Seventh Report of the Committee on Atomic Weights of the International Union of Chemistry.

By G. P. BAXTER (Chairman), O. HÖNIGSCHMID and P. LEBEAU.

The following report of the Committee covers the twelve-month period, September 30, 1935, to September 30, 1936.*

The following changes in the table of atomic weights have been made:

Carbon, from 12·00 to 12·01. Rubidium, from 85·44 to 85·48. Gadolinium, from 157·3 to 156·9. Lead, from 207·22 to 207·21. Uranium, from 238·14 to 238·07.

OXYGEN.—Dole (J. Amer. Chem. Soc., 1935, 57, 2731; J. Chem. Physics, 1936, 4, 268) reports a difference in isotopic composition between the oxygen of the air and that of the water of Lake Michigan, U.S.A., corresponding to 0.00008 atomic weight unit, and

* Authors of papers bearing on the subject are requested to send copies to each of the three members of the Committee at the earliest possible moment: Prof. G. P. Baxter, Coolidge Laboratory, Harvard University, Cambridge, Mass., U.S.A.; Prof. O. Hönigschmid, Sofienstrasse 9/2, Munich, Germany; Prof. P. Lebeau, Faculté de Pharmacie, 4, Avenue de l'Observatoire, Paris (6°), France.

advocates some single isotope such as protium as atomic weight standard. Since analytical accuracy under the most favourable conditions does not surpass 0.001%, and since the determination of atomic weights by chemical methods, no matter what standard is used, must in most cases involve reference to oxygen more or less directly, the Committee sees no reason to change the position taken in its Second Report (J. Amer. Chem. Soc., 1932, 54, 1269), that no advantage is to be gained by any change of standard at the present time.

HYDROGEN.—Although no change in the atomic weight of hydrogen is made in this year's table, it seems increasingly probable, from mass spectrographic measurements (Aston, Nature, 1935, 135, 541; 1936, 137, 357), that the atomic weight of hydrogen is 0.0002-0.0003 higher than the current value. As pointed out by Moles (Anal. Fis. Quim., 1935, 33, 721), chemical determinations have ordinarily been made with electrolytic hydrogen, which, owing to isotopic separation, has a less than normal proportion of deuterium.

CARBON.—Toral and Moles (Bol. Acad. Cienc. exactas, fis. y nat., Madrid, 1936, 2, No. 4, 4) have determined the density of carbon dioxide, made by pyrolysis of sodium bicarbonate, with the following average results. Individual results are not given:

1	atmosphere	 1.97701
ı	/2 ,,	 1.97014

Limiting density is then 1.96327, and the atomic weight of carbon 12.006 if gram-molecular volume is taken as 22.4146. Using their own value for the limiting density of oxygen, Toral and Moles obtain the value 12.007 for carbon.

Baxter and Hale (J. Amer. Chem. Soc., 1936, 58, 510) have determined the atomic weight of carbon by combustion of hydrocarbons. A weighed amount of hydrocarbon was burned in pure oxygen and both the carbon dioxide and the water formed were collected and weighed. From the weight of water the weight of hydrogen was calculated and subtracted from the weight of hydrocarbon to find the weight of carbon, from which, with the weight of carbon dioxide, the ratio of carbon to oxygen may be calculated.

Hydrocarbons were purified by chemical treatment, by crystallisation from hydrocarbon solvents and distillation or sublimation.

Combustion was effected by slowly evaporating weighed amounts of hydrocarbon into a stream of an excess of oxygen which passed over platinum catalysts in a quartz tube, first at 650°, but eventually at 800°. A short section of copper oxide provided for a possible deficiency of oxygen. Water was collected largely by condensation, but partly by phosphorus pentoxide. Carbon dioxide was collected in ascarite (sodium hydroxide), and escape of water from the carbon dioxide absorber was prevented by phosphorus pentoxide. Vacuum corrections are applied.

Results with pyrene were inconsistent and differed from those with other hydrocarbons.

The Atomic Weight of Carbon. Wt. of Wt. of Wt. of Wt. of Wt. of Wt. of CO₂. Sample. H₂O. H. 0. $C: O_2$. At. wt. C. Chrysene. 2.780441.31209 0.146802.63364 9.65247 7.01883 0.37522512.007 (2) 2.692581.276090.142772.54981 9.34368 6.793870.375310 12.009 (9) 2.977821.41063 0.157822.820000.37527612.008 (8) 10.33447 7.514472.99649 1.41913 0.158772.8377210.39870 7.560980.37531112.010 (0) Average 0.375281 12.009 (0) Triphenylbenzene. 3.00012 1.590120.177900.37533812.010 (8) 2.8222210.34136 7.519142.997731.587300.1775912.009(4)0.3752942.8201410.334637.514492.99639 1.585920.177432.8189610.330267.511300.37529612.009(5)Average 0.375309 12.009 (9) Anthracene. 2.99484 1.51453 0.169452.825390.37528812.009 (2) 10.35398 7.528592.04930 1.03682 0.11600 1.933307.08554 $5 \cdot 15224$ 0.37523512.007 (5) Average 0.375262 12.008 (4) Average of all 12:009 (1) This result is in accord with recent gas density and mass spectrographic evidence that the atomic weight of carbon is not far from 12.01. Accordingly the International value has been altered to this figure.

Batuecas (Bol. Univ. Santiago, Oct.-Dec. 1935) recalculates his data on the densities of several gases, and finds values for carbon from 11.999 to 12.007, and for nitrogen 14.011 and 14.009.

NEON.—Jungbluth-Ficht and Hoeppener (Ber., 1935, 68, 2389), starting with neon containing 18% of helium, fractionated this gas by adsorption on active charcoal at low temperature. The products of the last three fractionations gave the following densities (volume of globe = 300 ml., q = 980.616).

Α		0.8988
В	***************************************	0.89949
C		0.89990

The density of the purest fraction (C) corresponds to the atomic weight of neon in current use.

Potassium.—Brewer (J. Amer. Chem. Soc., 1936, 58, 365, 370) has measured the abundance ratio 39 K/ 41 K in potassium from various sources. With minerals the ratio varied from 14·11 to 14·32 (except for one sample which gave 14·6). With plant ash a larger variation was found, from 12·63 (kelp) to 14·6 (potato sprouts). In sea water from different localities the ratio was constant at 14·20. The abundance ratio 14·20, with the packing fraction — $7\cdot0\times10^{-4}$ and the conversion factor 1·00027, gives 39·094 for the atomic weight of potassium. With the average abundance ratio from minerals, 14·25, the atomic weight is 39·093. The abundance ratio corresponding to the atomic weight 39·096 is 13·93.

Gallium.—Lundell and Hoffman (Bur. Stand. J. Res., 1935, 15, 409) have determined the ratio of gallium to gallium oxide. Gallium of 99.999% purity was prepared by a combination of wet methods, electrolysis, and fractional crystallisation of the metal (Hoffman, Bur. Standards J. Res., 1934, 13, 665). By chemical and optical examination the crystals were found to be free from oxide film. In one set of experiments weighed crystals were dissolved in a mixture of nitric, hydrochloric, and sulphuric acids and after removal of nitric and hydrochloric acids, gallium hydroxide was precipitated with ammonia. The hydroxide was collected and ignited at 1200—1300° to constant weight (I). In another the gallium sulphate was evaporated to dryness and ignited at 1200—1300° (II). In a third, after solution in mixed nitric and hydrochloric acids, the hydrochloric acid was eliminated by evaporation with nitric acid and the solution of gallium nitrate evaporated to dryness and the residue ignited at 1200—1300° (III). Oxide samples prepared by the three methods were found to be free from occluded gases. Weights are corrected to the vacuum standard.

The Atomic Weight of Gallium.

Method.	Wt. of Ga.	Wt. of Ga ₂ O ₃ .	2Ga: Ga ₂ O ₃ .	Λt. wt. Ga.
I	0.86526	1.16307	0.74394	69.730
I	1.25888	1.69205	0.74400	69.750
I	1.23368	1.65815	0.74401	69.753
I	3.45532	4.64464	0.74394	69.727
I	2.97452	3.99838	0.74393	$69 \cdot 725$
		Averag	e 0·74396	69.737
II	1.15767	1.55604	0.74398	69.745
II	1.53230	2.05967	0.74395	69.733
П	2.48716	$3 \cdot 34320$	0.74395	69.730
II	3.09080	$4 \cdot 15443$	0.74398	69.741
		Averag	e 0·74397	69.737
III	0.78420	1.05411	0.74395	69.730
III	0.80495	1.08196	0.74397	69.740
		Averag	e 0·74396	69.735
		Average of al	1 0.74396	69.737

The difference between the average value for gallium and that found earlier by Richards and Craig, through the analysis of GaCl₃, 69·72, warrants further investigation.

Germanium.—Hönigschmid, Wintersberger, and Wittner (Z. anorg. Chem., 1935, 225, 81) have determined the ratio of germanium tetrabromide to silver and silver bromide. The tetrabromide was synthesised from spectroscopically pure germanium and pure bromine and was fractionally distilled in exhausted glass systems. Glass bulbs were partially filled with material at various stages of the fractionation. After being weighed, the bulbs were broken under sodium hydroxide and the glass was collected for weighing. The solution was then acidified and compared with silver in the usual way. Finally the silver bromide was collected. Weights are corrected to vacuum. Fractions are numbered in the order of decreasing volatility.

The Atomic Weight of Germanium.

Fraction.	Wt. of GeBr ₄ .	Wt. of Ag.	GeBr ₄ : 4Ag.	At. wt. Ge.	Wt. of AgBr.	GeBr ₄ : 4AgBr.	At. wt. Ge.
	3.57997	3.93852	0.908963	72.572	6.85620	0.522151	72.567
4	7.58115	8.33982	0.909030	72.601	14.51750	0.522208	72.610
6	4.90761	5.39888	0.909005	72.590	9.39827	0.522182	72.591
7	6.13136	6.74501	0.909022	72.597	11.74160	0.522191	72.598
9	4.57465	5.03256	0.909011	72.592	8.76096	0.522163	72.577
11	8.62179	9.48497	0.908995	72.586	16.51123	0.522177	72.587
12	6.31559	6.94772	0.909016	72.595	12.09440	0.522191	72.598
13	6.80706	7.48879	0.908967	72.573	13.03664	0.522148	72.565
14	$5 \cdot 46488$	6.01211	0.908979	72.579	10.46570	0.522171	72.582
15	6.03550	6.63974	0.908996	72.586	11.55892	0.522151	72.567
	60.01956	66.02812	0.909000	72.588	114.94142	0.522175	72.586
	To	otal	Avera	age	Total	Avera	ge

Hönigschmid and Wintersberger (Z. anorg. Chem., 1936, 227, 17) have determined the ratio of germanium tetrachloride to silver and silver chloride. Germanium was recovered from the tetrabromide analyses by precipitation as hydroxide or sulphide, and after conversion into oxide was reduced in hydrogen. The tetrachloride, which was synthesised from the metal and chlorine prepared from pyrolusite and hydrochloric acid, was fractionally distilled in exhausted systems and collected in sealed glass bulbs. These were analysed as described above. Weights are corrected to vacuum.

The Atomic Weight of Germanium.

				0 ,			
Fraction.	Wt. of GeCl₄.	Wt. of Ag.	GeCl₄: 4Ag.	At. wt. Ge.	Wt. of AgCl.	GeCl ₄ : 4AgCl.	At. wt. Ge.
1	3.10145	6.24157	0.496902	72.595	•		
2	2.21830	4.46415	0.496914	72.600			
4	3.04473	6.12798	0.496857	72.576	8.14193	0.373957	72.579
6	3.45885	6.96104	0.496887	72.589			
7	3.06428	6.16679	0.496900	72.594			
8	3.47933	7.00214	0.496895	72.592			
10	2.75854	5.55169	0.496883	72.587	7.37629	0.373974	72.589
5	4.20694	8.57525	0.496888	72.589			
3	2.95678	5.95028	0.496914	72.601	7.90580	0.374001	72.605
	28.34320	57.04089	0.496893	72.591	23.42402	0.373977	$72 \cdot 591$
			<u> </u>			<u> </u>	
	T	otal	Aver	age	Total	Avera	ge

The average result, 72.59, is 0.01 unit lower than the International value, which depends upon the work of Baxter and Cooper.

Rubidium.—Archibald, Hooley, and Phillips (J. Amer. Chem. Soc., 1936, 58, 70) have redetermined the ratio RbCl: Ag. Rubidium dichloroiodide was fractionally crystallised ten times from dilute hydrochloric acid. Conversion through the sulphate into the hydroxide by means of barium hydroxide was followed by neutralisation with tartaric acid and five recrystallisations of the acid tartrate. After conversion of the tartrate into carbonate by ignition, the chloride was formed and recrystallised three times. Spectrographic analysis yielded no evidence of the presence of other alkalis.

Rubidium chloride was prepared for weighing by fusion in nitrogen, and was compared with pure silver by the "standard solution" method of Johnson. Weights are corrected to vacuum.

The Atomic Weight of Rubidium.

Wt. of RbCl.	Wt. of Ag.	RbCl : Ag.	At. wt. Rb.
2.41226	$2 \cdot 15167$	1.12111	85.488
2.77942	$2 \cdot 47848$	1.12142	85.519
2.90458	2.59105	1.12100	$85 \cdot 476$
2.51028	2.23897	1.12118	85.495
3.04508	2.71636	1.12101	$85 \cdot 478$
$2 \cdot 25778$	2.01411	1.12098	85.474
2.44580	$2 \cdot 18166$	1.12107	85.484
2.59528	$2 \cdot 31509$	1.12103	$85 \cdot 479$
Average	of last six analyses	1.12104	85.481

Archibald and Hooley (J. Amer. Chem. Soc., 1936, 58, 618) have continued the foregoing investigation by the determination of the ratios RbBr: Ag: AgBr. Rubidium nitrate resulting from the rubidium chloride analyses was freed from silver and converted into acid tartrate which was four times crystallised. Conversion into bromide followed. The first fraction of crystals formed Sample I. The remainder was converted into tribromide and twice recrystallised. The crystals after conversion into bromide formed Sample II, the mother-liquors Sample III. Comparison of weighed amounts of rubidium bromide with silver was followed by gravimetric determination of the silver bromide formed. Weights are corrected to vacuum.

The Atomic Weight of Rubidium.

Sample.	Wt. of RbBr.	Wt. of Ag.	RbBr : Ag.	At. wt. Rb.	Wt. of AgBr.	RbBr ; AgBr.	Λt. wt. Rb.
I	3.67283	$2 \cdot 39554$	1.53320	85.485			
I	3.27067	$2 \cdot 13320$	1.53322	$85 \cdot 488$			
II	4.04039	2.63537	1.53314	85.479			
II	3.20309	2.08916	1.53320	85.485			
II	4.00547	2.61245	1.53322	85.488			
H	6.66951	4.35022	1.53314	85.480	7.57272	0.880728	85.481
II	4.69377	3.06150	1.53316	$85 \cdot 481$	5.32945	0.880723	85.480
II	3.33389	$2 \cdot 17458$	1.53312	85.477			
111	3.62456	$2 \cdot 36409$	1.53317	$85 \cdot 483$	$4 \cdot 11561$	0.880686	$85 \cdot 473$
		Average	1.53315	85.483		0.880712	$85 \cdot 478$

The average value from the three ratios, 85.48, is 0.04 unit higher than that found by Archibald over thirty years ago, and has been adopted for the table.

SILVER.—Hönigschmid and Schlee (Z. angew. Chem., 1936, 49, 464) have determined the ratio of silver nitrate to silver chloride in the dry way. Silver nitrate which had been prepared from the purest silver was crystallised from nitric acid, and after being dried in pure air at 150° was fused at 220°. Conversion of the weighed nitrate into chloride was effected, first at 150° in hydrogen chloride diluted with nitrogen, later at higher temperatures in more concentrated hydrogen chloride, until finally the fusion temperature was passed. No loss of silver salt occurred during the conversion. Weights are corrected to vacuum.

The Ratio of Silver Nitrate to Silver Chloride.

W	t. of AgNO ₃ .	Wt. of AgCl	. AgNO ₃ : AgCl.
	6.60708	5.57445	1.185244
	6.25586	5.27812	1.185244
	6.53756	5.51582	1.185238
	6.42000	5.41662	1.185241
	$6 \cdot 19269$	5.22483	1.185242
	7.48847	6.31810	1.185241
	6.58954	5.55968	1.185237
	6.76512	5.70780	1.185241
Total	$52 \cdot 85632$	44.59542	Average 1:185241

This experimental value affords close confirmation of International atomic weights which give, as the value to be expected, 1·185235.

CADMIUM.—Hönigschmid and Schlee (Z. anorg. Chem., 1936, 227, 184) have analysed cadmium chloride and bromide. Cadmium metal was fractionally distilled in vacuum until spectroscopic examination (Gerlach) showed no impurities. Cadmium chloride

was prepared by solution of the metal in nitric acid and displacement of the nitric acid by hydrochloric acid. After crystallisation the salt was dehydrated and twice sublimed in hydrogen chloride (Sample I). A second sample was made by heating the metal in dry hydrogen chloride, and twice subliming the product (Sample II). Preparatory to weighing, the chloride was fused in nitrogen in a quartz system, since chlorine and hydrogen chloride are retained if the operation is conducted in these gases.

Cadmium bromide was synthesised by heating the metal in a current of nitrogen and bromine in a quartz apparatus, and was twice resublimed in nitrogen and bromine before the final fusion in nitrogen. Analysis by comparison with silver followed the conventional lines. Weights are corrected to vacuum.

The Atomic Weight of Cadmium.

		1 11	0,,000,000			
Sa	mple. W	t. of CdCl ₂ .	Wt. of Ag.	CdCl ₂ : 2Ag.	At. wt. Cd.	
	Ī	3.57277	4.20504	0.849640	112.404	
	I	4.04302	4.75840	0.849659	112.408	
	Ţ	3.77238	4.43989	0.849656	112.407	
	I	4.07495	4.79598	0.849659	112.409	
			Avera	ige 0.849654	112.407	
	11	4.23323	4.98215	0.849679	112-413	
	11	4.42435	$5 \cdot 20722$	0.849657	112.408	
	H	4.87970	5.74305	0.849670	112-411	
	lΙ	3.43664	4.04470	0.849665	112.410	
			Avera	age 0.849668	112.411	
			Average of	all 0.849661	112.409	
Wt. of CdBr ₂ .	Wt. of Ag.	CdBr ₂ : 2Ag.	At. wt. Cd.	Wt. of AgBr.	CdBr ₂ : 2AgBr.	At. wt. Cd.
4.13490	3.27717	1.26173	$112 \cdot 399$	5.70479	0.724812	112.402
4.07813	3.23214	1.26174	112.402	5.62629	0.724835	112.410
4.09476	3.24530	1.26175	112.403	5.64920	0.724839	112.411
5.28536	4.18885	1.26177	112.407			
$6 \cdot 12808$	4.85675	1.26177	112.407	$8 \cdot 45436$	0.724842	$112 \cdot 413$
	Aver	age 1.26175	112.404		0.724832	112.409

The average of all the individual values, 112.41, is identical with the present International value, and is 0.2 unit higher than Aston's most recent mass spectroscopic determination, 112.2.

GADOLINIUM.—Naeser and Hopkins (J. Amer. Chem. Soc., 1935, 57, 2183) have determined the ratio of gadolinium chloride to silver. Samarium-europium-gadolinium material was fractionally crystallised as double magnesium nitrates with and without bismuth as "separating element," and then as simple nitrates with bismuth nitrate as separator. Bismuth was eventually removed as sulphide, and the gadolinium was five times alternately precipitated as hydroxide and oxalate. Of the eight final fractions, 7—14, the first six showed only gadolinium in their arc spectra.

Gadolinium chloride was prepared for weighing by evaporating to dryness a solution of the salt in a weighed quartz flask and cautious expulsion of the crystal water wholly by efflorescence, all in a current of hydrogen chloride. Fusion in hydrogen chloride

The Atomic Weight of Gadolinium.

Fraction.	Wt. of GdCl ₃ .	Wt. of Ag.	$GdCl_3: 3Ag.$	At. wt. Gd.
7	0.38265	0.47047	0.81333	156.86
7	0.82483	1.01416	0.81331	156.85
8	1.56656	1.92608	0.81334	156.86
8	0.63482	0.78060	0.81325	$156 \cdot 82$
9	0.68899	0.84716	0.81330	156.85
9	$2 \cdot 27153$	2.79249	0.81344	156.89
10	1.89197	$2 \cdot 32637$	0.81329	156.84
10	1.41902	1.74486	0.81326	156.83
11	1.23485	1.51829	0.81332	156.85
11	1.61684	1.98796	0.81332	156.85
12	1.72986	$2 \cdot 12689$	0.81333	$156 \cdot 86$
12	$2 \cdot 48952$	3.06091	0.81333	$156 \cdot 85$
		Avera	ge 0·81332	156.85

followed. Comparison with silver followed conventional lines, by the equal opalescence method. Weights are corrected to vacuum.

Since this result is in accord with Aston's recent finding, the value 156.9 has been adopted for the International table.

Erbium.—Hönigschmid (*Naturwiss.*, 1936, 24, 619) has redetermined, by analysis of the chloride, the atomic weight of an erbium preparation containing 0·37 atomic % of yttrium and 0·42% of thulium. The value found was 166·96, which, when corrected for yttrium and thulium, becomes 167·24. The material used earlier by Hönigschmid and Kapfenberger, which gave the value 165·2, was found to contain 2·9 atomic % of yttrium, 2·9% of holmium, 3·9% of thulium and 2·7% of ytterbium. Correction for these impurities raises the observed value to 167·35. The discrepancy between the results of Hönigschmid and Kapfenberger, and of Aston, 167·15, is thus largely removed.

However, the Committee feel that it is advisable to defer any change in the value for erbium in the table until the details of Hönigschmid's work are available.

Tantalum.—Hönigschmid and Schlee (Z. anorg. Chem., 1935, 225, 64) have continued their work on the atomic weight of tantalum by analysis of tantalum pentachloride. The purification of tantalum material consisted in recrystallisation of the double potassium fluoride, conversion into tantalic acid by evaporation with sulphuric acid, extraction of potassium salt with hot water, and ignition at 1000°. At this stage, niobium, thorium, and zirconium had been eliminated, but a trace of iron remained. This was removed by fusion with sodium hydroxide and precipitation of iron as sulphide. Precipitation of tantalic acid with sulphurous acid and ignition followed.

The pentachloride was prepared by first converting the oxide into sulphide by heating in a current of hydrogen sulphide and carbon disulphide, and then heating the sulphide in chlorine. Removal of sulphur chloride was effected by distillation in a current of chlorine and by heating in a high vacuum. The product was distilled into small glass bulbs for weighing.

The weighed bulbs were broken under alcohol, and after dilution with water the glass was collected and weighed. Precipitation of tantalic acid with ammonia followed, and after addition of a slight excess of nitric acid the solution was compared with weighed quantities of pure silver. Weights are corrected to vacuum.

The Atomic Weight of Tantalum.

V	Vt. of TaCl ₅ .	Wt. of Ag	g. TaCl ₅ : 5Ag.	At. wt. Ta.
	2.59060	3.90135	0.664026	180.891
	2.86797	4.31891	0.664049	180.903
	2.43804	3.67183	0.663985	$180 \cdot 869$
	1.58970	2.39423	0.663971	180.861
	$3 \cdot 13325$	4.71853	0.664030	$180 \cdot 893$
	$4 \cdot 25695$	6.41098	0.664009	180.883
Total	16.87651	25.41583	Average 0.664016	180.885

The average result agrees exactly with that previously found by the authors from the analysis of the pentabromide.

LEAD.—Hecht and Kroupa (Z. anorg. Chem., 1936, 226, 248) have determined the atomic weights of several radiogenic leads. Lead chloride from each specimen was purified by crystallisation as nitrate, conversion into sulphate and into carbonate, recrystallisation as nitrate and as chloride, and sublimation of the chloride in hydrogen chloride. The ratios of lead chloride to silver and silver chloride were found in the conventional way. Weights are corrected to vacuum.

The value for Great Bear Lake material is slightly higher than that found by Marble and Baxter and Alter with a different sample. This difference is undoubtedly due to varying amounts of common lead which the mineral is known to contain. With a different specimen of Wilberforce uraninite, Baxter and Bliss found 206·195, although the Th/U ratio of this specimen was lower. It is far from certain, however, that Wilberforce uraninite is free from common lead. The lead in the black insoluble portion of Katanga

pitchblende appears to have a slightly higher atomic weight than that in the hydrochloric acid-soluble portion of the same specimen as determined by Hönigschmid, Sachtleben, and Baudrexler, 206.03.

The Atomic Weight of Lead.

			•	•			
	Wt. of PbCl ₂ . (4·10802 3·01366	Wt. of Ag. Pl 3·19996 2·34736	oCl ₂ : 2Ag. 1·28377 1·28386	At. wt. Pb. 206·073 206·090	Wt. of AgCl.	PbCl ₂ : 2AgCl.	At. wt. Pb.
Pitchblende, Great Bear Lake, N.W.T., Canada.	3.94641 3.00540 3.99564 5.21141	3.07404 2.34110 3.11230 4.05947 Average	1·28379 1·28376 1·28382 1·28377	206·076 206·069 206·084 206·071 206·077	4·08412 3·11048 4·13520 5·39355	0·96628 0·96622 0·96625 0·96623 0·96625	206·094 206·075 206·085 206·079 206·083
Uraninite, Wilberforce, Ontario, Canada.	$ \begin{pmatrix} 3.05552 \\ 3.02424 \\ 5.01384 \\ 2.57832 \end{pmatrix} $	2·37910 2·35477 3·90390 2·00763 Average	1·28432 1·28430 1·28432 1·28426 1·28430	206·190 206·187 206·190 206·178 206·186	3.16127	0-96655	206-170
Pitchblende, Katanga, Africa. Black insoluble.	$\left\{\begin{array}{c} 2.90173 \\ 2.77498 \end{array}\right.$	2·26061 2·16174 Average	1·28360 1·28368 1·28364	206·037 206·053 206·045			
Galena, Tetûche.	$ \begin{cases} 3.83794 \\ 4.33839 \\ 3.41397 \end{cases} $	2.97731 3.36557 2.64831 Average	1·28907 1·28905 1·28912 1·28908	207·214 207·211 207·224 207·216	3·95559 4·47171 3·51904	0·97026 0·97019 0·97014 0·97020	207·234 207·213 207·201 207·216

In the light of recent evidence (see preceding reports) the atomic weight of lead appears to be nearer 207.21 than 207.22 and this change has been made in the table.

URANIUM.—Hönigschmid and Wittner (Z. anorg. Chem., 1936, 226, 289) have investigated the ratios UCl₄: 4Ag: 4AgCl and UBr₄: 4Ag: 4AgBr. Samples of uranium material from different mineral sources were purified by essentially similar methods, including removal of heavy metals with hydrogen sulphide, precipitation of uranyl carbonate and solution in excess ammonium carbonate, crystallisation of uranyl nitrate, precipitation of uranyl oxalate and ignition, first to U₃O₈, and then to UO₂ in hydrogen.

The halides were obtained by heating the oxide mixed with sugar charcoal in an atmosphere of nitrogen and chlorine or bromine, and the first sublimate obtained was resublimed into a weighed quartz tube, all in a quartz bottling system. In many of the experiments the sublimed halide was fused in an atmosphere of the corresponding halogen before being weighed. Analysis followed by dissolving the salt, oxidising with hydrogen peroxide in acid solution, and comparison with silver. Afterwards in some cases the silver halides were collected. Weights are corrected to vacuum.

Within the experimental error there seem to be no differences in the isotopic composition of the samples of uranium, although the original minerals differ considerably in geologic age.

The authors believe the comparisons of the halides with silver to be more accurate than those with silver halides, and point out that, since material fused after sublimation seems to yield slightly higher and less consistent results than when final fusion is omitted, dissociation and loss of halogen may occur during fusion. Therefore they prefer the final value 238-07, which results from analyses of unfused chloride, to the average of all the determinations.

This result is materially lower than the value in use for some time, which depends on the work of Hönigschmid and of Hönigschmid and Schilz. The authors believe the difference to be due to the fact that in the earlier work the halides were finally sublimed and fused in nitrogen before weighing. Since there seems to be no doubt that this is the case, and since the value 238.07 best represents the evidence of the foregoing work, this new value has been adopted for the table.

The Atomic Weight of Uranium.

Norwegian Curite Wt. of UC1, and with the color of			1 110 11	will it cign	oj Oran									
Source. UCl ₄		Wt. of	Wt. of		At. wt.	Wt. of		At. wt.						
Morogoro, Uraninite. Sublimed in chlorine and fused in chlorine.	Source.			UCl ₄ : $4\Lambda g$.			UCl ₄ : 4AgCl.							
Morogoro, Uraninite.	•													
Morogoro, Uraninite. 2-17001														
Uranimite. \$\frac{3.43045}{3.43045}	Maragara	(3.08216	3.50091	0.88039	238.077	4.65181	0.66257	238.057						
Sublimed in chlorine, not fused. Sublimed in chlorine, not fused.		₹ 2.17001	$2 \cdot 46488$	0.88037	238.070									
Sublimed in chlorine, not fused.	Grannine.	3.43045	3.89642	0.88041	238.087									
Morogoro, Uraninite.		-	Avera	ge 0.88039	238.078									
Morogoro, Uraninite.	Sublimed in chloring not found													
Morogoro, Uraninite. A 37836 4-97304 0-88037 238-067 5-49584 6-24257 0-88038 238-070 4-90768 5-57455 0-88037 238-070 4-90286 5-67158 0-88037 238-070 4-47977 5-42582 0-88042 238-092 4-47977 5-42582 0-88042 238-092 4-47977 5-42582 0-88042 238-093 238-077						ea.								
Morogoro, Uraninite.														
Morogoro, Uraninite.														
Morogoro, Uraninite. Wt. of UBr, 2449768 4-9968 5-57465 0-88037 238-070 238-075														
Uraninite. 4-99286	Morogoro.													
Variage Vari														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
		1												
$ \begin{array}{c} {\rm Katanga, \\ {\rm Curite.}} \end{array} \begin{cases} \begin{array}{c} 4.63617 & 5.26634 & 0.88034 & 238.056 & 6.99683 & 0.66261 & 238.078 \\ 4.36107 & 4.95357 & 0.88039 & 238.078 & 6.58181 & 0.66260 & 238.069 \\ 4.47121 & 5.07874 & 0.88038 & 238.073 & 6.74810 & 0.66250 & 238.065 \\ & & & & & & & & & & & & & & & & & & $		(4.4/9//	9.09941											
Natianga Curite. 4 - 495357				Average	238.075									
Curite.	77 - 4	(4.63617)	$5 \cdot 26634$	0.88034	238.056	6.99683	0.66261	238.078						
Norwegian Euxenite and Samarskite. Solution	Katanga,	₹ 4.36107	4.95357	0.88039	238.078	6.58181	0.66260	238.069						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Curite.	4.47121	5.07874	0.88038	238.073	6.74810	0.66259	238.065						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		•	Avera	ge 0.88037	238.069		0.66260	238-071						
Euxenite and Samarskite.				O										
Samarskite. 4.70546														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Samarskite.	(4.70546				7.10206								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Avera	ge 0·88036	238.065		0.66258	238.062						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Sublimed	in bromine an	d fused in l	bromine.								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Wt of						At wt						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Source			HBr 4Ag			IIBr · 4A oBr							
Morogoro, Uraninite. 6.09031	courte.	•	0				• 0							
Morogoro, Uraninite.						3.20336	0.14201	230.033						
$ \begin{array}{c} \text{Uraninite.} \\ \begin{array}{c} 4.72075 \\ 4.69691 \\ 3.63391 \\ 4.32567 \\ \end{array} \begin{array}{c} 3.65242 \\ 3.63391 \\ 1.29250 \\ \end{array} \begin{array}{c} 238.075 \\ 238.085 \\ \end{array} \begin{array}{c} 6.32562 \\ 6.32562 \\ \end{array} \begin{array}{c} 0.74252 \\ 0.74250 \\ \end{array} \begin{array}{c} 238.106 \\ 238.078 \\ \end{array} \end{array} \\ \begin{array}{c} A \cdot 22567 \\ 3.34676 \\ \end{array} \begin{array}{c} 3.34676 \\ 1.29250 \\ \end{array} \begin{array}{c} 238.073 \\ 238.073 \\ \end{array} \begin{array}{c} 5.82595 \\ 0.74248 \\ \end{array} \begin{array}{c} 238.078 \\ 238.092 \\ \end{array} \end{array} \\ \begin{array}{c} A \cdot 78298 \\ 3.49630 \\ 2.70491 \\ 2.93547 \\ 2.27122 \\ 1.29246 \\ 238.060 \\ \end{array} \begin{array}{c} 238.081 \\ 4.70845 \\ 3.38489 \\ 1.29246 \\ 238.060 \\ \end{array} \begin{array}{c} 238.080 \\ 3.02257 \\ 3.45769 \\ 3.42225 \\ 2.64779 \\ 1.29250 \\ \end{array} \begin{array}{c} 238.082 \\ 238.060 \\ 238.073 \\ 4.60899 \\ 0.74252 \\ 238.104 \\ 4.66671 \\ 0.74252 \\ 238.102 \\ \end{array} \begin{array}{c} 238.081 \\ 3.40683 \\ 3.76705 \\ 1.29249 \\ 238.073 \\ 4.60899 \\ 0.74252 \\ 238.102 \\ \end{array} \\ \begin{array}{c} 4.00032 \\ 3.09498 \\ 4.2025 \\ 3.41976 \\ 1.29252 \\ 238.078 \\ 1.29251 \\ 238.078 \\ \end{array} \begin{array}{c} 238.076 \\ 4.65671 \\ 0.74250 \\ 0.74251 \\ 238.095 \\ \end{array} \begin{array}{c} 238.087 \\ 3.66815 \\ 0.74249 \\ 238.062 \\ \end{array} \\ \begin{array}{c} 238.087 \\ 3.8078 \\ 4.6683 \\ 3.76705 \\ 1.29251 \\ 238.078 \\ \end{array} \begin{array}{c} 238.078 \\ 5.86169 \\ 0.74250 \\ 238.074 \\ 238.096 \\ \end{array} \begin{array}{c} 238.087 \\ 4.6209 \\ 3.41976 \\ 1.29252 \\ 238.078 \\ 3.6082 \\ \end{array} \begin{array}{c} 238.078 \\ 5.86169 \\ 0.74250 \\ 238.062 \\ \end{array} \begin{array}{c} 238.0808 \\ 3.6082 \\ 0.74246 \\ 238.062 \\ \end{array} \begin{array}{c} 238.0808 \\ 3.6081 \\ 3.6081 \\ \end{array} \begin{array}{c} 0.74250 \\ 238.0808 \\ \end{array} \begin{array}{c} 238.0808 \\ 3.6081 \\ 0.74240 \\ 238.083 \\ \end{array} \begin{array}{c} 0.74250 \\ 238.083 \\ \end{array} \begin{array}{c} 238.086 \\ 0.74240 \\ 238.083 \\ \end{array} \begin{array}{c} 0.74250 \\ 238.083 \\ \end{array} \begin{array}{c} 0.74240 \\ 238.093 \\ \end{array} \begin{array}{c} 0.74240 \\ 238.039 \\ \end{array} \begin{array}{c} 0.74250 \\ 238.039 \\ \end{array} \begin{array}{c} 0.74250 \\ 238.039 \\ \end{array} $	Morogoro					6.77004	0.74940	938.084						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.11004	0.14249	230.004						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Oraninite.					6.32562	0.74252	238-106						
$ \begin{array}{c} \text{Joachimsthal,} \\ \text{Pitchblende.} \\ \\ \text{Pitchblende.} \\ \\ \text{A} \begin{array}{c} 4.78298 \\ 3.49630 \\ 2.93547 \\ 4.37485 \\ 3.38489 \\ 1.29246 \\ 2.38.081 \\ 1.29246 \\ 2.38.060 \\ 3.02257 \\ 3.45769 \\ 3.42225 \\ 2.64779 \\ 1.29246 \\ 2.38.082 \\ 1.29250 \\ 2.38.082 \\ 1.29250 \\ 2.38.075 \\ 2.38.075 \\ 3.46569 \\ 3.42225 \\ 2.64779 \\ 1.29249 \\ 2.38.073 \\ 3.42225 \\ 2.64779 \\ 1.29240 \\ 2.38.073 \\ 3.40899 \\ 0.74252 \\ 2.38.082 \\ 4.07087 \\ 0.74249 \\ 2.38.081 \\ 0.74252 \\ 2.38.104 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74251 \\ 2.38.095 \\ 0.74250 \\ 2.38.087 \\ 0.74250 \\ 2.38.087 \\ 0.74240 \\ 2.38.087 \\ 0.74240 \\ 2.38.087 \\ 0.74240 \\ 2.38.087 \\ 0.74240 \\ 2.38.087 \\ 0.74240 \\ 2.38.083 \\ 0.74246 \\ 2.38.062 \\ 0.74246 \\ 2.38.063 \\ 0.74246 \\ 2.38.063 \\ 0.74246 \\ 2.38.063 \\ 0.74249 \\ 2.38.083 \\ 0.74246 \\ 2.38.063 \\ 0.74249 \\ 2.38.083 \\ 0.74246 \\ 2.38.060 \\ 0.74250 \\ 2.38.090 \\ 0.74250 \\ 2.38.090 \\ 0.74240 \\ 2.38.090 \\ 0.74251 \\ 2.38.090 \\ 0.74240 \\ 2.38.030 \\ 0.74240 \\ 2.3$		1 02001				0 02000								
Joachimsthal, Pitchblende. 3.49630 2.70491 1.29258 238.108 4.70845 0.74256 238.134 2.93547 2.27122 1.29246 238.060 5.89220 0.74248 238.076 3.437485 3.38489 1.29246 238.082 4.07087 0.74249 238.081 3.02257 2.33852 1.29252 238.082 4.07087 0.74249 238.081 3.45769 2.67520 1.29250 238.075 4.65671 0.74252 238.102 Average 1.29250 238.077 0.74251 238.095			Avera	ge 1 23200	230-013		0.14200	236.092						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.29251	238.081	6.44193	0.74248	238.072						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						4.70845	0.74256	$238 \cdot 134$						
Pitchblende.	Inachimethal	1												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.91499												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i itembienae.													
		3.42225				4.60899		$238 \cdot 102$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Avera	.ge 1·29250	238.077		0.74251	238.095						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(4.00032	3.09498	1.29252	238.084	5.38767	0.74250	238.087						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Katanga.													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
		,												
Euxenite and 2.60119 2.01259 1.29246 238.058 3.50361 0.74243 238.039 Samarskite. 4.20791 3.25555 1.29254 238.090 5.66706 0.74252 238.106				•										
Samarskite. (4·20791 3·25555 1·29254 238·090 5·66706 0·74252 238·106														
Average 1·29252 238·082 0·74248 238·078	Samarskite.	(4·20791	-			5.66706								
			Avera	ige 1·29252	238.082		0.74248	238.078						

MOLYBDENUM AND TUNGSTEN.—Hönigschmid and Wittmann (Z. anorg. Chem., 1936, 229, 65) and Hönigschmid and Menn (Z. anorg. Chem., 1936, 229, 49) have redetermined the atomic weights of molybdenum and tungsten by analysis of the pentachloride and hexachloride, respectively.* Their results, Mo = 95.95 and W = 183.92, agree closely with Aston's recent determinations, and are only slightly lower than the International values.

^{*} Published after Sept. 30th, 1936.

New measurements of doublets by Aston (*Nature*, 1936, 137, 357, 613) with a perfected mass spectrograph include the following values for certain light isotopes:

The value for 12 C is slightly lower than that reported by Aston in 1935, and with an abundance ratio of 1/100 for 13 C leads to an atomic weight of $12\cdot010$.

ATOMIC WEIGHTS, 1937.

	Sym-	At.	01.2-0 ,,2	,,	Sym-	At.	
	bol.	No.	At. wt.		bol.	No.	At. wt.
Aluminium	Al	13	26.97	Neon	Ne	10	20.183
Antimony	Sb	5l	121.76	Nickel	Ni	$\frac{10}{28}$	58·69
Argon	A	18	39.944	Niobium	111	_0	00 00
Arsenic	As	33	74.91	(Columbium)	Nb (Cb)	41	$92 \cdot 91$
Barium	Ba	56	137.36	Nitrogen	N	7	14.008
Beryllium	Be	4	9.02	Osmium	Os	76	191.5
Bismuth	Bi	83	209.00	Oxygen	O	8	16.0000
Boron	\mathbf{B}	5	10.82	Palladium	Pd	46	106.7
Bromine	Br	35	79.916	Phosphorus	P	15	31.02
Cadmium	Cd	48	112.41	Platinum	Pt	78	195.23
Cæsium	Cs	55	132.91	Potassium	K	19	39.096
Calcium	Ca	20	40.08	Praseodymium	Pr	59	140.92
Carbon	C	6	12.01	Protoactinium	Pa	91	231
Cerium	Ce	58	140.13	Radium	Ra	88	226.05
Chlorine	Cl	17	35.457	Radon	Rn	86	222
Chromium	Cr	24	52.01	Rhenium	${ m Re}$	75	186.31
Cobalt	Co	27	58.94	Rhodium	Rh	45	102.91
Copper	Cu	29	63.57	Rubidium	Rb	37	85.48
Dysprosium	$\mathbf{D}\mathbf{y}$	66	$162 \cdot 46$	Ruthenium	Ru	44	101.7
Erbium	Er	68	167.64	Samarium	Sm	62	150.43
Europium	Eu	63	152.0	Scandium	Sc	21	$45 \cdot 10$
Fluorine	\mathbf{F}	9	19.00	Selenium	Se	34	78.96
Gadolinium	Gd	64	156.9	Silicon	Si	14	28.06
Gallium	Ga	31	$69 \cdot 72$	Silver	$\mathbf{A}\mathbf{g}$	47	107.880
Germanium	Ge	32	72.60	Sodium	Na	11	$22 \cdot 997$
Gold	Au	79	$197 \cdot 2$	Strontium	Sr	38	87.63
Hafnium	Hf	72	178.6	Sulphur	S	16	32.06
Helium	He	2	4.002	Tantalum	Ta	73	180.88
Holmium	Ho	67	163.5	Tellurium	Te	52	127.61
Hydrogen	H	1	1.0078	Terbium	Tb	65	$159 \cdot 2$
Indium	Įn	49	114.76	Thallium	Tl	81	204.39
Iodine	Ĩ	53	126.92	Thorium	Th	90	$232{\cdot}12$
Iridium	Ir	77	193.1	Thulium	Tm	69	169.4
Iron	Fe	26	55.84	Tin	Sn	50	118.70
Krypton	Kr	36	83.7	Titanium	Ti	22	47.90
Lanthanum	La	57	138.92	Tungsten	W	74	184.0
Lead	Pb	82	207.21	Uranium	Ũ	92	238.07
Lithium	Li	3	6.940	Vanadium	V	23	50.95
Lutecium	Lu	71	175.0	Xenon	Xe	54	131.3
Magnesium	Mg	12	24.32	Ytterbium	Yb	70	173.04
Manganese	Mn	25	54.93	Yttrium	Y	39	88.92
Mercury	Hg	80	200.61	Zinc	Zn	30	65.38
Molybdenum	Mo	42	96·0	Zirconium	Zr	4 0	91.22
Neodymium	Nd	60	144.27				