled passage through resonance zone for multidimensional systems is
presented. The control algorithms based on speed-gradient method and averaging are proposed. Applications to the system
with one-dimensional motion of support (TORA example) and to a two-dimensional system (plane motion of one-rotor
vibrational unit) demonstrate efficiency of the approach. The proposed algorithms allow to significantly reduce the
required level of the controlling torque. The efficiency of the algorithms is studied by means of computer simulation.

2. Problem statement

We use the standard Euler–Lagrange form of mechanical systems description

MðqÞ €qþCðq, _qÞþGðqÞ ¼ u, (1)

where u is the n�1 vector of control torques; q, _q, €q are the n�1 vectors of generalized coordinates, velocities and
accelerations correspondingly; M(q) is the n�n inertia matrix; Cðq, _qÞ is the n�1 vector of Coriolis and centrifugal forces;
G(q) is the n�1 vector of gravity forces; n is the number of the plant degrees of freedom. The losses (Rayleigh dissipation
function) are not taken into account.

We will also use the Hamiltonian form which is convenient for the purpose of controller design. The controlled plant
equations in Hamiltonian form are as follows:

_p ¼�
@H

@q

� �T

þBu, _q ¼
@H

@p

� �T

, (2)

where p,q 2 Rn are the generalized coordinates and momenta; H¼Hðp,qÞ denotes the Hamiltonian function (total energy
of the system); u¼ uðtÞ is the m-dimensional input vector (generalized forces), B is the m�n matrix, mrn.

Formalize the main control objective as approaching the given energy level of the unforced system

HðpðtÞ,qðtÞÞ-H� when t-1: (3)

Introduce the objective function as follows:

Q ðp,qÞ ¼ 1=2½Hðp,qÞ�H��2: (4)

Then the objective (3) can be reformulated as

Q ðqðtÞ,pðtÞÞ-0 when t-1: (5)

Let the additional inequality constraint be given

H1ðpðtÞ,qðtÞÞrD, (6)

where H1 is kinetic energy of first subsystem

H1ðpðtÞ,qðtÞÞ ¼
1

2
_qT

1M11ðq1Þ _q1, (7)

where q1 is the n1-vector of generalized coordinates of the first subsystem; M11(q1) is the corresponding n1�n1 inertia
submatrix. The problem is to design the control algorithm for the system (1) or (2), ensuring the objective (3) under
constraint (6).

3. Design of control algorithms

The idea of solution is based on separation of motions near the resonance. It was noticed by several authors that
relatively slow oscillations of angular velocity may appear near the resonance frequency [7,9,17,23]. In Ref. [17] it was
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shown by means of vibrational mechanics approach that the oscillations of the slow component may be described by the
1-dof pendulum-like equation. A more simple and general analysis including explicit conditions for appearance of slow
motions was proposed in Ref. [23]. For passing through the resonance it was suggested in Ref. [12] to swing the slow
motions up until the total energy H achieves the prescribed level and the energy of the subsystem H1 becomes sufficiently
small. Also it was suggested to apply the speed-gradient (SG) algorithm for swinging the system

u¼�gWðru
_Q Þ, (8)

where _Q is derivative of Q with respect to the Eqs. (2), ru stands for the gradient in u, g40 is gain coefficient. The value of
the vector-function W(z) forms an acute angle with the vector z, i.e. W(z)Tz40 for za0.

Let us demonstrate the SG design procedure for Q chosen as above and for single degree-of-freedom oscillator
€cþPuðcÞ ¼ u with oscillating variable c, potential P(c), momentum p¼ _c and the Hamiltonian H(c, p)=p2/2+P(c).
In this case we obtain

_Q ¼ ðH�H�Þ _H ¼ ðH�H�Þ
@H

@c
_cþ

@H

@p
_p

� �
¼ ðH�H�ÞðPuðcÞp�pPuðcÞþpuÞ ¼ ðH�H�Þpu:

Taking derivative in u we arrive at the SG-algorithm (8) which for C(z)=z looks as follows:

u¼�gðH�H�Þ _c: (9)

For relay-like functions C the SG-algorithms are as follows:

u¼�gsign½ðH�H�Þ _c�, (10)

u¼�gsgn½ðH�H�Þ _c�, (11)

where sign x¼ 1, if xZ0, sign x¼�1, if xo0; sgn x¼ 1 if xZ0, sgn x¼ 0 if xo0. For our purposes the above algorithms or
their modifications can be used where c is chosen as the slow variable near the resonance. To implement the algorithms
(9)–(11) it is necessary to measure the velocity _c of the slow variable c.

In this paper it is suggested to obtain c as the averaged value of the fast variable velocity o¼ _y, i.e. _c as the averaged
value of €y. The averaging is performed by the first-order low-pass filter (‘‘dirty differentiator’’)

T _cðtÞ ¼�cðtÞþ _yðtÞ: (12)

Time constant T should allow to suppress fast motion, i.e. its value should lie in the interval between the periods of fast and
slow oscillation.

It is also proposed to switch on the speed-gradient algorithms (9)–(11) with filter (12) when the first subsystem energy
is large (inequality (6) violates) and to switch to the conventional control u(t)�g40 when Eq. (6) holds. Additionally, to
achieve better performance, the current value of the energy H1 is subject to filtering.

4. Example 1: translational oscillator–rotational actuator

Consider the problem of controlling translational oscillator–rotational actuator (TORA), consisting of a support (cart)
attached to a wall by a spring (Fig. 1). A rotating eccentric mass (unbalanced rotor) connected to the cart is actuated by a
DC motor. Initially this system has been used as a simplified model to study the resonance capture (Sommerfeld effect)
[9,18]. Recall that the capture phenomenon represents the failure of a rotating mechanical system to be spun up by
a torque-limited rotor to a desired rotational velocity due to its resonant interaction with another part of the system [18],
Fig. 1. TORA schematics (horizontal plane).



Fig. 2. Conventional control u(t)�g0: (1) g0=0.49—capture and (2) g0=0.50—passage.
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see also Fig. 2. Similar system (RTAC—Rotational/Translational ACtuator) was proposed by D. Bernstein with coworkers
[19,20] as a benchmark example for nonlinear control and later was called TORA, see Ref. [21]. However, in the existing
control related results only stabilization problem was addressed.

We pose the problem as spinning the system up to the desired energy level under restriction on the energy of its
specified subsystem. The goal is to achieve the desired average angular velocity of the motor under constraint imposed on
the translational oscillations of the cart. The motor torque is assumed to be a control variable. The model of the system is as
follows:

ðMþmÞ€zþk1 _zþmlð €y cosy� _y
2

sinyÞþkz¼ 0, (13)

J €yþky
_yþml€z cosy¼ u, (14)

where z is the displacement of the cart from its equilibrium position, y is rotational angle of the rotor, u=N(t) is motor
torque (control variable). The system has the state vector x¼ ðz, _z,y, _yÞT 2 R4. The total energy of the system is as follows:

H¼
1

2
ðMþmÞ_z2

þml_z _y cosyþ
1

2
ml2 _y

2
þ

1

2
kz2: (15)

The model (13) and the energy (15) can be expressed also in the Hamiltonian form. We want to achieve the control goal

Q ðxðtÞÞ-0, (16)

where Q ¼ ðH�H�Þ2=2 and H * is the desired energy level under the constraint H1(x(t))rD, where D40 and H1 is the
kinetic energy of the cart H1ðxÞ ¼M _z2=2. For control the modification of SG-algorithm (11), (12) was chosen

u¼
g if ðH�H�Þ _co0,

0 else,

(
(17)

where c is the slow variable. Note that the filter (12) allows to obtain the sign of _cðtÞ just comparing the values of _yðtÞ
and c(t).

The numerical investigation of the system performance for different values of controller parameters g and T was carried
out by means of MATLAB software. The system parameters were taken as in Ref. [22]: J=0.014 kg m2, M=10.5 kg, m=1.5 kg,
l=0.04 m, ky=0.005 J s, k=5300 N/m, k1=5 kg/s. For comparison the time history of angular velocity of the rotor driven by
constant torque u(t)=g0 is presented in Fig. 2. The capture (for g0=0.49) and pass-through (for g0=0.50) phenomena can be
observed.

In the first series of simulations with the algorithm (17), (12) the value of the controlled torque was chosen as g0=0.2,
which is significantly less than the capture threshold g0=0.5. The values of time constant T were tested in the interval from
T=0.1 to 2 s. The values of T corresponding to the fastest passage through resonance frequency were close to the period of
slow motions: T * E0.7 s. In the second series of simulations we chose T=0.7 s and decreased g. The results are shown in
Figs. 3 and 4 (for g0=0.26 and H * =11).

The simulation results confirm that the algorithm (17), (12) achieves significant reduction of the torque required for
passage through resonance.



Fig. 3. Controlled passage through resonance, g0=0.26.

Fig. 4. Energy plot for proposed control: g0=0.26, Hn=11.
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5. Example 2: vibrational unit with plane motion of support

5.1. Problem statement

Consider the following system of differential equations describing the plane motion of one-rotor vibrational unit
(see Fig. 5) [13]:

J €jþkj _jþmeð €x cosjþ €y sinjþg sinjÞ ¼ uðtÞ,

ðMþmÞ €xþkx _xþcxxþmeð €j cosj� _j2 sinjÞ ¼ 0,

ðMþmÞ €yþky _yþcyþmeð €j sinjþ _j2 cosjÞ ¼Mg, (18)

where j is the rotor angle, x, y are the coordinates of the platform, u(t) is the control action (rotating torque of a motor), J is
the moment of inertia of an unbalanced rotor (disk), m is the mass of a rotor, M is the mass of a platform, e is the
eccentricity of the rotor center of mass, c, cx are the shaft torsional stiffness, kj, kx, ky are the redamping factors.

It is well-known [23], that the ‘‘capture’’ of angular velocity of a rotor (Sommerfeld effect) sometimes takes place in the
near-resonance zone. The capture phenomenon happens when the level of constant control action u(t)�M0 is small. If the
level of constant control action u(t)�M0 is higher, the system passes the resonance zone (see Fig. 6) for the nominal values
of system parameters: J=0.014 kg m2, M=10.5 kg, m=1.5 kg, e=0.04 m, kj=0.01 J s, c=5300 N/m, cx=530 N/m, kx=ky=5 kg/s.

The problem is to design the control algorithm u¼Uðx, _x,y, _y,j, _jÞ, providing the spin-up of unbalanced rotor until the
speed exceeds critical resonant value. The level of control signal is restricted and does not allow the passage through
resonance when the control signal is constant. The existing optimal control algorithms [7] are hard for implementation and
are not sufficiently robust.



Fig. 6. Angular velocity for conventional control u(t)�M0: (1) M0=0.80—capture and (2) M0=0.81—passage.

Fig. 5. One-rotor vibrational unit.
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5.2. Design of control algorithms

To describe the proposed control algorithm first describe the way to define the time of passing through resonance zone.
It is proposed to measure the depth of the resonance by the average energy of the rotor center of mass motion, which is
proportional to ð _x2

þ _y2
Þ. A related measure for oscillatory motion is the average sum of coordinate squares x2þy2 which is

decreasing when system is passing through the resonance zone. This fact is confirmed by simulation: the sum x2þy2

increases when the level of constant control action is small and does not allow system to pass through the resonance zone.
In case of higher control torque, the average sum of coordinate squares x2þy2 increase in the pre-resonance zone and
decrease in the post-resonance zone.

In order to smooth the variable x2þy2 we introduce the additional low-pass filter:

Ty
_yðx,y,tÞ ¼�yþx2þy2, yð0Þ ¼ _yð0Þ ¼ 0, (19)

where Ty40, Ty=const is the algorithm parameter. The filtered variable y(x, y, t) increases when the system is in the pre-
resonance or resonance zone. In the post-resonance zone the value of y(x, y, t) decreases significantly in comparison with
the maximum value. Thus measuring the variable y(x, y, t) of the filter (19) allows estimate the time of the passage through
resonance. This fact is confirmed by computer simulation, see Fig. 7.

To synthesize the control algorithm we use the speed-gradient method. At this stage we suppose that the control plant
is conservative, i.e. the friction equals to zero. The control goal is to find controlling function u(t) providing the goal
equality Hðx, _x,y, _y,j, _jÞ ¼H�, where H(U) is a current energy, H * is the given energy level corresponding to the desired
average rotation speed. Choose the goal functional Q ðzÞ ¼ 1=2ðHðzÞ�H�Þ2, where z¼ ½x, _x,y, _y,j, _j�T. The ‘‘relay’’ form of
speed-gradient algorithm designed according to the proposed approach is as follows:

u¼

(
M0 if ðH�H�Þð _j�cÞ40,

0 else,

Tc
_c ¼�cþ _j,

8>><
>>:

where c(t) is the filtered variable, Tc40, Tc=const.



Fig. 7. Plot of y(t) for u(t)�M0: (1) M0=0.80—capture and (2) M0=0.81—passage.
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However the efficiency of this algorithm is rather low because of high amplitude of rotor oscillations. So the value H *

may be achieved in the resonance zone. Also this algorithm requires choosing the value H * for every set of plant
parameters, and this task has no evident solution.

Thus we propose to exclude the factor H�H * having the negative sign in the post-resonance zone, from the algorithm.
We also propose to switch off the feedback term in the post-resonance zone, keeping only constant control torque.
The algorithm is modified as follows.

The variable g1ðtÞ:

g1ðtÞ ¼max
½0,t�

sgn½Ksup
½0,t�

yðtÞ�yðtÞ�,

is introduced, where K40 is the algorithm parameter. The properties of the variable y(t) allows to say that g1(t)=0 means
that the system is in the pre-resonance or resonance zone (there was no significant decrease of y(t)). Also g1(t)=1 means
that the system is in the post-resonance zone. Thus, g1(t) characterizes the current behavior of the system if K is properly
chosen. The value of K should be sufficiently small to guarantee that the system is already in the post-resonance zone.
At the same time the unjustified decrease of K may reduce the efficiency and transient time of the proposed algorithm.

Finally, the algorithm takes the form

uðtÞ ¼

(
M0 if g1ðtÞ ¼ 1,

M0 if g1ðtÞ ¼ 0 and ð _j�cÞo0,

0 else,

Tc
_c ¼�cþ _j,

g1ðtÞ ¼max
½0,t�

sgn Ksup
½0,t�

yðtÞ�yðtÞ

" #
,

Ty
_yðtÞ ¼�yðtÞþx2þy2, yð0Þ ¼ _yð0Þ ¼ 0:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(20)

The value of Tc (time constant of the angular velocity filter) should be more then the period of the resonant oscillations.
At the same time, if the value of Tc is too high, the algorithm works slowly.
5.3. Simulation results

The proposed control algorithm was numerically examined to analyze its efficiency. Numerical integration was made in
MATLAB environment by means of Runge–Kutta method of second order. The value of the fixed step equal to 0.00025 s was
chosen so as the relative simulation error does not exceed 5%.

The nominal values of system parameters were chosen as in Ref. [22]: J=0.014 kg m2, M=10.5 kg, m=1.5 kg, e=0.04 m,
kj=0.01 J s, c=5300 N/m, cx=530 N/m, kx=ky=5 kg/s. It is seen that the value of the rotating torque of a motor, allowing
system to pass the resonance zone for u(t)�M0, is reduced in almost two times by means of the proposed algorithm (Fig. 8).



Fig. 8. Angular velocity of controlled system, M0=0.46.
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6. Conclusions

New algorithms of passing through resonance zone for mechanical systems are proposed and analyzed by computer
simulation. The algorithms are based on speed-gradient method and allow to significantly reduce the required level of the
controlling torque. The algorithms have small number of design parameters and, compared with the known algorithms are
more simple for design. It is planned to test the proposed method experimentally on the two-rotor vibrational set-up
(promising numerical results are presented in Ref. [22]).
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