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Organizations, such as the Air Force and NASA make critical decisions on spacecraft

performance and survivability based on the results of test-analysis correlation metrics. In

order to ensure the success of a new paradigm in finite element model validation where

there is no system level test, uncertainty in the substructures must be propagated into the

accuracy required at the substructure level to produce acceptable analytical model

accuracy at the system level. In preparation for future synthesized system level

uncertainty analysis, a framework is presented for propagating analytical model

uncertainty from a fixed interface Craig–Bampton substructure representation into a

free–free substructure. Model uncertainty is parameterized in terms of test- or truth-

analysis correlation metrics that are dictated by the Air Force. A statistical model is

presented for these correlation metrics such that an analyst can specify a covariance

matrix for uncertainty in model correlation at the fixed substructure level, and then

propagate it into correlation uncertainty at the free substructure level. Development of the

forward propagation approach then allows propagation of correlation uncertainty in the

reverse direction from the free substructure into the fixed interface based Craig–Bampton

representation. The proposed methods are applied to a typical spacecraft representation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The aerospace community has long relied on modal analysis and the finite element method to perform linear dynamic
predictions of spacecraft response. In the low frequency range, a relatively small number of modes can be used to capture
the system behavior. Prior to flight, a test-validated finite element model (FEM) of the spacecraft must be developed to
provide accurate loads analysis. The FEM validation process is comprised of several activities, such as determining the
fidelity of the model to test data, quantification of uncertainty, and determining predictive accuracy [1–3]. Determining the
fidelity-to-data is an exercise of fundamental importance. It is the process of comparing test and analysis predictions, also
called test-analysis correlation, and then determining optimum changes in parameters that will update, calibrate, or tune
the model [4]. In modal based validation, the accuracy of the FEM is determined by comparing test and analysis modal
parameters. Frequencies are compared directly, while the corresponding mode shapes are compared using metrics based
on orthogonality and cross-orthogonality of the modes with respect to a reduced analytical mass matrix [5]. The use of
these metrics, and the required values for test-analysis correlation, are dictated by agencies such as NASA [6] and the
United States Air Force. The requirements differ, depending on the agency. For example, the Air Force requires test-analysis
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frequency errors less than or equal to 3.0%, cross-generalized mass values greater than 0.95, and coupling terms between
modes of less than 0.10 in both cross-orthogonality and orthogonality [7].

Over the last decade, work in the structural dynamics community on analytical model validation has focused on the
quantification of model uncertainty within large numerical simulations, and its propagation into predicted results [8–10].
The concept of model uncertainty is the reality of the design problem. An engineer may design a single structure based on
drawings, analysis, and experiments, but then the item produced is one of a statistical population due to variations and
uncertainties in geometry, material parameters, construction, etc. This leads to random populations of frequencies and
mode shapes. Obviously, there is a corresponding uncertainty and error in the measured test data. In the low frequency
regime of modal-based test-analysis correlation and model updating, it is common practice to ignore the effects of both
model and test uncertainty. If one does not examine the agreement between measurements and predictions relative to
uncertainty, very erroneous and dangerous decisions can be made regarding the models ability to make accurate
predictions within untested regimes [11]. Hasselman and his coauthors have produced a large body of work [12–14]
comparing several techniques for propagating uncertainty through structural dynamic simulations, such as linear
covariance propagation, the Vertex Method for fuzzy variables, Monte Carlo analysis, etc.

As spacecraft become larger and more complex, ground based vibration tests of the entire structure become impossible
due to lack of structural integrity, cost, complexity of the test, or simply lack of time. The spacecraft must then be validated
on a substructure-by-substructure basis. Unavoidable uncertainty in substructure models and testing will have large, and
possibly negative, impact on this new paradigm for model validation. Several critical questions must be addressed. What
level of accuracy or correlation do the substructures need to exhibit, to have a required level of correlation at the system
level? More specifically, how does uncertainty and error within a substructure propagate into, and affect model validation
at the system level? Finally, how does uncertainty and error in the connections between substructures propagate into the
system correlation? Even if the spacecraft will be tested as a system prior to launch, an understanding of the required level
of substructure correlation, and how the related uncertainty propagates into the system, will save a great deal of time,
effort, and cost during the system level test and analysis.

Recently, researchers have started to investigate the effects of substructure uncertainty on synthesized system response
using component mode synthesis (CMS). The CMS approach has been used for years to solve large structural dynamics
problems, and is built into many standard finite element analysis codes. Hinke et al. [15] consider uncertainty in the form
of experimental measured variability, or noise, in substructure free–free modes. They use linear perturbation theory to
determine the sensitivities of both fixed interface substructure, and global system modal parameters in terms of
unconstrained substructure eigenvalues, based on the Craig–Bampton (CB) substructure representation [16]. Substructure
eigenvalue variance is propagated into global statistics using linear covariance propagation. However, they only consider
uncertainty in the substructure eigenvalues. De Klerk and Voormeeren [17] also consider substructure uncertainty in the
form of experimental noise, but instead, it is in the frequency response measured during the substructure vibration test.
They use a frequency domain CMS approach. Linear perturbation theory is used to propagate the substructure uncertainty
into the global response. Neither of these investigations considered uncertainty in model form.

Babuska et al. [18] address substructure model uncertainty in the form of physical parameter or component modal
perturbations. They propagate substructure uncertainty into system frequency response using Linear Fractional
Transformations and system level Monte Carlo analysis. The approach can result in large matrices and large computation
cost. Its focus is more on control dynamics applications rather than structural dynamics. Mace and Shorter [19] also
consider the effects of substructure model uncertainty on the system modal parameters and frequency response. They use
the CB formulation and linear perturbation theory to determine system modal parameters in terms of the random
substructure modal parameters. Uncertainty in the substructure modal parameters is propagated into system modal
parameters using a decoupled Monte Carlo approach. Uncertainty in the system level frequency response can then also be
determined. None of the work performed in this area addresses the test-analysis correlation component of model
validation, at either the substructure or system level.

The goal of this investigation is to develop a methodology for studying the effects of uncertainty on metrics used for
test-analysis correlation of complex spacecraft that are validated on a substructure-by-substructure basis. The objective is
to quantify the level of accuracy required at the substructure level to produce acceptable accuracy at the system level. In
preparation for future synthesized system level uncertainty analysis, this paper will first present uncertainty propagation
at the substructure level. Linear perturbation analysis is used to relate uncertainty in test-analysis correlation metrics to
uncertainty in substructure modal mass and stiffness. A statistical model for modal based test-analysis correlation metrics
is developed which results in an assumed covariance matrix. Linear covariance propagation is then used to propagate
fixed-interface modal correlation metric uncertainty into the expected free–free substructure correlation metric
uncertainty using a CB substructure representation. Reverse covariance propagation [12] is also investigated for the
purpose of propagating from assumed free–free substructure metrics into the fixed substructure. This propagation
direction can be more critical because substructure vibration tests are often conducted in a free–free configuration.

Organizations, such as NASA and the Air Force make critical decisions on spacecraft performance and survivability
based on the results of test-analysis correlation metrics. Currently there is no uncertainty quantification performed or
required by these agencies for test-analysis correlation in the low-frequency regime. The approach presented in this paper
offers several advantages over other methods. A user can choose to propagate either an assumed level of test-analysis
correlation uncertainty, or uncertainty derived from vibration test results. It is not reliant on any specific model design
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parameters. It includes all forms of model uncertainty. It is fast, compared with Monte Carlo techniques, and it propagates
uncertainty in the correlation metrics directly.

2. Theory

The CB substructure representation is well suited as a building block for model validation of a substructured system.
In physical coordinates, the undamped equations of motion for the free–free substructure are given by

M €uþKu¼
Moo Moa

Mao Maa

" #
€uo

€ua

( )
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" #
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ua

( )
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where the a partitions correspond to degrees of freedom that interface to other substructures and the o partitions
correspond to degrees of freedom that are interior to the substructure. The CB representation is generated using the
coordinate transformation

u¼
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in which ua represents the displacement of the substructure interface, and uo is the displacement of the interior of the
substructure. This representation is characterized by a combination of fixed interface dynamic shapes, /, and a set of static
shapes, W¼ ½wT I �T, called constraint modes, in which w¼�K�1

oo Kao. The substructure mass and stiffness matrices in the
CB space are then given by

MCB ¼ TTMT¼
m Mqa

Maq MS

" #
KCB ¼ TTKT¼

k 0

0 KS

" #
(3)

where m and k are the fixed interface nominal modal mass and stiffness matrices, respectively, Mqa is the mass coupling
between fixed modal degrees of freedom and the physical interface degrees of freedom, and MS and KS represent the
substructure mass and stiffness matrices statically reduced to the interface, respectively.

If all of the fixed-interface modes are retained, then the transformation into the CB substructure representation is exact.
However, a significant reduction in model size can be achieved by truncating the number of fixed-interface modes based
on frequency. Eq. (3) provides a direct connection between substructure fixed-interface and free-interface modes through
the fixed interface modal mass m, and the modal stiffness k. The efficacy of this substructure representation for studying
the effects of model uncertainty lies in the fact that the interior and interface of the substructure are represented
separately. Therefore, the effects of uncertainty from each source can be considered somewhat independently.

2.1. Linear perturbation analysis

The perturbation analysis presented in this paper follows that of Hasselman [20]. However, there are a few notable
exceptions that will be discussed. Uncertainty in modal mass and stiffness will be linked to uncertainty in modal frequency
and cross-orthogonality. While the presentation is specifically directed at a fixed interface substructure, the results are
equally applicable to an unconstrained substructure. The uncertainty is defined with respect to the nominal substructure
FEM. The nominal fixed interface modes are assumed to be normalized with respect to mass, such that m=I and k=X,
where X are the nominal eigenvalues. The ‘‘truth’’ model of the constrained substructure can also be represented in
nominal modal coordinates as

mT ¼/TMToo/ (4)

kT ¼/TKToo/ (5)

in which MToo and KToo are the true mass and stiffness matrices, if they existed. The uncertainty in the modal mass and
stiffness can then be defined as

Dm¼mT�m¼mT�I and Dk¼ kT�k¼ kT�X (6)

Uncertainty in fixed interface modes and eigenvalues can likewise be expressed as

D/¼/T�/ and DX¼XT�X (7)

As in Hasselman [20], the truth modes, in general, can be written in the form

/T ¼/cþe (8)

The first term on the right represents a linear combination of the nominal modes, while e is a linear combination of
residual nominal modes. Obviously, if all of the fixed interface modes are retained, then e=0. Cross-orthogonality between
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the nominal and truth modes can be written as

/TMoo/T ¼/TMoo/cþ/TMooe (9)

In contrast with Hasselman [20], here it is assumed that the truth modes, /T, are normalized with respect to the
nominal mass matrix, instead of the unknown truth mass matrix. This is done to be consistent with the definitions of cross-
orthogonality used by both the United States Air Force [7] and NASA [6]. Therefore, for the jth mode

/T
TjMoo/Tj ¼ ½/cjþej�

TMoo½/cjþej� ¼ 1 (10)

or

cT
j cjþeT

j Mooej ¼ cT
j cjþbj ¼ 1 (11)

in which the subscript j indicates the corresponding matrix columns of c and e. Consistent with linear perturbation theory,
it is assumed that the nominal model is close to the truth. Therefore, as is customary, it will be assumed that e is small in
Eq. (8), so that /TE/g, D/E/Dc, and the cross-orthogonality in Eq. (9) becomes c. Eq. (11) reduces to cT

j cj ¼ 1, and the
value of bj gives a measure of the error [20]. In an actual application of test-analysis correlation, the cross-orthogonality
between test and FEM modes is calculated with respect to a reduced FEM mass matrix called a test-analysis model (TAM),
instead of the full mass matrix Moo. However, if the truth modes are spanned by the nominal modes and an exact model
reduction is used, such as the Modal TAM [21], then the cross-orthogonality results are the same.

Due to the constraint of unit length for each column of the cross-orthogonality matrix, the value of the cross-
generalized mass matching the jth nominal FEM mode with the jth truth mode, gjj, must lie in the range 0rgjjr1 after
being normalized to a positive value. Uncertainty in the cross-orthogonality matrix, Dc, can be defined using the
expression c=I+Dc. The constraint on the jth column of c can then be expressed as

cT
j cj ¼ ð1þDcjjÞ

2
þ
Xnq

i¼ 1

iaj

Dc2
ij ¼ 1 (12)

or

Xnq

i ¼ 1

Dc2
ij ¼�2Dcjj (13)

where nq is the number of nominal FEM and truth modes being correlated. Eq. (13) indicates that the uncertainty Dgjj is
always negative, and within each column of the cross-orthogonality matrix c, there is a constraint between the diagonal
term and the off-diagonal terms given by

Xnq

i¼ 1

iaj

Dc2
ij ¼ 1�c2

jj ¼�Dc2
jj�2Dcjj (14)

The goal of this presentation is to relate uncertainty in the correlation metrics Dc and DX to uncertainty in the fixed
substructure modal mass and stiffness Dm and Dk. Using the fact that the nominal fixed modes are mass normalized, and
the previous uncertainty definitions, the orthogonality of the truth modes with respect to the truth mass can be written in
the form

/T
T MToo/T ¼ ½/þD/�T½MooþDMoo�½/þD/� ¼ IþdMþDmþDcTDmþDmDcþDcTDmDc (15)

where

dM ¼DcþDcTþDcTDc (16)

The left side of Eq. (15) can also be expressed as /T
T MToo/T ¼ IþDM where DM is a diagonal matrix in which DMjj

represents the uncertainty in the jth generalized mass with respect to the truth modal space. Combining this result with
Eq. (15) and dropping second-order terms in uncertainty gives

Dm¼DM�dM (17)

The expression for dM in Eq. (16) appears to have a second-order term in DcTDc. While the off-diagonal terms in DcTDc
are second-order, the diagonal terms given by Eq. (13) are first order, due to the constraint on the columns of the cross-
orthogonality matrix. Substituting Eq. (13) into Eq. (16) indicates that dM has zeros on its diagonal. The first-order
representation of the constrained substructure modal mass uncertainty is then given by

Dmjj ¼DMjj (18)

Dmij ¼�Dgij�Dgji, iaj (19)
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Using the same approach for the truth stiffness and mode shapes produces

/T
T KToo/T ¼XþdKþDkþDcTDkþDkDcþDcTDkDc (20)

in which

dK ¼XDcþDcTXþDcTXDc (21)

The left side of Eq. (20) can also be expressed in the form /T
T KToo/T ¼XTþDK , where DK is a diagonal matrix

representing the uncertainty in the generalized stiffnesses in the truth modal space. Eliminating second-order terms in
Eq. (20) yields

Dk¼DXþDK�dK ¼ 2xDxþDK�dK (22)

where Dx is the uncertainty in the fixed substructure frequencies. As in the mass uncertainty analysis, the off-diagonal
terms of matrix DcTXDc in dK are second order and can be ignored. Applying the constraint in Eq. (14), the diagonal terms
of dK are given by

dKjj ¼ 2XjDgjjþ
Xnq

i ¼ 1

Dg2
ijXi ¼

Xnq

i¼ 1

iaj

Dg2
ijðXi�XjÞ (23)

which are also second order. In addition, it can be easily shown that to first order DK=DMX. The first-order representation
of the modal stiffness uncertainty is then given by

Dkjj ¼ 2ojDojþDMjjXj (24)

Dkij ¼�DgijXi�DgjiXj, iaj (25)

The perturbation results presented here differ from those presented by Hasselman [20] in the expressions for the
diagonal terms Dmjj and Dkjj in Eqs. (18) and (24). As mentioned previously, this is due to the fact that in this work the
truth modes are assumed to be normalized with respect to the nominal FEM mass matrix. In Hasselman’s formulation

Dmjj ¼�2Dgujj ¼DMjj (26)

in which Dc0 is the cross-orthogonality matrix where the truth modes are normalized with respect to the truth mass
matrix. The uncertainty formulation presented here is consistent with the definition of cross-orthogonality that is accepted
and employed in practice [2]. In this case, uncertainty in generalized mass DMjj is independent of uncertainty in the cross-
generalized mass Dgjj. This makes sense because as each set of truth modes is normalized to the nominal mass matrix, the
information regarding its normalized length in truth modal space is lost.

2.2. Uncertainty in unconstrained substructure

In this subsection, the uncertainty in the fixed interface modal mass and stiffness matrices is related to uncertainty in the
unconstrained substructure modal matrices using the CB representation. Only uncertainty in the interior of the substructure
is considered. Future research will consider the more difficult, but very important, problem of uncertainty at the interface.

When attempting to decouple the effects of uncertainty in the interior of a substructure (o-set) from uncertainty in its
interface (a-set), it is important to realize that in general, the corresponding submatrices of DK and DM are not
independent. This is due to the fact that the perturbed, or truth, mass and stiffness matrices must maintain their
appropriate sign-definiteness characteristics, such that they correspond to an actual possible structure. In the case of mass,
the o-set and a-set can, in general, be considered as decoupled. Therefore, DMoa ¼DMT

ao can be assumed to be null, and
DMoo can be varied independently of DMaa, while still maintaining the symmetry and positive definiteness of the truth
physical mass matrix MT=M+DM. Using Eq. (3), uncertainty in the CB mass representation can be expressed relative to the
nominal CB vector space as

DMCB ¼ TTDMT¼
Dm DMqa

DMaq DMS

" #
(27)

Uncertainty in the mass coupling between fixed interface modes and interface degrees of freedom in Eq. (27) is given by
DMqa and its transpose. If all the fixed interface modes are retained, then they span the vectors in the constraint mode
partition w. In this work, it will be assumed that enough fixed modes are retained such that wE/g where g is a nq�na

matrix that can be computed using g=/TMoow, and na is the number of interface degrees of freedom. The uncertainty in the
mass coupling term is then given by

DMqa ¼/TDMoow¼/TDMoo/g¼Dmg
DMaq ¼ gTDm (28)

Likewise, the uncertainty in the statically reduced mass MS can be expressed as

DMS ¼wTDMoow¼ ZTfTDMoofg¼ gTDmg (29)
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In the case of stiffness, the o-set and a-set are not decoupled, and the corresponding uncertainty submatrices DKoo,
DKoa, and DKaa cannot vary independently. For example, assuming that there is no uncertainty in the substructure rigid
body modes, independent of the truth physical stiffness KT=K+DK, the rigid body modes must always lie in its null space.
This then implies that the rigid body modes must also lie in the null space of the stiffness uncertainty DK, which produces a
constraint between its submatrices. In an analogous manner, the interior stiffness uncertainty can be decoupled from the
interface uncertainty by assuming there is no uncertainty in the constraint modes W, resulting in DKC=0. Expanding this
result produces

DKoa ¼DKT
ao ¼�DKoow

DKaa ¼wTDKoow (30)

Therefore, if the interior uncertainty DKoo is specified, the uncertainty in the interface stiffness partitions is dictated.
The uncertainty in the CB stiffness representation is then given by

DKCB ¼ TTDKT¼
Dk 0

0 0

� �
(31)

For nm unconstrained substructure normal modes in CB coordinates UCB ¼ UT
q UT

a

h iT
, the uncertainty in modal mass

and stiffness can then be computed using

DM¼UT
CBDMCBUCB, DK¼UT

CBDKCBUCB (32)

or after expansion

DM¼UT
qDmUqþUT

qDmgUaþUT
ag

TDmUqþUT
ag

TDmgUa (33)

DK¼UT
qDkUq (34)

Eqs. (33) and (34) relate the uncertainty in fixed interface modal mass and stiffness to free interface modal mass and
stiffness.

2.3. Uncertainty propagation

Linear covariance propagation [12] will be used to propagate uncertainty from the fixed substructure into the
unconstrained substructure. In order to do so, the uncertainty matrices in Eqs. (33) and (34) must be transformed to
vectors using the vec(X) operator [22] where the terms in matrix X are stacked column-wise into a single vector. It can be
shown that for compatible matrices A, X, and B

vecðAXBÞ ¼ ðBT
� AÞvecðXÞ (35)

in which the symbol � represents the Kronecker product between two matrices [22], given by

A� B¼

A11B A11B � � � A1mB

A21B A22B � � � ^

^ ^ & ^

An1B � � � � � � AnmB

2
66664

3
77775 (36)

where A is an n�m matrix.
Using these results, the expression for mass uncertainty in Eq. (33) can be rewritten as

vecðDMÞ ¼ UT
q �UT

q

� �
þ UT

q �UT
ag

T
� �

þ UT
ag

T �UT
q

� �
þ UT

ag
T �UT

ag
T

� �h i
vecðDmÞ

or

vecðDMÞ ¼ ~Q vecðDmÞ (37)

in which vec(DM) is a n2
m � 1 vector, vec(Dm)is n2

q � 1, and each of the matrices in the brackets is n2
m � n2

q . The uncertainty
matrices Dm and DM are both symmetric, so only the lower triangular terms are included in the propagation analysis. The
vech(X) operator [22] can be used to extract the lower triangular terms of a symmetric n�n matrix and stack them
column-wise in a n(n+1)/2 dimensional column vector. The elimination matrix, Sn [23], can be used to relate the vec(X)
and vech(X) operators as

vechðXÞ ¼ SnvecðXÞ (38)

where Sn is a [n(n+1)/2]�n2 full row rank matrix with a single 1.0 in each row. The inverse elimination, or duplication,
matrix can be formed such that

vecðXÞ ¼ S�1
n vechðXÞ (39)
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in which S�1
n is an n2

� [n(n+1)/2] full column rank matrix, also with a single 1.0 in each row, and SnS�1
n ¼ Inðnþ1Þ=2.

Applying these definitions to Eq. (37) produces

vechðDMÞ ¼ Snm
~Q S�1

nq
vechðDmÞ (40)

or using the simplifying notation, DpM=vech(DM), Dpm=vech(Dm), and ~T ¼ Snm
~Q S�1

nq

DpM ¼ ~TDpm (41)

where ~T is of dimension [nm(nm+1)/2]� [nq(nq+1)/2]. A parallel analysis for stiffness produces

DpK ¼ ~TqqDpk (42)

where ~Tqq ¼ Snm FT
q �FT

q

� �
S�1

nq
.

Uncertainty in modal mass at the fixed interface substructure level can be related to uncertainty in the unconstrained
substructure modal mass using linear covariance propagation [12]. Taking the expectation, E(), of the outer product of
Eq. (41) with itself gives

E DpMDpT
M

� �
¼ CDM ¼ ~TE DpmDpT

m

� � ~TT
¼ ~TCDm

~TT (43)

in which CDM and CDm are the covariance matrices for uncertainty in modal mass at the free- and fixed interface levels,
respectively. The analogous modal stiffness equation is given by

CDK ¼ ~TqqCDk
~TT

qq (44)

The covariance matrices for modal mass and stiffness can be set at the fixed interface level by specifying truth-analysis
correlation uncertainty, and Eqs. (43) and (44) can be employed to compute the corresponding covariance matrices at the
free substructure level. The diagonal terms in the covariance matrices correspond to the mean square values, or variances,
of the mass and stiffness uncertainties in DpX. This information can then be used to determine the statistics of the
correlation metrics at the unconstrained substructure level. This will be illustrated in the next subsection and through a
numerical example.

In practice, substructures are usually tested in a free–free configuration due to difficulties in constructing sufficiently
rigid test fixtures. Therefore, it is important to be able to specify test- or truth-analysis correlation uncertainty at the free
substructure stage, and then propagate it back into modal mass and stiffness uncertainty at the fixed level, which can then
be propagated into system level correlation uncertainty. The inverse covariance propagation relations are given by

CDm ¼
~TyCDM ~TyT and CDk ¼

~TyqqCDK ~T
yT
qq (45)

in which ~Ty represents the generalized inverse of the rectangular matrix ~T ¼U ~T S ~T VT
~T

given by

~Ty ¼V ~T S�1
~T UT

~T
(46)

where singular value decomposition of ~T has been used, and diagonal matrix S ~T has been truncated to the non-zero
singular values, as well as the corresponding orthonormal principal vectors U ~T and V ~T . Generalized inverse ~Tyqq is
computed in a similar manner.

2.4. Specification of covariance matrices

In the preceding work by Hasselman [20] on the propagation of test-analysis correlation uncertainty, the covariance
matrices for modal mass and stiffness uncertainty were derived using databases containing the results of previous test-
analysis correlations of similar spacecraft. One of the main contributions of this work is the derivation of the form of the
covariance matrices in terms of test- or truth-analysis correlation uncertainty using analytical and numerical
experimentation results. A user can then specify correlation uncertainty and perform numerical experiments to study
its effects on substructure, or ultimately system correlation.

It is assumed that the expected values of the uncertainty in the physical mass and stiffness matrices, E(DM) and E(DK),
are both zero. Therefore, the same is true for the modal matrices, E(Dm)=0 and E(Dk)=0. This then implies that the
expected value of the uncertainty in the generalized masses, E(DMjj)=0, and the expected value of uncertainties in natural
frequencies, E(Doj)=0. Eqs. (19) and (25) can be combined to give

Dgij ¼
1

ðXi�XjÞ
XjDmij�Dkij

� 	
, iaj (47)

which implies that the expected values of the off-diagonal terms in the cross-orthogonality uncertainty are also zero, E(Dgij)=0. In
contrast with Hasselman’s work [20], due to the normalization of the truth modes with respect to the nominal FEM mass, the
expected values of the diagonal terms in the cross-orthogonality uncertainty matrix are not zero, E(Dgjj)a0, meaning that
E(gjj)a1.

As mentioned, besides the derivation of analytical expressions, numerical experiments were relied upon to determine
some of the required terms within the modal covariance matrices. A single numerical experiment consisted of Monte
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Carlo analysis, where at each iteration, the nominal FEM fixed interface mass and stiffness matrices were randomized using
the Maximum Entropy approach developed by Soize [24]. A dispersion level is selected that can be thought of as being
analogous to the global fractional uncertainty believed to exist in the matrix, and then the matrix is randomized subject to
the constraints of maintaining symmetry and positive definiteness. Details of the process can be found in Soize’s paper [24].
The advantage of this nonparametric approach, over the usual parameter sensitivity or perturbation methods, is that this
randomization process automatically accounts for uncertainties that are not easily described by model parameters, such as
model form, geometry, joints, etc. A specific application will be discussed in Section 3.

Through extensive numerical experimentation, it was found that the covariance matrices for both the modal mass and
stiffness are diagonal, meaning that the terms within each of the vectors Dpm and Dpk are uncorrelated. It was also found
that off-diagonal cross-orthogonality uncertainty term Dgij is strongly correlated with the term Dgji across the diagonal, but
is not correlated with any of the other off-diagonal terms. Eqs. (19) and (25) can be combined to produce the expression

DmijDkij ¼XiDg2
ijþXjDg2

jiþðXiþXjÞDcijDcji (48)

For the assumed stochastic model, numerical experiments also showed that Dmij and Dkij are not correlated,
E(DmijDkij)=0. Eq. (48) then gives

EðDcijDcjiÞ ¼
�1

ðXiþXjÞ
XiE Dc2

ij

� �
þXjE Dc2

ji

� �h i
(49)

Using Eq. (47), the expression in Eq. (49) can also be written in the form

EðDcijDcjiÞ ¼
�1

ðXi�XjÞ
2

E Dk2
ij

� �
þXiXjE Dm2

ij

� �h i
(50)

An inspection of Eq. (50) indicates that E(DgijDgji)r0, and as Oi approaches Oj, the correlation between Dgij and Dgji

increases. The variance of terms Dmij can be computed based on Eqs. (19) and (49), yielding the expression

EðDm2
ijÞ ¼

Xj�Xi

XjþXi
EðDc2

ijÞ�EðDc2
jiÞ

h i
(51)

Turning to modal stiffness uncertainty terms, Eq. (24) can be squared to yield

Dk2
jj ¼ 4XjDx2

j þ4X3=2
j DxjDMjjþX2

j D
2
Mjj (52)

Assuming that mass and stiffness uncertainties are not correlated, E(DmjjDkjj)=0, then Eq. (24) can be used to show that
EðDXjDmjjÞ ¼ �X2

j EðD2
MjjÞ. Eq. (51) then produces the variance of Dkii as

EðDk2
jjÞ ¼ 4XjEðDx2

j Þ�X2
j EðD2

MjjÞ (53)

The variance of off-diagonal terms Dkij can be computed based on Eqs. (25) and (49), giving

EðDk2
ijÞ ¼

Xj�Xi

XjþXi
X2

j EðDc2
jiÞ�X2

i EðDc2
ijÞ

h i
(54)

With the previous expressions available, the analyst can compute covariance matrices for modal mass and stiffness by
specifying the variances of the natural frequencies, EðDx2

j Þ, the variances of the generalized masses, EðD2
MjjÞ, and the

variances of the off-diagonal terms in each column of the cross-orthogonality matrix, EðDg2
ijÞ. According to Eq. (14), the

mean-square values of the cross-generalized masses, Eðg2
jjÞ can also be computed using

Eðc2
jjÞ ¼ 1�

Xnq

i¼ 1

iaj

EðDc2
ijÞ (55)

Variances of the off-diagonal terms Dgij may be specified individually, or in any manner the analyst desires, subject to
the constraints that Eðg2

jjÞr1 and

1r
EðDc2

jiÞ

EðDc2
ijÞ

r
X2

i

X2
j

(56)

which is derived from Eqs. (51) and (54). Note also that based on Eq. (53), EðDx2
j Þ and EðD2

MjjÞ must satisfy the inequality
4EðDx2

j ÞZXjEðD
2
MjjÞ. Using the results presented in this section, the covariance matrices for uncertainty in modal mass and

stiffness can then be easily generated, whether they are related to a free- or fixed interface substructure.
After the assumed uncertainty in the truth-analysis correlation metrics is propagated in either the forward or reverse

directions into uncertainty in free- or fixed interface substructure modal mass and stiffness, uncertainty in the
corresponding correlation metrics must then be recovered. Squaring Eq. (47) and applying the expectation operator
produces the variance of the off-diagonal cross-orthogonality terms

EðDc2
ijÞ ¼

1

ðXi�XjÞ
2

EðDk2
ijÞþX2

j EðDm2
ijÞ

h i
(57)
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Eq. (53) gives the variance of the natural frequencies as

EðDx2
j Þ ¼

1

4Xj
EðDk2

jjÞþX2
j EðDm2

jjÞ

h i
(58)

Numerical experiments also showed that the off-diagonal uncertainty terms Dgij are not only zero mean, but normally
distributed, and within each column, independent. Assuming, for example, a forward propagation from fixed into free
substructure modes, Eq. (14) indicates that the term cj ¼ 1�g2

jj is the sum of the squares of nm�1 zero mean, normally
distributed variables Dgij. If the terms Dgij all had unit variance, cj would be represented by a chi-square distribution with nm�1
degrees of freedom [3]. In this case, however, the off-diagonal terms Dgij will have different non-unit variances. Therefore,
cj follows a generalized chi-square distribution. In general, the number of degrees of freedom is not equal to nm�1 because
many of the nominal FEM modes do not couple strongly with the jth truth mode, meaning many of the terms Dgij are small. As
the number of terms that significantly contribute increases, the probability distribution approaches a normal distribution.

In terms of standard normal variables zi, cj can be written as

cj ¼ 1�g2
jj ¼

Xnm

i¼ 1

iaj

s2
i z2

i (59)

where s2
i ¼ EðDg2

ijÞ are the off-diagonal cross-orthogonality variances recovered for the jth column using Eq. (57). A
distribution for cj can then be constructed by taking a linear combination of single degree of freedom chi-square
distributions w2(1) using

cj ¼
Xnm

i¼ 1

iaj

s2
i w

2ð1Þ (60)

The (1�a)th percentile for cj can easily be computed and then the corresponding value for the jth cross-generalized
mass, given by gjja ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1�cja

p
, can be compared to designated correlation metric criteria.
3. Numerical example

The numerical example considered in this paper is a simple representation of a communications satellite, called Qsat,
shown in Fig. 1. The substructure that will be considered for uncertainty propagation consists of the Earth pointing (+Z)
reflector and tower that is mounted to the top of the bus via bars as shown in the figure. The reflector-tower substructure
has 18 interface degrees of freedom (3 translations at 6 nodes) and 11,337 interior degrees of freedom. With the interface
degrees of freedom constrained, there are 50 substructure modes below 200.0 Hz. In the free–free configuration, there are
56 elastic modes below 200.0 Hz.

Forward propagation from the fixed interface correlation metrics into free interface correlation metrics will be considered
first. A numerical experiment was initially performed to investigate the probability distributions of the terms of interest. The
Maximum Entropy approach [24] was used to randomize the nominal fixed interface mass and stiffness matrices using a
dispersion value of 3.0%. The corresponding modes and frequencies were computed and compared with the nominal modal
parameters to yield frequency errors and cross-orthogonalities for 100,000 iterations. As expected, it was found that the
uncertainties in the generalized masses, DMjj, frequencies, Doj, and off-diagonal cross-orthogonalities, Dgij, are all zero mean
and normally distributed. Fig. 2 illustrates the estimate of a typical off-diagonal cross-orthogonality probability distribution.
Fig. 3 shows the estimated generalized chi-square probability distribution for the term c21 ¼ 1�g2

21,21, corresponding to free
mode 21. The distribution is somewhat skewed to the right because a relatively small number of off-diagonal terms in this
column of the cross-orthogonality matrix contribute significantly.

Uncertainty in the 50 fixed interface substructure modes below 200 Hz. was propagated into the first 28 free
substructure elastic modes below 150 Hz. A level of uncertainty in the test-analysis correlation metrics for the fixed modes
was assumed consistent with Air Force criteria at a 95% confidence level. A two-sigma value of 3.0% was assumed for
uncertainty in frequencies Doj. A one-sigma value of 0.025 was assumed for uncertainty in the generalized masses, DMjj,
which is consistent with the inequality based on Eq. (53) mentioned previously.

For simplicity, uncertainty in off-diagonal cross-orthogonality in each column was limited to two terms directly above
and below the diagonal. This implies that each truth mode is coupled with at most four nominal FEM modes that are
closest in frequency. This type of behavior is consistent with the constraint in Eq. (56) and typical of test-analysis
correlation results [5]. A uniform two-sigma value of 0.10 was then assumed for each Dgij. Specifying the number of modes
that are coupled within each cross-orthogonality matrix column and the variance of the off-diagonal terms, then constrains

the two-sigma value of the cross-generalized mass to be gjj0:05 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:1=2Þ2w2

0:05ð4Þ
q

¼ 0:988. This easily satisfies the Air

Force criterion of gjjZ0.95 for cross-generalized mass. Thirty-three off-diagonal terms Dgij of the assumed critical value
would have to be designated in each column to reduce gjj0.05 to its critical value of 0.95. This shows that the correlation
criterion for the off-diagonal terms, Dgijr0.05, is most restrictive.



Fig. 1. Finite element model of Qsat communications satellite.
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The corresponding modal covariance matrices were then generated using the previously discussed relations
and then propagated into free substructure modal matrices using Eqs. (43) and (44). Uncertainty in free substructure
frequency was recovered using Eq. (58). The two-sigma frequency uncertainty is shown in Fig. 4. Only mode 10 violates
the Air Force frequency correlation criterion at 95% confidence. Uncertainty in cross-orthogonality was recovered
using Eq. (57), and then Eq. (55). Root-mean-square cross-orthogonality is shown in Fig. 5. The 95th percentile for cross-
generalized mass was determined using Eq. (60). At the 95% confidence level, 14 modes, 1 through 9, 13 through 16, and 26
pass the frequency and the cross-generalized mass correlation criteria. However, only 12 modes, 1 through 9, 13, 16, and
26 satisfy the corresponding off-diagonal cross-orthogonality correlation requirement. This example seems to indicate the
possibility that the free substructure modes can be surprisingly sensitive to uncertainty in the fixed substructure modes. In
fact, five free modes, 10, 12, and 18 through 20, produce physically unrealizable correlation results due to their
hypersensitivity to uncertainty in the fixed substructure modes. Future work will investigate the origin of this sensitivity
and its mitigation.

Finally, an application of reverse covariance propagation was investigated for this example. Previous analysis
showed that elastic free interface modes 10 through 28 are strongly coupled to fixed interface modes 1
through 25. Therefore, the same level of test-analysis correlation uncertainty assumed in the forward propagation
problem was again specified for the 19 free elastic modes and propagated in the reverse direction into the first
25 fixed substructure modes using Eqs. (45) and (46). Root-mean-square uncertainties in fixed substructure modal
mass and normalized stiffness are illustrated in Figs. 6 and 7, respectively. Uncertainty levels and coupling in both matrices
are consistent with that found in the previous forward propagation problem. In future studies, these fixed substructure
modal uncertainty matrices will be propagated into the full system correlation metrics. As expected, the reverse
propagation results were also found to be sensitive, depending on the number of singular values retained in the
generalized inverse.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8

9

10

Cross−Generalized Mass − 21

P
D

F

Fig. 3. Estimated PDF for 1�g2
21,21.

−4 −3 −2 −1 0 1 2 3 4
x 10−3

0

50

100

150

200

250

300

350

400

450

Off−Diagonal Cross−Orthogonality − 4−1

P
D

F

Fig. 2. Estimated PDF for cross-orthogonality term Dg5,4.

D.C. Kammer, S. Nimityongskul / Journal of Sound and Vibration 330 (2011) 1211–1224 1221
4. Conclusion

A methodology has been presented for studying the effects of uncertainty on metrics used for test-analysis correlation
of complex spacecraft that are validated on a substructure-by-substructure basis. The objective is to quantify the level of
accuracy required at the substructure level to produce acceptable accuracy at the system level. In preparation for future
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synthesized system level uncertainty analysis, this paper focused on uncertainty propagation at the substructure level.
Linear perturbation analysis was first used to relate uncertainty in accepted test-analysis correlation metrics to
substructure modal mass and stiffness uncertainties. A statistical model for the modal based test-analysis correlation
metrics was then presented, such that an analyst can specify a corresponding uncertainty covariance matrix. Linear
covariance propagation was then used to propagate the specified fixed-interface modal correlation metric uncertainty into
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Fig. 6. RMS uncertainty in fixed substructure modal mass.
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the expected free–free substructure correlation metric uncertainty using a Craig–Bampton substructure representation.
Reverse covariance propagation was also investigated, such that assumed uncertainty in free–free substructure correlation
metrics can be propagated into the fixed substructure. This propagation direction is of importance because substructure
vibration tests are often conducted in a free–free configuration.
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The proposed method was applied to a typical substructure from a characteristic spacecraft finite element representation.
Frequency and cross-orthogonality uncertainty was assumed in the fixed interface modes at a two-sigma level that just passed
the Air Force correlation requirements of 3% frequency accuracy, off-diagonal cross-orthogonality terms less than or equal to
0.10, and cross-generalized mass values greater than or equal to 0.95. This uncertainty was then propagated into the free
substructure modal correlation metrics. This particular example showed that some free substructure modes can be very
sensitive to uncertainty in the fixed substructure modes. The fixed-interface substructure passed the correlation criteria, but
the corresponding free-interface configuration did not pass. The same correlation uncertainty level was then propagated back
into the fixed substructure using reverse uncertainty propagation. This also produced some sensitive results. Future work will
focus on studying and mitigating the observed sensitivities in the method, as well as determining better ways of specifying
meaningful levels of uncertainty in the cross-orthogonality metrics that are the inputs to the approach. The method will then be
applied to propagate uncertainty specified at the substructure level into uncertainty at the system level. It is important to
remember that the results presented here assume that the mass and stiffness uncertainties are statistically independent.

Organizations, such as NASA and the Air Force make critical decisions on spacecraft performance and survivability
based on the results of test-analysis correlation metrics. In order to ensure the success of the new paradigm in finite
element model validation where there is no system level test, uncertainty in the substructures must be propagated into the
system level correlation metrics. It is believed that the method presented in this paper offers a unique and efficient
approach for the required uncertainty propagation. A user can choose to propagate either an assumed level of test-analysis
correlation uncertainty, or correlation uncertainty derived from vibration test results. The method is not reliant on the
specification of uncertainty in individual model design parameters. It includes all forms of model uncertainty. It is fast,
compared with Monte Carlo techniques, and it propagates uncertainty in the correlation metrics directly. Future work will
also address the use of Monte Carlo simulation to directly confirm the results of the covariance propagation.
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