234. The Dissociation Constants of Organic Acids. Part IX. Some Amic Acids.
By George H. Jeffery and Arthur I. Vogel.
THE determination of the primary dissociation constant of a dibasic acid involves a knowledge of the limiting mobility of the HA^{\prime} ion. This constant cannot be determined directly from conductivity measurements with the sodium or potassium hydrogen salt, NaHA \rightleftharpoons $\mathrm{HA}^{\prime}+\mathrm{H}^{\prime}$, owing to the secondary ionisation, $\mathrm{HA}^{\prime} \rightleftharpoons \mathrm{A}^{\prime \prime}+\mathrm{H}^{\prime}$. Chandler (J. Amer. Chem. Soc., 1908, 30, 694) assumed that the mobility of the acid anion would be the same as that of the most closely related monobasic anion, and compared, e.g., the hydrogen malonate
ion, $\mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2}{ }^{\prime}$, with the propionate ion, $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{CO}_{2}{ }^{\prime}$. In another method, he calculated the mobility from the empirical equation $\lambda_{0_{\mathrm{HA}^{\prime}}}=0.6 \lambda_{0_{\mathrm{A}^{\prime \prime}}}$, where $\lambda_{0_{\mathrm{HA}^{\prime}}}$ and $\lambda_{0_{\Lambda^{\prime \prime}}}$ are the limiting mobilities of the two ions. Vogel (Part I, J., 1929, 1485) assumed $\lambda_{0_{\mathrm{HA}^{\prime}}}=0.5 \lambda_{0_{A^{\prime}}}$. Both procedures are clearly only approximate. The development of a new combined solvent and hydrolysis correction for the ionisation of the disodium salts of dibasic acids, $\mathrm{Na}_{2} \mathrm{~A} \rightleftharpoons 2 \mathrm{Na}{ }^{\circ}+\mathrm{A}^{\prime \prime}$ (which will shortly be published), permits of the evaluation of the limiting mobility of the bivalent ion, $\mathrm{A}^{\prime \prime}$, with some accuracy, and it was therefore clearly desirable to obtain experimental evidence relating this to the limiting mobility of the acid anion. This was achieved by measuring the conductivities of the sodium salts of the corresponding amic acids, $\mathrm{CO}_{2} \mathrm{Na} \cdot\left(\mathrm{CR}_{1} \mathrm{R}_{2}\right) \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}$; the ionisation of the secondary hydrogen atom is thus suppressed. Further, consideration of the parachor of the carbamyl and the carboxy-group indicates that the molecular volumes, which will of course affect the mobility, are very approximately equal, and hence a close approximation to the mobility of the acid anion should be obtained. The approximation will be closer the greater the molecular weight of the acid.

Four amic acids ($x=1,2,3$, and 4) were investigated. They were all prepared according to the general scheme :

although, for succinamic and glutaramic acids, another method, involving the use of the anhydrides (see p. 1103), was also employed.

Conductivity measurements of the acid in silica cells and of the sodium salts in Pyrex cells were made over the range $0.0001-0.01 N$. The combined solvent and hydrolysis correction (Part VII, J., 1933, 1637; Part VIII, this vol., p. 166) was applied to the sodium salts, and the true dissociation constants were calculated as previously described (loc. cit.). The final results are summarised below.

Acid $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	Malonamic	Succinamic	Glutaramic	Adipamic	
Mobility of anion $\ldots \ldots \ldots \ldots \ldots \ldots$.	$35 \cdot 5$	$31 \cdot 5$	$30 \cdot 0$	$28 \cdot 6$	
$K_{\text {1therm }} \times 10^{5}$.	$\ldots \ldots \ldots \ldots \ldots \ldots$.	$22 \cdot 84$	$2 \cdot 892$	2.510	2.352

The constancy of the dissociation constants above ca. 0.001 N indicates clearly that the dissociation of the carbamyl group, if any, is negligible; the slight variations below this concentration are probably due to the combined influence of the solvent correction and the interaction between the carbonic acid and the amic acid, the effect of which becomes inappreciable at higher concentrations. Where secondary dissociation does occur, as in the normal dibasic acids, the constancy does not appear until about 0.005 N (unpublished observations).

The relationship between the limiting mobility of the acid anion and of the corresponding bivalent ion will be discussed in a later paper.

Experimental.

[^0]Succinamic acid. Specimen 1. Succinic acid, A.R., on distillation with pure acetic anhydride yielded the anhydride, b. p. $138-140^{\circ} / 15 \mathrm{~mm}$., m. p. 119° (from chloroform). 20 G . of the anhydride were dissolved in dilute aqueous ammonia, the excess of ammonia expelled by warming on the water-bath, and silver succinamate precipitated by the addition of silver nitrate solution (cf. Hoogewerff and van Dorp, Rec. trav. chim., 1899, 18, 361). The silver salt was suspended in water and decomposed with hydrogen sulphide, and the solution filtered and evaporated by warming in a vacuum on a water-bath. It is essential to carry out the evaporation under diminished pressure, since at the ordinary pressure the substance is decomposed with the evolution of ammonia. The product (12 g .) was recrystallised from acetone containing a little ether, and melted sharply at 157° (Hoogewerff and van Dorp, loc. cit., give 156-157 ${ }^{\circ}$.

Specimen 2. 29 G . of methyl hydrogen succinate, m. p. 58°, prepared from succinic anhydride by Bone, Sudborough, and Sprankling's method (J., 1904, 85, 529), were treated with 42 c.c. of aqueous ammonia ($d 0.88$), and worked up as described for malonamic acid; 15 g . of the acid were isolated, m. p. 157° after two crystallisations.

Sodium succinamate was prepared as described for sodium malonamate (Found : Na, 16.57; $\mathrm{N}, \mathbf{1 0 . 0 5}$. Calc. : Na, 16.56 ; N, $\mathbf{1 0 . 0 8 \%}$).

Glutaramic acid. Specimen 1. Glutaric acid, ex nitrile, m. p. 97-98 ${ }^{\circ}$, was converted into the anhydride, b. p. $160-162^{\circ} / 15 \mathrm{~mm} ., \mathrm{m}$. p. 57° from chloroform-ether, by distillation with pure acetic anhydride. 10 G . of the anhydride were treated successively with concentrated aqueous ammonia, silver nitrate, and hydrogen sulphide as detailed for succinamic acid, and finally yielded 6 g . of acid, m. p. $93-94^{\circ}$, after recrystallisation from acetone-ether.

Specimen 2. 20 G . of methyl hydrogen glutarate, b. p. $154-156^{\circ} / 14 \mathrm{~mm}$., prepared by refluxing the anhydride with pure dry methyl alcohol, were treated with aqueous ammonia and worked up as usual; 12 g . of glutaramic acid, m. p. $93-94^{\circ}$ after recrystallisation, were obtained (Found, for mixture of equal weights of specimens 1 and $2: \mathrm{C}, 45 \cdot 90 ; \mathrm{H}, 6 \cdot 84$. Calc. for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~N}$: C, $45.80 ; \mathrm{H}, 6.87 \%$).

Both specimens of the acid, although analytically pure, did not yield constant values for the true dissociation constant, possibly owing to the presence of minute traces of impurities. Each specimen was therefore separately recrystallised three times from ethyl acetate and then employed in the conductivity measurements; m. p. 94°.

Sodium glutaramate was prepared in the usual manner (Found : Na, 15•08; N, 9•23. Calc. for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{3} \mathrm{NNa}: \mathrm{Na}, 15 \cdot 04 ; \mathrm{N}, 9 \cdot 15 \%$).

Adipamic acid. 20 G . of methyl hydrogen adipate, b. p. $164-166^{\circ} / 18 \mathrm{~mm}$. (Morgan and Walton, J., 1933, 91), were treated with aqueous ammonia as described above, and on acidification a white solid was precipitated which was filtered off, a further quantity being obtained by extraction of the filtrate with diethyl ketone. The yield was $13 \mathrm{~g} .$, and the $\mathrm{m} . \mathrm{p} .161^{\circ}$ after recrystallisation from diethyl ketone (Found: $\mathrm{C}, 49.53 ; \mathrm{H}, 7 \cdot 61 . \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{~N}$ requires C , $49 \cdot 67$; H, $7 \cdot 59 \%$). Etaix (Ann. Chim., 1896, 9, 376) gives m. p. $125-130^{\circ}$ for " adipamic acid," which was recrystallised from hot water!

Sodium adipamate was prepared as above (Found: Na, 13.72; N, 8.45. $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{NNa}$ requires $\mathrm{Na}, 13.78$; $\mathrm{N}, 8.38 \%$).

Conductivity Measurements.-The general technique and apparatus were as described in earlier papers of this series. Four cells of the Hartley and Barrett type, two of silica, R $\left(0.02586_{3}\right)$ and $Q\left(0.02674_{8}\right)$, and two of Pyrex, $S\left(0.03422_{8}\right)$ and $V\left(0.02871_{5}\right)$, were used; the figures in parentheses are the corresponding cell constants, which were checked at regular intervals by the method described in Part IV (J., 1931, 1719). All the measurements were carried out at $25^{\circ} \pm 0.01^{\circ}$.

Solvent Corvection and Calculation of the Dissociation Constants.-No correction was applied to the acid solutions. The combined solvent and hydrolysis correction for the sodium salts was applied as detailed for sodium phenylacetate (this vol., p. 167). The specific conductivity of the water was first subtracted from that observed for the salt, and this gave the following preliminary values :

Mobility of anion.

So	Λ^{\prime}	$34 \cdot 7$
Sodium succinamate :	$\Lambda_{0}{ }^{n}=\Lambda_{c}+361 \cdot 4 C^{0.814}=80 \cdot 11$	$30 \cdot 3$
Sodium glutaramate :	$\Lambda_{0}{ }^{n}=\Lambda_{c}+177 \cdot 5 C^{0.734}=78 \cdot 17$.	28.4
Sodium adipamate :	$\Lambda_{0}{ }^{n}=\Lambda_{s}+181 \cdot 1 C^{0.642}=76 \cdot 92 \ldots \ldots \ldots \ldots$	$27 \cdot 1$

With the aid of the above mobility figures and one run for each of the acids, the following preliminary classical dissociation constants were computed : malonamic acid, 2.482×10^{-4} $\left(\Lambda_{0}=382.7\right) ;$ succinamic acid, $3.052 \times 10^{-5}\left(\Lambda_{0}=378.3\right) ;$ glutaramic acid, 2.641×10^{-5}

1104 The Dissociation Constants of Organic Acids. Part IX.

$\left(\Lambda_{0}=376 \cdot 4\right)$; adipamic acid, $2.477 \times 10^{-5}\left(\Lambda_{0}=375 \cdot 1\right)$. The successive stages of the calculations are identical with those previously described (this vol., p. 167).

The final results are tabulated below. For the sodium salts, κ is the specific conductivity of the water used, Λ, norm. is the equivalent conductivity after the application of a normal solvent correction, $\left[\mathrm{H}^{*}\right]$ is the hydrogen-ion concentration computed by means of equation (8) or (10) (J., 1933, 1639), Λ, corr. is the conductivity corrected by means of equation (11) (Part VII, J., 1933, 1639), C is the concentration in g.-equivs. per litre, $\Lambda_{0}{ }^{n}$ is the value of Λ_{0} calculated by means of the " n " formula, the constants of which are given at the head of the table; $\lambda_{0} X^{\prime}$ is the limiting mobility of the appropriate anion.

For the acids, $c^{\prime \prime}$ is the ionic concentration corresponding to the molecular concentration C, calculated as described in Part VI (J., 1932, 2837), two approximations being sufficient; Λ_{e} was obtained from the relationship

$$
\Lambda_{e} \mathrm{CO}_{2} \mathrm{H} \cdot\left(\mathrm{CH}_{2}\right)_{x} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}=\Lambda \mathrm{HCl}-\Lambda \mathrm{NaCl}+\Lambda \mathrm{CO}_{2} \mathrm{Na} \cdot\left(\mathrm{CH}_{2}\right)_{x} \cdot \mathrm{CO} \cdot \mathrm{NH}_{2}
$$

the conductivity data for sodium chloride and hydrochloric acid given in Parts IV and V (J., 1931, 1715; 1932, 400) being employed. $K_{\text {therm. }}$ is the thermodynamic or true dissociation constant, deduced from the equation $\log K_{\text {therm. }}=\log K^{\prime}-1.010 c^{\prime \prime \mathbf{0 . 5}}$, where K^{\prime} is the dissociation constant computed from the corresponding degree of dissociation $\alpha^{\prime}=\Lambda_{c} / \Lambda_{e}$. The figures in parentheses were not employed in the calculation of the mean.
$C \times 10^{4} . ~ \Lambda$, norm. $\left[\mathrm{H}^{*}\right] \times 10^{7} . \Lambda$, corr. $\quad \Lambda_{0}{ }^{n} . \quad C \times 10^{4} . \quad \Lambda$, norm. $\left[\mathrm{H}^{*}\right] \times 10^{7} . ~ \Lambda$, corr. $\quad \Lambda_{0}{ }^{n}$.
Sodium malonamate ($M=125 \cdot 04$).
$\Lambda_{0}{ }^{n}=\Lambda_{c}+450 \cdot 4 C^{0.875} . \quad \Lambda_{0}{ }^{n}=85 \cdot 31 . \quad \lambda_{0 X^{\prime}}=35 \cdot 5$.
$1 \cdot 122$
$5 \cdot 251$
$9 \cdot 930$
$18 \cdot 80$
$29 \cdot 22$
$43 \cdot 08$
$55 \cdot 39$
$\mathbf{7 5 . 5 1}$

Run 1. Cell S. $\kappa=0.832$.

Run 2.	Cell V.	$\kappa=0.823$.	
84.48	$15 \cdot 41$	$(85 \cdot 32)$	-
83.87	10.01	84.41	$85 \cdot 27$
83.29	6.58	83.78	85.31
81.93	3.72	82.01	85.31
81.24	$3 \cdot 15$	$81 \cdot 31$	(85.67)
80.69	2.98	80.72	-
80.32	2.81	80.31	-
79.85	2.62	79.85	-

Sodium succinamate ($M=139 \cdot 05$).
$\Lambda_{0}{ }^{n}=\Lambda_{c}+330 \cdot 0 C^{0.843} . \quad \Lambda_{0}{ }^{n}=81 \cdot 29 . \quad \lambda_{0 X^{\prime}}=31 \cdot 5$.

	Run 1.
1.426	$80 \cdot 23$
6.829	$79 \cdot 72$
$13 \cdot 65$	$79 \cdot 41$
$28 \cdot 74$	$78 \cdot 66$
$48 \cdot 89$	$77 \cdot 89$
$66 \cdot 43$	$77 \cdot 26$
9.82	$76 \cdot 48$
$120 \cdot 4$	$75 \cdot 72$

Cell V. $\kappa=0.806$.

Run 2.	Cell S.	$\kappa=0 \cdot 812$.	
$80 \cdot 12$	$4 \cdot 16$	$(81 \cdot 29)$	-
$79 \cdot 80$	$3 \cdot 27$	$80 \cdot 72$	$81 \cdot 32$
$79 \cdot 57$	$2 \cdot 21$	$80 \cdot 19$	$81 \cdot 27$
$79 \cdot 15$	$1 \cdot 56$	$79 \cdot 68$	$81 \cdot 25$
$78 \cdot 82$	$1 \cdot 13$	$79 \cdot 20$	$81 \cdot 32$
$78 \cdot 15$	0.53	$78 \cdot 27$	$(81 \cdot 56)$
$77 \cdot 13$	0.39	$77 \cdot 17$	-
76.30	0.22	76.31	-

Sodium glutaramate ($M=153 \cdot 07$).

$\Lambda_{0}{ }^{n}=\Lambda_{c}+167 \cdot 6 C^{0 \cdot 629} . \quad \Lambda_{0}{ }^{n}=79 \cdot 83 . \quad \lambda_{0 \mathrm{X}^{\prime}}=30 \cdot 0$.									
$1 \cdot 349$	Run 1. $76 \cdot 82$	Cell V. $6 \cdot 33$	$\kappa=0.717$	-	$3 \cdot 112$	$\begin{aligned} & \text { Run } 2 \\ & 77 \cdot 31 \end{aligned}$	Cell S.	$=0.72$ $(79 \cdot 03)$	
6.435	$77 \cdot 40$	$2 \cdot 37$	78.18	$79 \cdot 83$	9.998	77.09	$1 \cdot 87$	$77 \cdot 61$	$79 \cdot 79$
12.36	76.79	$1 \cdot 45$	$77 \cdot 22$	$79 \cdot 70$	$17 \cdot 59$	$76 \cdot 43$	$1 \cdot 27$	76.76	$79 \cdot 86$
$25 \cdot 35$	$75 \cdot 88$	$0 \cdot 80$	$76 \cdot 09$	79.99	$32 \cdot 51$	$75 \cdot 44$	$0 \cdot 64$	$75 \cdot 64$	(80.12)
$47 \cdot 65$	$74 \cdot 74$	$0 \cdot 46$	$74 \cdot 83$	(80.63)	45.99	$74 \cdot 77$	$0 \cdot 45$	$74 \cdot 83$	-
$66 \cdot 80$	$73 \cdot 94$	$0 \cdot 33$	$74 \cdot 01$	-	57.52	74.28	0.38	$74 \cdot 34$	-
86.97	$73 \cdot 42$	$0 \cdot 26$	$73 \cdot 45$	-	$73 \cdot 83$	$73 \cdot 75$	$0 \cdot 31$	$73 \cdot 76$	-
$105 \cdot 5$	$73 \cdot 10$	$0 \cdot 18$	$73 \cdot 10$	-	96.74	$73 \cdot 25$	$0 \cdot 22$	73.25	

Sodium adipamate ($M=167 \cdot 09$).

$$
\Lambda_{0}{ }^{n}=\Lambda_{c}+202 C^{0.686} . \quad \Lambda_{0}^{n}=78.38 . \quad \lambda_{0 x}=28 \cdot 6
$$

	Run 1.	Cell V.	$\kappa=0.724$.			Run 2.	Cell S.	$\kappa=0.716$.	
0.975	$77 \cdot 21$	7.01	(79.10)	-	3.012	$77 \cdot 01$	$4 \cdot 14$	(78.01)	-
$4 \cdot 614$	$76 \cdot 49$	$3 \cdot 56$	$77 \cdot 41$	$78 \cdot 39$	$10 \cdot 05$	76.03	$2 \cdot 33$	$76 \cdot 41$	$78 \cdot 39$
$8 \cdot 155$	76.28	$2 \cdot 71$	76.77	$78 \cdot 31$	$14 \cdot 49$	$75 \cdot 74$	$1 \cdot 81$	$76 \cdot 01$	$78 \cdot 30$
18.56	75.46	$1 \cdot 51$	$75 \cdot 67$	78.28	$29 \cdot 82$	$74 \cdot 58$	0.91	74.71	78.46
36.82	$74 \cdot 34$	$0 \cdot 68$	$74 \cdot 47$	(78.81)	$43 \cdot 14$	$73 \cdot 86$	0.51	$73 \cdot 94$	(78.78)
49.33	$73 \cdot 78$	$0 \cdot 47$	$73 \cdot 87$		57.52	73.32	$0 \cdot 43$	$73 \cdot 39$	
$65 \cdot 12$	$73 \cdot 14$	$0 \cdot 39$	$73 \cdot 19$		$72 \cdot 25$	$72 \cdot 91$	$0 \cdot 35$	$72 \cdot 92$	
76.90	72-76	$0 \cdot 33$	$72 \cdot 76$	-	98.14	$72 \cdot 25$	$0 \cdot 25$	72.25	-

Malonamic acid ($M=103.04 ; \Lambda_{0}=383 \cdot 5$).

	Run 1. Cell Q. $\kappa=0.671$.					Run 2.	Cell R. $\kappa=0.692$.		
$1 \cdot 466$	$260 \cdot 61$	$383 \cdot 12$	$0 \cdot 9969$	(20.71)	$2 \cdot 512$	210.23	383•13	$1 \cdot 3782$	(20.52)
$7 \cdot 496$	156.33	383.03	3•1299	(20.23)	$7 \cdot 306$	162.14	$383 \cdot 04$	$3 \cdot 0918$	(21.74)
12.77	131-12	$382 \cdot 88$	$4 \cdot 3721$	(22.61)	11-14	$138 \cdot 94$	382.94	$4 \cdot 0407$	(22.65)
27.38	96.74	382.57	6.9246	22.91	$19 \cdot 08$	$112 \cdot 31$	$382 \cdot 87$	$5 \cdot 5964$	$22 \cdot 81$
55.05	$72 \cdot 34$	382•14	$10 \cdot 3833$	$22 \cdot 82$	32.57	90•17	$382 \cdot 47$	$7 \cdot 6786$	$22 \cdot 85$
$71 \cdot 84$	$64 \cdot 61$	$381 \cdot 73$	$12 \cdot 1585$	22.98	$40 \cdot 04$	$82 \cdot 51$	$382 \cdot 31$	$8 \cdot 6414$	22.72
$90 \cdot 21$	$58 \cdot 70$	$381 \cdot 47$	13.8819	$22 \cdot 91$	$62 \cdot 99$	$68 \cdot 19$	$381 \cdot 90$	11.2472	22.78
99•44	$56 \cdot 19$	381-31	14.6545	22.92	$89 \cdot 12$	$58 \cdot 65$	381•49	13•7009	22.84
									$22 \cdot 84$

Succinamic acid ($M=117 \cdot 06 ; \Lambda_{0}=379 \cdot 5$).

Run 1.	Cell R.	$\kappa=0.768$.	Specimen 1.		$\begin{aligned} & \text { Run } 2 . \\ & 1.512 \end{aligned}$	Cell Q. $\kappa=0.784$.		Specimen 2.	
$2 \cdot 958$	$101 \cdot 20$	$379 \cdot 14$	0.7897	(2.816)		137.02	$379 \cdot 15$	0.5464	(3.040)
$5 \cdot 619$	77.35	$379 \cdot 15$	$1 \cdot 1460$	(2.866)	3.970	88.01	379-17	0.9215	(2.794)
10.52	58.50	379•16	$1 \cdot 6234$	$2 \cdot 882$	$7 \cdot 910$	65.22	379-16	$1 \cdot 3606$	$2 \cdot 881$
$23 \cdot 07$	$40 \cdot 89$	379•14	$2 \cdot 4880$	$2 \cdot 899$	$15 \cdot 42$	$49 \cdot 01$	$379 \cdot 15$	$1 \cdot 9932$	$2 \cdot 894$
45.50	$30 \cdot 39$	$379 \cdot 05$	$3 \cdot 4875$	2.911	$28 \cdot 79$	36.61	379•10	$2 \cdot 7803$	$2 \cdot 889$
$59 \cdot 62$	$26 \cdot 14$	378.98	$4 \cdot 1119$	$2 \cdot 906$	52.25	$27 \cdot 31$	$379 \cdot 01$	3•7649	$2 \cdot 881$
$80 \cdot 89$	22.52	$378 \cdot 90$	$4 \cdot 8047$	$2 \cdot 886$	$69 \cdot 01$	24.41	$378 \cdot 96$	4.4339	$2 \cdot 914$
106.2	19.77	378.83	$5 \cdot 5541$	$2 \cdot 888$	96.72	20.82	378-85	$5 \cdot 3099$	$2 \cdot 870$

Glutaramic acid ($M=131 \cdot 08 ; \Lambda_{0}=378 \cdot 0$).
Run 1. Cell R. $\kappa=0.729$. Specimen 1. Run 2. Cell Q. $\kappa=0.734$. Specimen 2.

$1 \cdot 467$	$132 \cdot 91$	377-35	0.5169	(2.764)	2.457	99-50	377-32	$0 \cdot 6479$	(2-278)
$7 \cdot 050$	65•38	377-24	$1 \cdot 2218$	$2 \cdot 496$	$7 \cdot 876$	$62 \cdot 21$	377-23	$1 \cdot 2989$	$2 \cdot 498$
$12 \cdot 10$	$51 \cdot 19$	$377 \cdot 16$	$1 \cdot 6423$	$2 \cdot 503$	$19 \cdot 14$	$41 \cdot 42$	377-10	$2 \cdot 1018$	$2 \cdot 509$
$25 \cdot 90$	35.93	$377 \cdot 02$	$2 \cdot 4685$	$2 \cdot 507$	$29 \cdot 42$	$33 \cdot 85$	376.98	$2 \cdot 6417$	$2 \cdot 509$
$46 \cdot 83$	$27 \cdot 15$	$376 \cdot 83$	3-3735	$2 \cdot 509$	37-17	$30 \cdot 31$	376.91	$2 \cdot 9891$	$2 \cdot 511$
65.03	$23 \cdot 20$	$376 \cdot 71$	$4 \cdot 0041$	$2 \cdot 508$	$55 \cdot 63$	25.01	376.78	$3 \cdot 6926$	$2 \cdot 511$
$87 \cdot 29$	$20 \cdot 17$	376:58	$4 \cdot 6751$	$2 \cdot 516$	$75 \cdot 16$	21.68	$376 \cdot 65$	$4 \cdot 3262$	$2 \cdot 518$
101.8	$18 \cdot 75$	$376 \cdot 51$	$5 \cdot 0667$	$2 \cdot 519$	91.53	$19 \cdot 72$	$376 \cdot 55$	4-7394	$2 \cdot 518$
Mean 2.510									

Adipamic acid ($M=145 \cdot 09 ; \Lambda_{0}=376 \cdot 6$).

Run 1. Cell Q. $\kappa=0.603$.					Run 2. Cell R. $\kappa=0.618$.				
$6 \cdot 046$	63.92	376.02	1.0278	(2.056)	$1 \cdot 001$	$135 \cdot 75$	376.07	$0 \cdot 3613$	(2.013)
10.53	$50 \cdot 11$	375.99	$1 \cdot 4026$	(2.100)	$7 \cdot 317$	59.21	376.02	1-1522	(2.100)
20.95	$36 \cdot 90$	375-91	$2 \cdot 0557$	(2-164)	14.05	$44 \cdot 01$	375•96	$1 \cdot 6449$	(2.116)
50.32	$25 \cdot 01$	375-71	$3 \cdot 3496$	2.333	28.87	$32 \cdot 29$	375-85	$2 \cdot 4803$	$2 \cdot 348$
$70 \cdot 02$	$21 \cdot 66$	375.59	$4 \cdot 0371$	$2 \cdot 357$	$43 \cdot 09$	26.98	375•74	$3 \cdot 0870$	$2 \cdot 338$
90.55	$19 \cdot 36$	$375 \cdot 48$	$4 \cdot 6679$	$2 \cdot 363$	60.76	23.01	375.64	3.7305	$2 \cdot 332$
98.46	$18 \cdot 66$	$375 \cdot 44$	4.9079	$2 \cdot 372$	$79 \cdot 12$	$20 \cdot 48$	$375 \cdot 54$	$4 \cdot 3148$	$2 \cdot 371$
					95.36	18.85	$375 \cdot 47$	$4 \cdot 7875$	$2 \cdot 365$
									$2 \cdot 352$

The authors thank the Royal Society and Imperial Chemical Industries Ltd. for grants Woolwich Polytechnic, London, S.E. 18.
University College, Southampton.
[Received, April 6th, 1934.]

[^0]: Preparation of Materials.—Malonamic acid. Boots's ethyl malonate was converted into ethyl hydrogen malonate, b. p. $145-146^{\circ} / 18 \mathrm{~mm}$., by treatment with potassium hydroxide (Walker, J., 1892, 61, 711). 21 G. of the acid ester were treated with 35 c.c. of ammonia (d 0.88) at 0°, the whole kept in a stoppered bottle in the ice-chest for 48 hours, acidified with ice-cold dilute sulphuric acid, and the liquid extracted several times with diethyl ketone. The extract was dried (sodium sulphate) and the solvent removed under diminished pressure; 9 g . of solid, m. p. $106-110^{\circ}$, remained, which after five recrystallisations from diethyl ketone had m. p. 121° (Found : C, 34.94; H, 4.89 . Calc. : C, 34.91 ; H, 4.85%).

 Sodium malonamate was prepared by dissolving a weighed quantity of the acid in absolute ethyl alcohol, and adding, from a carefully calibrated burette, the calculated volume of a standard (approx. $N / 2$) solution of sodium ethoxide, prepared by dissolving Kahlbaum's sodium (" pure for analysis ") in absolute alcohol and titrated against standardised hydrochloric acid. The sodium salt gradually separated, and, after filtration, was recrystallised by dissolving it in a small quantity of cold water and precipitating it by addition of absolute ethyl alcohol (Found : Na, as sulphate, $18 \cdot 36 ; \mathrm{N}$, by distillation with NaOH solution, $11 \cdot 12$. Calc. : Na, $18 \cdot 41 ; \mathrm{N}, 11 \cdot 19 \%$).

