45. The Stereoisomeric 2:3:5:6-Tetramethylpiperazines. Part IV. By F. Barry Kipping. In order to determine the configuration of γ -2:3:5:6-tetramethylpiperazine, attempts have been made to resolve various derivatives of it into optical antimerides; 1-p-toluene-sulphonyl- γ -2:3:5:6-tetramethylpiperazine (J., 1929, 2896), γ -2:3:4:5:6-pentamethylpiperazine, its 1-nitroso- and 1-p-toluene-sulphonyl derivatives (J., 1932, 1339) have been examined. In all, fourteen salts or derivatives of an unsymmetrical γ -base, RN<(CHMe)₄>NR', with optically active substances have been studied without revealing any sign of resolution. In view of the comparative ease with which the isomeric dl- β -base was resolved (J., 1931, 1160) it would appear likely, therefore, that the configuration of γ -2:3:5:6-tetramethylpiperazine is such that derivatives of it, of the type mentioned above, are meso-compounds: thus the γ -base is probably represented by formula 1 or IV (loc. cit. and J., 1932, 1336), and it would appear that there is no suitable chemical method of distinguishing between these two configurations. α -2:3:5:6-Tetramethylpiperazine has also resisted resolution in five cases, but as no unsymmetrical derivatives of this base could be obtained (J., 1932, 1342), and the corresponding pentamethyl base is unknown, work could not be continued in this series. Salts of p-Toluenesulphonyl- γ -2:3:5:6-tetramethylpiperazine.—The d-camphor-10-sulphonate was crystallised from EtOH (prisms) and H₂O (long needles). The m. p. was unaccountably variable, 248—251°, 258—260° (Found: N, 5.5. $C_{15}H_{24}O_2N_2S$, $C_{10}H_{16}O_4S$ requires N, 5.3%). [α]₅₄₆₁ + 14.9° in H₂O (c=0.6).* The d- α -bromocamphor- π -sulphonate was fractionated from EtOH and crystallised in needles, m. p. 256—257° (Found: N, 4·6. $C_{15}H_{24}O_2N_2S$, $C_{10}H_{15}O_4BrS$ requires N, 4·6%). [α] 5461 +62·5° in EtOH ($c=1\cdot15$). ^{*} All rotations were taken at room temp. Salts of γ -2:3:4:5:6-Pentamethylpiperazine.—The mono-d-camphor-10-sulphonate and the mono- and di-d- α -bromocamphor- π -sulphonates could not be obtained cryst. The di-d-camphor-10-sulphonate was fractionated from abs. EtOH: it had m. p. 261° (Found: C, 55.9; H, 8.6. $C_9H_{20}N_2$, $2C_{10}H_{16}O_4S$ requires C, 56.1; H, 8.4%). [α]₅₄₆₁ + 20.0° in H_2O (c = 1.1). The d-tartrate, from equimol. quantities of acid and base, was fractionated from MeOH. It had m. p. $164-165^{\circ}$. $[\alpha]_{5780}+18\cdot5^{\circ}$, $[\alpha]_{5461}+20\cdot3^{\circ}$ in H_2O $(c=1\cdot9)$. Salts suitable for fractionation could not be obtained with base (2 mols.): acid (1 mol.) or base (1 mol.): acid (2 mols.). γ -2:3:4:5:6-Pentamethylpiperazine-d-methylenecamphor.—The base (1 mol.) and d-hydroxymethylenecamphor (1 mol.) were boiled together in EtOH during 1 hr.: the mixture, poured into H₂O, gave an oil, a specimen of which, solidified with light petroleum, seeded the whole. It was recrystallised repeatedly from light petroleum (b. p. 60—80°), from which it separated in small prisms, m. p. 123° (Found: C, 75·6; H, 10·7. C₂₀H₃₄ON₂ requires C, 75·5; H, 10·7%). [α]₅₇₈₀ + 438°, [α]₅₄₆₁ + 509° in EtOH (c = 0.47). Several crystns. from acetone did not change these values. The base recovered by the bromine method, was obtained as a dihydrobromide (Found: Br, 50·1. C₉H₂₀N₂,2HBr requires Br, 50·3%), which crystallised from EtOH in stout needles, m. p. 268—270°. It was optically inactive, as also was the hydrochloride obtained by treatment with HCl aq. and removal of the hydroxymethylenecamphor in steam. Salts of the methylenecamphor derivative. The d-camphor-10-sulphonate was fractionated from EtOH-acetone. It had m. p. $263-264^{\circ}$. $[\alpha]_{5780}+226^{\circ}$, $[\alpha]_{5461}+266^{\circ}$ in H_2O (c=0.5). The recovered camphor derivative had the same m. p. and rotatory power as before. The d- α -bromocamphor- π -sulphonate, crystallised from acetone, had m. p. 257°. [α]₅₇₈₀ + 239°, [α]₅₄₆₁ + 278° in H₂O (c = 0.5). Salts of 1-Nitroso-y-2:3:4:5:6-pentamethylpiperazine.—The d-camphor-10-sulphonate was fractionated from acetone containing a little H_2O . It had m. p. $213-215^\circ$ (decomp.). $[\alpha]_{5780}+12\cdot3^\circ, [\alpha]_{5461}+15\cdot2^\circ$ in H_2O ($c=3\cdot5$). The recovered nitroso-derivative was inactive. The d- α -bromocamphor- π -sulphonate crystallised from EtOH in needles, m. p. 207° (Found: N, 8·5. C₉H₁₉ON₃, C₁₀H₁₅O₄BrS requires N, 8·5%). [α]₅₇₈₀ + 58·2°, [α]₅₄₆₁ + 68·5° in H₂O ($c = 2 \cdot 2$). Salts of p-Toluenesulphonyl- γ -2:3:4:5:6-pentamethylpiperazine.—The d-camphor-10-sulphonate crystallised from H₂O in prisms, m. p. 208–211°. [α]₅₇₈₀ + 24·4°, [α]₅₄₆₁ + 28·4° in CHCl₃ ($c=4\cdot25$). The d- α -bromocamphor- π -sulphonate crystallised from warm H₂O (hot sat. solutions deposited an oil) in long needles, m. p. 204—205°. [α]₅₄₆₁ + 63·6° in EtOH ($c = 1\cdot4$). The d- α -chlorocamphor- π -sulphonate crystallised from hot H₂O in needles, m. p. 215—216°. [α] ₅₄₆₁ + 49·5° in EtOH (c = 1.3). The d-tartrate crystallised from acetone, containing about 20% of H_2O , in needles, m. p. 174—175°. [α]₅₇₈₀ + 9·4°, [α]₅₄₆₁ + 9·7° in H_2O . Salts of α -2:3:5:6-Tetramethylpiperazine.—The mono-d-camphor-10-sulphonate was fractionated from CHCl₃-C₆H₆ (eq. vols.). It crystallised in needles, m. p. 113—114° (Found: S, 8·8. C₈H₁₈N₂, C₁₀H₁₆O₄S requires S, 8·6%). [α]₅₄₆₁ + 17·4° in H₂O, + 35·8° in CHCl₃ ($c=1\cdot2$). The di-d-camphor-10-sulphonate was fractionated from H_2O . It had no m. p. below 320° (Found: C, 55·5; H, 8·3; S, 10·9. $C_8H_{18}N_2,2C_{10}H_{16}O_4S$ requires C, 55·5; H, 8·3; S, 10·6%). $[\alpha]_{5780}+19\cdot5^{\circ}, [\alpha]_{5461}+23\cdot8^{\circ}$ in H_2O ($c=1\cdot5$). The mono-d- α -bromocamphor- π -sulphonate crystallised from H₂O in needles, m. p. 230—231° (Found: Br, 17·8. $C_8H_{18}N_2$, $C_{10}H_{15}O_4$ BrS requires Br, 17·7%). $[\alpha]_{5780}+62\cdot3^\circ$, $[\alpha]_{5461}+73\cdot0^\circ$ in H₂O $(c=1\cdot1)$. The di-d- α -bromocamphor- π -sulphonate crystallised from H₂O in needles. No m. p. below 320° (Found: Br, 21·0. $C_8H_{18}N_2$, $2C_{10}H_{15}O_4$ BrS requires Br, $20\cdot9\%$). $[\alpha]_{5780}+76\cdot5^\circ$, $[\alpha]_{5461}+89\cdot7^\circ$ in H₂O $(c=2\cdot2)$. α -2:3:5:6-Tetramethylpiperazinedi-d-methylenecamphor was prepared by boiling an alc. solution of the base (1 mol.) and d-hydroxymethylenecamphor (2 mols.). After 2 hr. the separated crystals were removed by filtration, and the mother-liquor boiled during a further 6—7 hr.; on being cooled, the solution deposited a further crop of crystals. The product was fractionated both from diacetone alcohol (plates) and from xylene (needles). It had m. p. 320° Found: C, 76·95; H, 9·75. $C_{30}H_{46}O_2N_2$ requires C, 77·2; H, 9·9%). [α]₅₇₈₀ + 691°, [α]₅₄₆₁ + 822° in CHCl₃ (c = 0·8). The hydrobromide of the base, recovered by the bromine method, was optically inactive.