SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTITIES AND CONVENTIONS RELATING TO THEIR USE, ADOPTED AS RECOMMENDED PRACTICE BY THE CHEMICAL SOCIETY.

(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.

(Certain important physical constants.)

- **F** Faraday's constant.
- J Mechanical equivalent of heat.
- N Avogadro's number.
- R Gas constant per mol. Rydberg's constant.
- c Velocity of light in vacuo.
- e Electronic charge (charge equal and opposite in sign to that of an electron).
- **g** Acceleration due to gravity (standard value, if variation from standard is significant).
- h Planck's constant.
- k Boltzmann's constant.
- m Rest mass of an electron.

2. To be Printed in Ordinary Italic, when not Greek.

General Physics and Chemistry.

Length	•	•			•		λ ,
mean free path of molecules							<i>f</i> •
height							h
diameter, distance	2	_					d
diameter of mol			_	_			σ
radius				•			r
Mass molecular weight atomic weight atomic number	•	•		•			m
molecular weight							M
atomic weight							\boldsymbol{A}
atomic number							$\boldsymbol{\mathcal{Z}}$
gram-equivalent v	veight	•	•	•			Z, J
Time		•	•		•		t
time interval, espe	ecially	half-	or me	an-lif	e		au
frequency .		•	•	•	•	•	ν
Velocity							v; c , (u, v, w)
of ions .					•		u (with subscript)
angular .			•		•		ω
Acceleration .							$f \dots a$
due to gravity (as	varia	ble)		•	•	•	g

Force Moment of inertia Pressure especially osmoti	c.	• •	· · ·	· ·	•	•	F, (X, Y, Z) I p, P II
Volume Density Compressibility	•			•	•	•	$egin{array}{ll} v,V \ oldsymbol{ ho}\ldotsd \ oldsymbol{\kappa}\ldotsK \end{array}$
Viscosity Fluidity	•	•	•			•	$oldsymbol{\eta}{oldsymbol{\phi}}$
Surface area . Angle of contact Surface tension Parachor . Surface concentration	on exc	ess	•	•	•		$egin{array}{c} A & \dots & s \ heta \ heta & \dots & \sigma \ heta & \dots & \sigma \ heta & \dots & & & & & & & & & & & & & & & & & $
Number of mols Concentration, mol in o	fraction		•	•	•	•	n N, x c, C
Solubility . Diffusion coefficien	t .	•	•	•	•		s D
Chemical equilibrius olubility productive constant of Number of molecul Partition function	t . of chem ar coll	ical resisions	eactio	n		s) • •	K $K_s \dots L$ k Z f
Efficiency, of any p Wave function	rocess	•	•	•	•	•	$\overset{\eta}{\psi}$
		Heat	and T	`hermo	dynan	nics	s .
Temperature, on a on o Thermal conductive	ther sc		, (°K)				$egin{array}{c} T \ heta \ \dots \ t \ heta \end{array}$
Energy (general sy Work done by or of Heat entering a sy Specific heat . molecular heat Ratio of specific he	on a sys stem	stem					E $w \dots W$ q c_p and c_v C_p and C
Latent heat, per g	• _•		•	•	•	:	i L
Intrinsic energy Enthalpy, total he Entropy . Free energy (Helm	holtz)				•	•	$U \dots E$ H S $A \dots F$
Thermodynamic penergy (G. N.	Lewis)	al, Gi	bbs f	unctio	on, fr	ee •	G

Vapour pressure constan	t	•	٠	•	i
Chemical potential .		•			μ
Activity		tion)	•	•	a f
coefficient (for molar coefficient coefficient .			•	•	$\frac{f}{\sigma}$
Van 't Hoff's factor .	• •	•	•	•	$oldsymbol{g}{oldsymbol{i}}$
van t mon s metor.	• •	•	•	•	
		Electric	city.		
Quantity of electricity especially electrostatic Potential (difference)		•	•	•	Q
especially electrostatic	charge	•	•	•	e
Potential (difference) Volta potential electrokinetic potentia		•	•	•)	$ar{m{v}}$
Volta potential .		•	•	.)	
electrokinetic potentia	1		•	•	$egin{array}{c} \zeta \ E \end{array}$
especially electromotive	e force o	or voitai	c cens	•	
Potential gradient, in ele	ectric fiel	d.	•	•	X
Electronic exit work fun		•	•	•	ϕ
Current		•	•		I
Resistance specific resistance .		•	•		R
specific resistance.		•			$\rho \dots r$
specific conductance					κσ
_					L
Inductance, self . mutual . Electrostatic capacity		•	•	•	M M
Floatrostatio conscitu		•	•	•	C
Dielectric constant .	• •	•	•	•	
	• •	•	•	•	€
Dipole moment .		•	•	•	μ
	E	lectroche	mistry.		
Degree of electrolytic dis	sociation	ı.			α
Valency of an ion .					z
Ionic strength					I
					Λ
equivalent conductance	· · ·	· ·· mobili	+-, ,,		Λ l (with subscript)
Equivalent conductance equivalent ionic condu Transport number .	ictance,	шоош	Ly	•	T (with subscript)
Transport number .	• •	•	•	•	n (with subscript)
					· - ·
Single electrode potentia	1			•	e (with subscript),
					E (with subscript)
Electrolytic polarisation,	, overvol	tage .	•	•	η π
		Magne	tiom		
		111 45 1101	,,,,,,,		
Magnetic field strength		•	•	•	H
flux permeability		•	•	•	$oldsymbol{\phi}$
permeability		•	•	•	μ
susceptibility-			•	•	κ
	mass .		•	•	X _
			•	•	M
induction .		•	•	•	B

			(Optics	•		
Wave length .						_	λ
Wave number.	Ť	•	Ť	•	•	•	ν
Intensity of light	•	•	•	•	•	•	Í
Refractive index	•	•	•	•	•	•	n (with subscript)
Remactive macx	•	•	•	•	•	•	
specific refraction							\dots μ (with subscript)
specific refraction molecular refracti	•	•	•	•	•	•	r (with subscript)
Malan antimation	OII	•	•	•	•	•	[R] (with subscript)
Molar extinction coe			•	•	•	•	ϵ
Angle of (optical) ro	tatioi	1	•	•	•	•	α
specific rotation			•	•	•	•	[α]
Specific magnetic ro	tatioi	1	•	•	•	٠	ω
. . .				_		_	
							n not Greek.
• •	•	•	ithemo	atical	Consta	ants	and Operators.
Base of natural loga	rithm	ıs	•	•	•		e
Ratio of circumferer	ice to	diam	eter				π
Differential .							d
partial .	•	•	•	•	•	•	9
_ •	•	•	•	•	•	•	- - -
Increment .	•	•	•	•	•	•	$\frac{\Delta}{2}$
very small increm	ent	•	•	•	•	•	8
Sum	•	•	•	•	•	•	Σ
Product	•	•	•	•	•	•	П
Function .	•	•	•	•	•	•	f, φ
(t) Ex	ample:	s of sa	ingle-l	ette r a	bbr	eviations.
*Ampère (in sub-uni	its)						a.
Volt			_				v.
Ohm	•	•	•	·	•	•	Ω .
• •	•	•	•	•	•	•	
Watt	•	•	•	•	•	•	w.
Farad	•	•	•	•	•		F.
Henry		•		•			н.
Centigrade .							C.
Fahrenheit .	•	•	•	•	•	•	F.
Kelvin	•	•	•	•	•	•	K.
Reiviii	•	•	•	•	•	•	K.
Ångstrom unit					•		A.
micron							μ.
metre					•		m.
aram							ď
gram	•	•	•	•	•	•	g.
litre	•	•	•	•	•	•	1.
Röntgen unit .	•	•	•	•	•	•	r.
†Normal (concentration	tion)				•		N.
†Molar (concentration	on)						M.
		mpère	"; bu	t"am	p." is 1	pref	erred for "ampère."
† Separated by a h	yphen	(and r	o full	stop i	from a	che	erred for "ampère." mical formula which follows it.

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units:

M	mega-	$10^6 imes$
k	kilo-	$10^3 imes$
d	deci-	$10^{-1} \times$
С	centi-	$10^{-2} \times$
m	milli-	$10^{-3} \times$
μ	micro-	$10^{-6} imes$

e.g., M Ω . denotes megohm; kw., kilowatt; and µg., microgram. The use of µµ. instead of mµ. to denote 10^{-7} cm., or of γ to denote microgram is deprecated.

4. Subscripts and other Modifying Signs.

(a) Subscripts to symbols for quantities.

	(a) Subscripts to symbols for quantities.
I, II 1, 2 A B i	(especially with symbols for thermodynamic functions, referring to different systems or different states of a system. referring to molecular species A, B, etc. referring to a typical ionic species i. referring to an undissociated molecule.
+	referring to a positive or negative ion, or to a positive or negative electrode.
p, v, T	indicating constant pressure, volume, and temperature respectively.
q	indicating adiabatic conditions.
w	indicating that no work is performed.
p, c, a	with symbol for an equilibrium constant, indicating that it is expressed in terms of pressure, concentration, or activity.
G, V, L, X	referring to gas, vapour, liquid, and crystalline states, respectively.
f, e, s, t, d	referring to fusion, evaporation (vaporisation of liquid), sublimation, transition, and dissolution or dilution respectively.
c	referring to the critical state or indicating a critical value.
0	referring to a standard state, or indicating limiting value at infinite dilution.
O, D, F	with symbols for optical properties, referring to a particular wavelength.

Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.

(b) Other modifying signs.

- o as right-hand superscript to symbol (particularly to a symbol for a general thermodynamic function—see p. 5), referring to a standard state.
- [] enclosing formula of chemical substance, indicating its molar concentration.
- {} enclosing formula of chemical substance, indicating its molar activity.

```
In crystallography it is recommended that:
```

```
Millerian indices be enclosed in parentheses, ();
```

Laue indices be unenclosed;

Indices of a plane family be enclosed in braces, { };

Indices of a zone axis or line be enclosed in brackets, [].

Numerals attached to a symbol for a chemical element in various positions have the following meanings:

```
upper left mass number of atom. lower left nuclear charge of atom. lower right number of atoms in molecule. e.g., {}_{3}^{7}\text{Li}; {}_{1}^{2}\text{H}_{2} (= \mathrm{D}_{2}).
```

ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.

The name of any quantity for which a given symbol is a second preference is printed in parentheses.

- A free energy—Helmholtz; atomic weight; surface area.
- A. Ångstrom unit.
- a activity; (acceleration).
- a. ampère, in sub-units—see footnote, p. 2093.
- B magnetic induction.
- C concentration; electrostatic capacity. with subscript: molecular heat capacity.
- c. Centigrade.
- c velocity of light in vacuo.
- c velocity; concentration.

 with subscript: specific heat.
- D diffusion coefficient.
- d diameter; distance; (density).
- d differential.
- *a* partial differential.
- E energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.
 with subscript: single electrode potential.
- e electronic charge—charge equal and opposite in sign to that of an electron.
- e quantity of electricity, especially electrostatic charge. with subscript: single electrode potential.
- base of natural logarithms.
- F Faraday's constant.
- F force; (free energy—Helmholtz).
- F. farad; Fahrenheit.
 - acceleration; activity coefficient, for molar concentration; partition function.

```
function.
f
    thermodynamic potential, Gibbs function, free energy—G. N. Lewis.
G
    acceleration due to gravity, standard value.
    acceleration due to gravity, as a variable; osmotic coefficient.
    gram.
    enthalpy, total heat, heat content; magnetic field strength.
H
н.
    henry.
    Planck's constant.
h
    height.
h
    moment of inertia; ionic strength; electric current; intensity of light.
Ι
     vapour pressure constant; van 't Hoff's factor.
J
     mechanical equivalent of heat.
     gram-equivalent weight.
     chemical equilibrium constant; (compressibility).
     K, solubility product.
     Kelvin.
ĸ.
    Boltzmann's constant.
k
     thermal conductivity; velocity constant of chemical reaction.
k
     latent heat per mol; self inductance; (solubility product).
l
     latent heat per g.; length; mean free path of molecules.
     with subscript: equivalent ionic conductance, "mobility".
1.
M molecular weight; mutual inductance; magnetic moment.
     molar concentration.
m rest mass of an electron.
m mass.
m. metre.
 N
     Avogadro's number.
     mol fraction.
 N
     normal concentration.
N.
     number of mols.
     with subscript: (transport number).
     with subscript: refractive index.
     pressure.
 [P] parachor.
     pressure.
 Q
     quantity of electricity.
     heat entering a system.
     gas constant per mol; Rydberg's constant.
 R
     electrical resistance.
 R
 [R] with subscript: molecular refraction.
     radius; (specific resistance).
     with subscript: specific refraction.
     Röntgen unit.
 r.
 S
     entropy.
     solubility; (surface area).
     temperature, on absolute Kelvin scale.
      with subscript: transport number.
 t
      time: (temperature—not on absolute scale).
```

intrinsic energy. velocity component. with subscript: velocity of ions. Vvolume; potential, potential difference, including Volta potential. v. volt. volume; velocity; velocity component. W(work done by or on a system). work done by or on a system; velocity component. \boldsymbol{X} force component; potential gradient in electric field. mol fraction. Y force component. \boldsymbol{z} force component; g.-equivalent weight; number of molecular collisions per second; atomic number. valency of an ion. degree of electrolytic dissociation; angle of optical rotation. $[\alpha]$ specific optical rotation. surface concentration excess. ratio of specific heats; surface tension. increment. very small increment. dielectric constant; molar extinction coefficient. electrokinetic potential. efficiency of any process; viscosity; electrolytic polarisation, overvoltage. angle of contact; temperature—not on absolute scale. compressibility; specific conductance; magnetic susceptibility—volume. Λ equivalent conductance. wave length. chemical potential; dipole moment; magnetic permeability. with subscript: (refractive index). μ. micron. frequency; wave number. pressure, especially osmotic pressure. Π Π product. (electrolytic polarisation, overvoltage). ratio of circumference to diameter. π density; specific resistance. sum. diameter of molecules; (surface tension); (specific conductance). time interval, especially half or mean life. fluidity; electronic exit work function; magnetic flux. function. magnetic susceptibility—mass. wave function. ohm.

angular velocity; specific magnetic rotation.