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1. Introduction

The propagation theory of waves in elasticity and thermoelasticity is completely solved many years ago [1], but the
literatures of the reflection and transmission problem in piezoelectric and pyroelectric materials are few. In appendix of a
paper, Wang [2] discussed the reflection and transmission problem on the interface in piezoelectric materials under the
dynamic antiplane mechanical loading. Burkov et al. [3] discussed the reflection and transmission of bulk acoustic waves in
piezoelectric materials under the action of an external electric field. In their studies they got the wave vector and their
corresponding wave amplitudes from the Christoffel’s equation at first, then they added the amplitudes of all wave modes
of the electric potential together and multiplied it by a new amplitude constant. So they could get all the amplitudes of
different wave modes through the interface continuum conditions. However, the solution obtained by this method did not
satisfy the momentum equation, because the momentum equation gives a certain relation between the amplitudes of
displacements and electric potential. Sharma et al. [4] discussed the reflection of piezothermoelastic waves. In their theory,
the amplitude coefficients of waves are related to the positions on the interface. The main puzzle in the reflection and
transmission theory of waves in piezoelectric and pyroelectric materials is that the electric potential has not its own
independent wave mode under the postulation of quasi-static electric field [5-7]. Kyame [8] discussed a special case of
piezoelectric wave. In his discussion he abandoned the postulation of the quasi-static electric field. He let the
displacements and electric potential satisfy all the piezoelectric equations and Maxwell electro-dynamic equations.
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However, the velocities of the elastic waves are much less than the velocities of the electromagnetic waves, so these two
physical phenomena are difficult to couple each other.

In the geophysical field the inhomogeneous wave theory has been extensively researched for the viscoelastic media [9-12].
As in the previous paper [6,7] in this paper we introduce this theory into the pyroelectric and piezoelectric materials.

To solve the reflection and transmission problem of inhomogeneous waves in piezoelectric and pyroelectric materials, we
[16] found that an extra independent surface wave is revealed on each side of the boundary surface except the bulk reflection
waves and the bulk transmission waves. The surface wave has the same wave vector component with the component of bulk
wave along the interface (along the x; direction). In this paper the reflection problem from the interface of the pyroelectric
material and vacuum is studied in detail and some numerical results are given. In two dimensional reflection problem there is
only one quasi-transversal wave, so there are only three wave modes in pyroelectric materials and two wave modes in
piezoelectric materials. Our numerical researches show that the surface wave exists certainly in the wave reflection and
transmission problem.

2. General inhomogeneous wave theory
2.1. Governing equations of pyroelectric media

The governing equations of the pyroelectric media can be found in many literatures [4,6,13-16]. The constitutive and
heat conductive and geometric equations are
gijj = ijklgklfekijEkfocij'gy Di = EijEj+eik[8k1+Ti9y
S= OCijSij—i-T,‘Ei—i-C-g/To, qi= —)uiijJ, 9= T—To,

1
&= i(uk,l"‘ul,k)v Ex=-¢ (1)

where u, €, @, E, T, Ty, q are the displacement, strain, electric potential, electric field, temperature of the medium,
temperature of the environment and heat flow; Cjju, ex;j, €4, %i, Tj, C, 4;; are the elastic, piezoelectric, permittivity, thermo-
mechanical, thermo-electric, heat capacity and heat conductive coefficients.

In literatures there are several generalized dynamical theories of piezothermoelasticity. In this paper, only two theories
are used. In the inertial entropy theory [15,16] the entropy and conductive equations are

TS+ T8 = —q;;, $9=Cwl/To, qi=—24T; (2)
where s(is the inertial entropy, o is the inertial entropy coefficient or the relaxation time. In Lord-Shulman theory [17]
the entropy equation and heat conductive equation are
TS =—qii, qi+wd;q; = /4T (3)
Substituting Eq. (2) or Eq. (3) into the momentum equation and after some manipulations the governing equations of the
pyroelectric media in displacements, electric potential and temperature are obtained as
CijkiUk jj + €1 P g —%idj = plliy, €Uk i— €@ ji+1;9;=0
Tgaij(éij + oy éij)+To‘Ei(Ei+w2Ei)+pC(3 +wd) = /1,']9J,' 4)
In the inertial entropy theory w;=ww,=0 and in Lord-Shulman theory w,=w,=1. The relaxation time only affects the
wave attenuation and its effects on the wave velocity and the wave mode are very limited in the stationary reflection and
transmission problems [6]. The numerical results show that the difference in reflection and transmission problem between
these two theories is small for small relaxation time. So in the following we discuss these two theories together and do not
distinguish them.
In piezoelectric materials the governing equations can be obtained from that of pyroelectric materials by making the

terms containing temperature equal to zero. So the problem discussed here for pyroelectric materials can also be used
directly to the piezoelectric materials. In piezoelectric materials Eq. (4) becomes

CijtaUp 1+ €1 P i = Plis  CiraU li—€ijP ji =0 (5)

2.2. Homogeneous and inhomogeneous waves

In general a plane attenuation wave f can be expressed as
f=fo eillcx—mt) =fo ei(kmx,,.—wr)v k=P-+iA, P=Pn, A=Am
ki =Prj+iAm;, P =1/(Pn1)’+(Pn2)>, 4A=\/(Am;)* +(Amy)*
k> =k k=P>-A?+2iP-A, c=w/P (6)

where f is the amplitude of f, w is the circular frequency, c is the phase velocity of the wave, k, with components ki, k», is a
complex wave vector for a attenuation wave. In general the real part P and imaginary part A are all vectors. P=Pn, where
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Fig. 1. Wave propagation direction n, attenuation direction m and the attenuation angle y.

n=[sin0, cos0]" is the wave propagation direction, 0 is the angle between n and the coordinate axis x,. The plane
perpendicular to n is the equiphase plane; A=Am, m = [sin(0+7), cos(0+7)]" is the maximum attenuation direction, y is
the attenuation angle and cosy =n-m (Fig. 1). The plane perpendicular to m is the equiamplitude plane. If nm, we call
the wave the inhomogeneous wave and k is expressed by (P,A,0,y). If n=m,k=(P+iA)n, we call the wave the homogeneous
wave and k-x=kn;x;, k=P+iA, so k can be expressed by (P,A,0).

2.3. Inhomogeneous plane wave in pyroelectric materials

For the inhomogeneous plane wave propagated in an infinite space we can assume
u, = Uy ei(k,,,x,,,—wt)' Q= (pei(k,,,x,,,—(ut)' 9= @ei(kmx,,,—wt)' k=1-3 (7)
where Uy, @, © are amplitudes of uy, ¢, 3, respectively. Substituting Eq. (7) into Eq. (4) we get the Christoffel’s equation
AROWU=0, U=[U,U;U3,Us,Usl", Us=®, Us=0

Iri(—pw? IRPILY) I'3(k) e; (k) io} (k)
I1(k) Iy )—par? I'3(k) es (k) io5 (k)

A= I'31(k) I'3(k) I'33(K)—pw? ex(k) i3 (k) (8)
e;(k) e5 (k) e5(k) —e*(k) —it*(K)

Toor; (K)E; Toos(K)&q Tooz(K)Ey  —Tor* (K¢, A"—ipCE

where
Ti(K) = Gjakiky, e (K) = egiikikj, o (K) = oik;
K =1ikj, € K) = ejkek;, AT K) = Akik;
& =w—iwtwy, & =w-iw*w,, &=ow-iv*w (9)
If U has nontrivial solution, then the determinant of the characteristic matrix A must be vanishing, i.e.
|A]=0. (10a)
Substituting k;=Pn;+iAm; from Eq. (6) into (10a) and decomposing |A|=0 into the real and imaginary parts, we get the
following coupling real equations in (P,A,0,y)
Re|A|=0, Im|A|=0 (10Db)

For given (6,y), we have enough equations to solve the unknowns (P,A). Because the expressions of Eq. (10b) are very
tedious, so it is not given here, but it is easily generated by numerical computation. The range of y is determined by that
(P,A) should be nonnegative real value. It is found that y should be in the range (-n/2,7/2) [7,9,18]. However, how to
determine 7y is still an open problem [11,12].

Eq. (10) is a 5 x5 complex matrix, or two coupling 5 x 5 real matrix. But the electric potential has not its own
independent wave velocity. It is to say that along one propagation direction (the opposite propagation direction is not
considered here) Eq. (10) only has four independent complex eigenvalues, and the eigenvalue corresponding to ¢ is zero,
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which means that ¢ has the independent mode with infinite propagation velocity [5,6]. It is emphasized that ¢ can still
propagate with mechanical and thermal wave velocities through constitutive equations.

As shown above and numerical results, Eq. (10) has four independent complex eigenvalues k;=Pn+iA;m (i=1-4). The
four phase velocities c; corresponding to k; are

G=/P, Pi=1/(Pmy)?+(Piny)? an

The quasi-longitudinal wave has the fastest phase velocity, the temperature wave has the slowest phase velocity, two
quasi-transversal wave have the middle phase velocity [5,6].

Corresponding to each complex eigenvalue k; the amplitudes (or the eigenvectors) U; can also be determined through
Eq. (8) and the ratio U;;:U,;:Us;: @;: ©; is definite, so only one of the five components is undetermined, say U;;, and all other
components can be expressed by it. So the general solutions of the wave propagation problem in an infinite space can be
written as

4 i(KjmXm — ot 4 i(kjmXm —t 4 i(kjmXm —t
U = Zj:l ﬁjUkjel( jmXm (J)_ ®= Zj:] Bj¢jel( jmXm a))' 9= Zj:l ﬂj@jel( jimXm—t)
ei(k,mxm—wt) _ ei[(l’/n+iAjm)x—wt] — e—Ajm»xei(Pjn-x—wt) (] 2)

where f;(j=1-4) is the undetermined amplitude coefficient and U; is completely determined by making one, say Uy;, of the
five components equal to 1.

2.4. Governing equations in piezoelectric materials

In piezoelectric problem Eq. (8) becomes

AK U =0, U=[U;,Us,Us,Us]", Us=0,

I'11(K)—pa? I'2(k) I'3(k) e; (k)
Ao (k) Iy (K)—par? I3(k) es (k) (13)

- I'31(k) I'3(k) Is3(K)—pw?®  e3(k)

e; (k) e5 (k) e5(k) —e*(k)
where
Fik(k) = Cijklkjklv e:‘(k) = ek,-jkkk-, G*(k) = ijkkkj (14)
Eq. (12) becomes
3 (K X —cr 3 (ki X —
U = Zj i ﬂjUkj el(k]me wt), Q= Zj » ﬁjd)j el(kjmxm ot) (15)
X,
7
Pm.,", transmitted waves
medium 11 o“:-ﬂ AY

medium 1

AO
incident waves

reflected waves

Fig. 2. General sketch of incident, reflection and transmission waves.
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3. Reflection/transmission problem in inhomogeneous materials
3.1. Continuous conditions on the interface of pyroelctric materials

Consider the problem of two bounded semi-infinite pyroelectric materials with the interface x,=0 subjected to a
harmonic incident wave of frequency w with an incident angle 0, as shown in Fig. 2. The continuous conditions on the
interface are

I 11 1 1 1 1
u=u, @'=¢", I=39
a nl +0unu 0, Dlnl+D'nll =0, ib&ljn +)vf]'9{,l n_ (16)
where 2;;9; and ;9] are equivalent to g} and g!', respectively, where n!' = —nl.

3.2. Reflection and transmission waves in pyroelectric materials

Let an incident wave with a wave vector k'®is in the semi-infinite plane I,x, <0 and expressed by

(0)

u(O) U(O) ik X —t) qD(O) (D(O) (KO X — wt) 9(0) @(0) i(kQ X —ot) (1 7)

where U;f),(l?(o),@(o’ and kK are all known. The reflection wave in the semi-infinite plane I, x, <0 can be expressed by

u® N (1) [ (1) QiKY Xm—2t) " _ N (1) (1) 1(I‘:,:x,,,—wt) " _ N (1) (1) ik X —ct)
k_Zj:Iﬁj Ukje ! @ _ijlﬁ q) ! 4 _ijlﬁj @je ! (18)

And the transmission wave in the semi-infinite plane II, X, > 0 can be expressed by
(t) N (t) 1 1(t) 1(k xm—wt) ) _ (t) (1) 1(k 2 Xm—t) t _ (t) () 1(k“’xm—wt)
Uy _Zj:1ﬁ U ¢ _ijlﬁ (15 . 9 _217113 @ (19)

In Egs. (18) and (19) N is the number of the independent waves which will contain four bulk waves and one surface
wave, which is revealed in the reflection and transmission problem of waves. The behavior of the surface wave can be seen
in [19,20]. It is obvious that

u}< - ugf)+u;<”, uk u(kt)’ P'= O, @l =0, 9= 9O g gl _ g®
ay=0+a, af=ay, Di=D"+D{", DI'=D" (20)
Substituting Egs. (17)-(20) into (16) one can get

KP =k =k, Kk =PY+AY =PPny +iAPmy, (a=rt; j=1-N) (21)
which is also shown in Fig. 2. Decomposing Eq. (21) into real and imaginary parts, we get
POsing® = P(”smﬂ‘” P“’smé?(”

A<°>sin(e<°)+y<0>)=A;”sm(e;” y;”)=A;“ sln(e;f)+y;f>) (i=1-N) (22)

5

(1) ] .
P s ; transmitted waves

medium 11

medium 1 X

reflected waves
incident waves

Fig. 3. General sketch of incident, reflection, transmission and surface waves.
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From Egs. (11) and (22) we can get the generalized Snell’s law (Fig. 3):

sing®  sind”  sin6!? W

_ _ ©) _ n_ L o _ W i
= = , (V=— ¢'=—, ¢ =— =1-N 23
c© c}” c}” PO’ i Igj(r) j p]gn U ) (23)

In general 0© 7&()}” due to the anisotropic behavior of materials. So that the 4N real unknowns, ()(” ()m,yj(r)

Jj can be determined by Egs. (22) and (23).

It is emphasized that in two cases unknowns are different. Case (1): The problem of the bulk waves propagating in an
infinite space: In this case Eq. (10) is for given (0,y) to solve unknowns (PA). According to Eq. (6) in this case though k;j; and
ki are complex numbers, but they are only related to two real constant P; and A;, or complex constants k;j; and k;, are

related each other. There only four pair (P;,A;) can be obtained, so we have k(“) P(“)n+ IA‘“)m , where j=1-4; a=r,t. Case

0, for each

(2): The problem of the reflection and transmission problem: From Eq. (21) it is known that k;; is given, i.e. kK = K = k](?,

the components k(” and k‘” are unknown complex constants and not related to kj;. It is fortunate that in this case five I<( )
and k(” (j=1-5) can be obtained and an independent surface wave is revealed in them, which can supplement the lack of

the mdependent bulk electric wave to satisfy boundary conditions. It is also noted that in case (1) if k;; is given , then k;; is
determined only by one real number; however, in case (2) given kj;, kj, is still determined by two real number or one
complex number. So in case (2) we can get an extra independent surface wave, but in case (1) we cannot.

All the physical variables in the incident wave are known. In the reflection and transmission waves there are five

unknowns [fj(.” and [ij(.“ corresponding to four bulk waves and one surface wave, so that we have total 10 complex

unknowns to satisfy 10 complex interface continuous conditions (see Eq. (16)). Therefore, the number of the boundary
equations is equal to the number of unknowns. This situation shows that the reflection and transmission waves are
complete.

3.3. Reflection and surface waves in vacuum/semi-infinite pyroelectric materials

If the medium Il is a vacuum and on the boundary (interface) the stress, electric displacement and heat flow are all free,
the wave cannot transmit to vacuum from the medium I, so that all variables in vacuum can be neglected. In this case there
is no transmission waves, i.e.

Ejf)nll — G"Tl" D(f) ll Dll Il ;L" g(f) II )l]l‘(;{lln{l -0 (24)
and the boundary conditions on the boundary x,=0 of the pyroelectric medium become

Oaly = (a(z‘;)+0'(2?)n2 =0, Dyny= (D(ZO)+D(2r)> n,=0

)~2j19Jn2 = /IZj (9(]0) +l9(dr)) n,=0, j=1-3, ny=1 (25)

3.4. The reflection/transmission waves in piezoelectric materials

In piezoelectric materials Egs. (17)-(19) become

u(o) U(o) 1(k:3’xm—wt) q0(0) — @O0 ei(k',g‘xmfwf)

(") _ (" () 1(k"‘x ot " _ (1) (1) @ik xm—1)

Uy _Zj—lﬁj UkJ " ¢ _Z]qﬁ (p e

(t ()7 1(t) SiKD xm—ot) ) _ (t) 4,(t) l(k“’xm—wt)

Uy _ijlﬁj Uy e @ _ZJ—1ﬁ P (26)

The continuous conditions on the interface Eqgs. (16) and (20) become
U@ +ul =u?, (aw) + Jm)n — Jmnn 0O+ " = ), (D(") + D(”) =DOn!! (27)

It is emphasized that there are three elastic bulk waves propagating in the homogeneous infinite piezoelectric materials
and the elastic bulk waves do not attenuate. So in Egs. (13) and (26) we can get three real wave vectors k;(i=1-3). But in the
reflection/transmission problem of wave propagation in piezoelectric materials, except three bulk waves with real wave
vector k;, a surface wave with complex wave vector ks will appear. So in the reflection/transmission problem of wave
propagation in piezoelectric materials we should use u(” 00, u(t) @® with complex wave vector in Egs. (26) and (27).
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4. Two dimensional reflection problem in vacuum/semi-infinite pyroelectric materials
4.1. Fundamental formula in two dimensional reflection problem

In two-dimensional case all the variables are independent to x3 and us is neglected, so there is only one quasi-
transversal wave. In this case the Christoffel’s equation (8) becomes

AKoU=0, U=[U;,Us,Us,Us]", Us=®, Us=6

I'1(k)—paw? I2(k) er (k) o (K)
Ao | Ta® Ip®-pw®  e5(k) iozs (k) (28)
- ex(k) e5 (k) —e*(k) —it*(K)
Toor; (K)E4 Tooz(K)é; —Tor*(K)é, A"—ipCE
It is noted that in Eq. (28) k\” = k(” (G=1-4).
The boundary conditions (25) on the boundary of the pyroelectric materials become
o9 +08 =0, DP+DY =0, ip(9P+97)=0, i=1.2 (29)
From Egs. (1), (17), (18) and (29) we get
Ci2klk;0) U;O) +eki21<;:)) O +iotp 60 + 24: ﬁ(-r)( lzklk(r) UIZ) +ek,'2kj(~lr<) (I)-;r) +iogp @}r)) =0, i=1,2
eak” U — gk @ —i,0© + Z B (e kU~ emlcj(.,”@;”—i'cz@;”) =0
7k 0 4 Zj B nkPe" =0 (30)

Eq. (30) contains 4 complex equations with 4 complex unknowns 8,55,87,83 = %, so the problem is solved.
4.2. Example

As an example we discuss the two-dimensional reflection problem from the interface of BiTiOs/ vacuum. When ox; is
the pole axis, the material constants of BiTiO3 in Voigt compact form for two-dimensional problem are (the usual three
subscript piezoelectric coefficients in tensor form are changed to two subscript piezoelectric coefficients in Voigt vector
form as: e;11 = €21, €222 = €22, €112 = €16)

C11=15.0x 10"°Pa, C;3=6.6 x 10'°Pa, Cy; =14.6 x 10'°Pa, Cgs=4.3 x 10'°Pa,
ey =—435C/m?, ey =175C/m? es=11.4C/m?> €;1=9.87 x107°F/m,
€3=11.15x 107°F/m, @;; =853 x 107%1/K, &, =1.99 x 1071/K,
i1 =11]/msK, Ay =3.5]/msK, 1,=553x103C/m*K, C=500]/kgK
p=5700kg/m>, w=10""", w=2mx10%1/s (31)
The thermo-mechanical coupling coefficients o; can be calculated as follows:

o1 = (Cr1+Ci2)011 +(Cra+-€21)022, Oz = 2C12811 +(Can +-€22)022 (32)
Three bulk wave vectors, phase velocities and the ratios of the quasi-longitudinal, quasi-transversal, temperature wave
amplitudes for =20°, y=0° propagating in an infinite space are
ki1 =(390.37, 1072.537); ¢4 =5504.97
Kk, = (774.57+1.14 x 1077i, 2128.11+3.12 x 1077i); ¢, =2774.42 (33)
k; = (570019.87 4+ 569661.83i, 1.57 x 10°+1.57 x 10%); ¢3=3.77

It can be seen from Eq. (33) that the attenuation of the elastic waves is very small, but the attenuation of
the temperature wave is very large. Any one of the three waves corresponding to ki, Kk, K3 can be used as the incident
wave.

(1) As an example the incident quasi-longitudinal wave is discussed. The incident waves are
u(O) U(O) (kD X — o) u(O) U(D) i Xy — —on 9O _ @(0) ik Xy — o 0 ,I)(lO) ik xn—at)

U UR: 00 o =2.11 x 1071°-2.51 x 10~ "%)
:(6.28 x 107 10—6.14 x 1071%) : (=1.27 x 10711-0.000054i) : (1.0) (34)
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From Eq. (28) we get the wave vectors of the reflected wave are

k! =(390.37, —1072.53—4.04 x 1078i); €1=5504.97

k) = (39037, —2229.26-9.56 x 10~%i); €2 =2776.26

k) =(390.37, —1597811.46—1596807.85i); c3=3.93

kY =k =(390.37, 8.68 x 1079-368.07i); c;=16095.46 (35)

where the components k{’, k3’ and k{’ are just wave vectors of bulk waves, ki’ =k’ is the wave vectors of the new
surface wave which attenuates along x, direction. It is also noted that in Eq. (35) the relation k{” =Kk (j=1-4)
is used.

The ratios of the bulk and surface wave amplitudes for §=20°y=0° are

un v o0 : @ =(-2.11 x 1071°41.50 x 107 ) :
(6.28 x 1071°-3.24 x 107 %) : (1.27 x 107" +5.39 x 107°i) : (1.0)

4 77171 6x10°

C X

35 S

- /] 5x10°®
5 3f =l £
e C o [p@ 1 %
=t A o 7 4x100 2
5 2.5 C —cA-- |/3| m : ‘E
e <= 1f® ¥ §
g o X1 3x10° 2
= u Xa i @
= 15 f o ] :
S 15 F £ ] g
g : e 2x10° £
£ 1 M
< L

. 1x10

05
0 Lee 0
0° 20° 40° 60° 80°

Incidence Angle

Fig. 4. Variations of modulus of the reflected and surface wave amplitude coefficients \B(i)| with 0 for quasi-longitudinal incident wave with y=0.

(a) (b)
1 u% — 77— 2%107 s 1x 1010
i T r -1
8x10
0.8 . N X
r T 15x107 F —o— O
Lo - B L
D (s) v -11
6 I | % | =4 6x107" B
5 06 [ 1 = L ] 5
2 L 1 =z L ] 5
= = 7 S
= - 1 % 1x107 | + ax10™M g
= o J o
2 T 1< I E
° 04 | 4 & | | 5
5 | 15 ] :
2 m i - 2x10" &
w § T r 4
r 1 5x108 1
02 - L i
r 4 L 4o
0 P R PR = - =1 = = 0 Leoee R R PPy
0° 20° 40° 60° 80° 0° 20° 40° 60° 80°
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Fig. 5. The variations of the reflected elastic wave energy ratios with 0 at y=0 for quasi-longitudinal incident wave: (a) e, e® ~ 0 and (b) e®, e® ~ 0.
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Uy Uy 09 : ) = (6.78 x 107°+5.07 x 107 "7i) :
(1.11 x 1072 +7.61 x 107'8j) : (-=2.97 x 10719-3.05 x 107%i) : (1.0)
Uy Uy 0y : ¢ =(-6.32 x 1074 +6.32 x 107 1%) :
(5.80 x 10711-4.54 x 10718j) : (29.27—29.29i) : (1.0)
Uyl :UP 0 : &) =(—1.18 x 107*'-4.57 x 10" '%i)
:(2.92 x 10712 4+3.92 x 1072%i)— : (0.000021+3.55 x 10~ 31) : (1.0) (36)

For different (0,y), the numerical values in Eqs. (33)-(36) are different. Their numerical values should be computed by
numerical calculation for every case.

Comparing Eqgs. (33) and (35) it is found that though three bulk wave velocities are almost the same in two equations,
but their amplitude ratios are different. This situation shows that the amplitude ratios of the bulk reflection waves in
the reflection problem are different with the waves propagating in free space.

Fig. 4 shows the variations of the modulus of ratios (8V,8%,%) of the reflected wave amplitude coefficients and the
modulus of ratio ) of the surface wave amplitude coefficients with 0 for y=0. Fig. 5 shows the variations of ratios of
the reflected and surface wave energy flows e),e®,e® e®with 0 for y=0. The general expressions of the wave energy
flow and its ratio of the reflected wave with the incident wave are defined as

Wi = —0oytl+@Di— 23k 3/To, €V = WP >/<W§0)> (37)

where the symbol ¢ > expresses the average value over one period of a physical variable, WZU) is the energy flow
component corresponding to ) along x, direction.

The difference of the results for =0 and #0 is very small for small relaxation time, so we only give the results for y=0.
This means that the solution can be discussed directly by the homogeneous wave theory for the problem with small
relaxation time.

From these figures it is seen that: (1) In the wave reflection problem from an interface between pyroelectric medium
and vacuum, a surface wave is generated. From the generalized Snell’s law Eq. (23) and numerical results it is seen that
the phase velocity ¢ of the surface wave is strongly dependent to the incident angle 0 of the quasi-longitudinal wave:
0—-m/2, cs—cq;0-0, cs— co,but the amplitudes of the surface wave are approach zero.

(2) When the incident wave is elastic wave, the component e®) of the energy flow along the direction x, from the
boundary x,=0 is mainly contributed by the elastic wave modes, the effect of the reflected temperature and surface
wave modes is very small. This is just the character of a surface wave. (3) There has only the quasi-longitudinal
reflection wave for the incident wave with 6=0. (4) The attenuation angle y almost does not play role when the
incident wave is elastic wave.

When the wave vector k, the ratios of the bulk and surface wave amplitudes U : U3 : ©{ : @” and the amplitude
coefficient fU)(i=1-4) are solved, from Eq. (18) it is easy to get the solution of the reflection wave.

5. Conclusions

In this paper, the reflection and transmission theories of waves in pyroelectric and piezoelectric medium are studied. In
this problem the puzzle is that the electric potential does not have its own independent wave mode under the postulation
of quasi-static electric field. There are only four independent wave modes for the five-order Christoffel’s equation of waves
propagated in an infinite homogenous space. However, in the reflection and transmission problem there are five complex
boundary conditions in the pyroelectric medium. It is a problem whether the reflection and transmission problem in the
pyroelectric medium is solvable. In this paper we find that in the reflection and transmission wave problem a surface wave
mode in each side of the boundary surface will be revealed except the four bulk wave modes propagating in an infinite
homogenous space due to the general Snell’s law. The surface waves have the same wave vector component with the
incident waves on the interface plane. The surface wave was not found in the previous literatures. The surface wave and
the bulk waves together can just satisfy the boundary conditions. The two dimensional reflection problem of waves at the
interface between the semi-infinite pyroelectric medium and vacuum is researched in greater detail. The numerical
example of the two-dimensional reflection problem from the interface of BiTiO3/ vacuum is given. Our numerical example
shows that there exists a surface wave mode certainly. It is also found that the ratios of the amplitudes of the bulk waves in
the reflection problem are different with that in the propagation problem in an infinite homogenous space. The difference
of the results for the attenuation angle y=0 and #0 is very small for small relaxation time, so in many engineering
problems we can use the homogeneous wave theory conveniently.
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