SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTITIES AND CONVENTIONS RELATING TO THEIR USE, ADOPTED AS RECOMMENDED PRACTICE BY THE CHEMICAL SOCIETY.

(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.

(Certain important physical constants.)

- F Faraday's constant.
- Mechanical equivalent of heat. J
- N Avogadro's number.
- Gas constant per mol. Rydberg's constant. R
- Velocity of light in vacuo. C
- Electronic charge (charge equal and opposite in sign to that of an electron). e
- g Acceleration due to gravity (standard value, if variation from standard is significant).
- Planck's constant. h
- Boltzmann's constant. k
- m Rest mass of an electron.

2. To be Printed in Ordinary Italic, when not Greek.

General Physics and Chemistry.

Length	•	•		\cdot
mean free path of molecul			•	. ʃ*
height		•		. h
diameter, distance .	•	•	•	. d
diameter of molecules	•	•	•	. σ
radius	•	•	•	. 7
Mass			-	. 111
molecular weight	•	•	•	
atomic weight	•	•	•	A
			•	. A . Z
atomic number		•	•	
gram-equivalent weight .	•	•	•	. Z, J
Time				. <i>t</i>
time interval, especially half	- or 1	mean-l	ife	. τ
frequency		•	•	. <i>v</i>
				_
Velocity	•	•	•	v; c, (u, v, w)
of ions				
angular	•	•	•	· W
Acceleration		•	•	. fa
due to gravity (as variable)	•	•		·g

F, (X, Y, Z)Force Moment of inertia Ι p, P Pressure . • • especially osmotic . Π v, VVolume . . $\rho \ldots d$ Density . • • • Compressibility κ...Κ • . Viscosity . η . Fluidity . ø . . . • . • Surface area . A . . . s . • • • • • Angle of contact θ • . . • • • Surface tension . . . • . . γ...σ Parachor [P]. . . Surface concentration excess Г • Number of mols • n • Concentration, mol fraction N, x . . . c, C in other terms • Solubility S . • Diffusion coefficient . •• D . Chemical equilibrium constant (products/reactants) K $K_{\bullet} \ldots L$ solubility product . • • . Velocity constant of chemical reaction k • Ζ Number of molecular collisions per second . f Partition function . . . • . • Efficiency, of any process . • η Wave function ψ • • • •

Heat and Thermodynamics.

Temperature, on absolute on other sc		(°К) •	•	•	•	$T \\ \theta \dots t$
Thermal conductivity	•	•	•	•	•	k
Energy (general symbol)	•	•	•	•		Ε
Work done by or on a sys	stem	•	•	•	•	wW
Heat entering a system	•	•	•	•	•	9
Specific heat	•	•	•	•	•	c_p and c_s
molecular heat .	•	•	•	•	•	C_p and C
Ratio of specific heats	•	•	•	•	•	Ŷ
Latent heat, per g	•	•	•	•	•	1
per mol	•	•		•	•	L
Intrinsic energy .						$U \dots E$
Enthalpy, total heat, or h	leat co	ontent		•	•	H
Entropy	•	•	•	•	•	S
Free energy (Helmholtz)	•	•	•	•	•	A F
Thermodynamic potentia		bbs fi	unctio	n, fre	e	
energy (G. N. Lewis)	•	•	•	•	•	G

1630

Vapour pressure constant. i Chemical potential . • μ Activity . . a coefficient (for molar concentration) ſ Osmotic coefficient . g.i Van 't Hoff's factor . Electricity. Q Quantity of electricity especially electrostatic charge е otential (difference) . . . Volta potential electrokinetic potential . . . Potential (difference) V ζ Ε . especially electromotive force of voltaic cells X Potential gradient, in electric field . • $_{I}^{\phi}$ Electronic exit work function • Current . • . • • . R Resistance . . . specific resistance. • $\rho \dots r$ specific conductance • • • . • κ...σ L Inductance, self • mutual. Μ • . . Electrostatic capacity С • • Dielectric constant . E Dipole moment . μ

Electrochemistry.

Degree of electrolytic dissoci			•	•	α
Valency of an ion Ionic strength		•	•	•	z I
U U	•	•	•	•	-
Equivalent conductance . equivalent ionic conductar	nce."п	nobili	tv '		Λ <i>l</i> (with subscript)
Transport number			•	•	T (with subscript) <i>n</i> (with subscript)
Single electrode potential .	•	•	•	•	e (with subscript), E (with subscript)
Electrolytic polarisation, ove	ervoltag	ge.	•	•	ηπ
	M	lagnet	ism.		
Magnetic field strength .	•	•	•		H
0		•			φ
permeability .	•	•	•	•	$\dot{\mu}$
susceptibilityvol	ume	•			κ

permeabili		•	•	•	•	•	μ
susceptibi	lity-	-volum	le	•	•	•	κ
		mass	•	•	•		x
moment	•	•	•	•	•		M
induction	•		•			•	B

1631

Optics.

W	ave length				•	•	•		λ
W	ave number								V
In	tensity of lig	ht							I
	efractive inde		•	•	•	•	•	•	<i>n</i> (with subscript) μ (with subscript)
	specific refra			•	•	•	•	•	<pre>r (with subscript)</pre>
	molecular re			•	•	•	•	•	[R] (with subscript)
M	olar extinctio	on coe	effici	ent	•	•	•	•	E
	ngle of (optic		tati	on	•	•	•		α
	specific rotat		•	•	•	•	•		[α]
Sp	ecific magne	tic ro	tati	on	•	•	•	•	ω

3. To be Printed in Roman, when not Greek.

(a) Examples of Mathematical Constants and Operators.

Base of natu Ratio of circ	ral log umfere	arithn ence to	ns o diai	meter	•	•	•	e π
Differential	•	•	•	•	•	•	•	d
partial Increment	•	•	•	•	•	•	•	ð
very small			•	•	•	•	•	Δ s
Sum	merer	ment	•	•	•	•	•	0
Product .	•	•	•	•	•	•	•	<u></u>
Function	•	•	•	•	•	•	•	
runction	•	•	•	•	•	•	•	ι, φ

(b) Examples of single-letter abbreviations.

*Ampère	(in sı	1b-uni	ts)	•	•	•			a.
Volt	•	•	•	•	•	•	•		v.
Ohm	•	•	•	•	•	•	•	•	Ω.
Watt		•		•	•		•		w.
Farad		•	•	•	•	•	•		F.
Henry	•		•	•	•	•	•	•	н.
Centigrad	le	•	•	•	•	•			c.
Fahrenhe	eit	•		•		•			F.
Kelvin	•			•	•	•		•	к.
Ångstron	n unit			•		•	•	•	A.
micron	•	•	•	•	•	•	•	•	μ.
metre	•	•	•	•	•	•	•	•	m.
gram	•	•	•	•	•	•			g.
litre	•	•	•	•	•	•	•	•	1.
Röntgen	unit	•	•	•	•	•	•	•	r.
†Normal	(conc	entra	tion)	•	•	•			N.
†Molar (d	concer	ntratio	on)	•	•	•	•	•	м.

• E.g. "ma." for "milliampère"; but "amp." is preferred for "ampère." † Separated by a hyphen (and no full stop) from a chemical formula which follows it.

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units :

М	mega-	$10^{6} \times$
k	kilo-	$10^3 \times$
d	deci-	$10^{-1} \times$
с	centi-	10^{-2} $ imes$
m	milli-	10^{-3} $ imes$
μ	micro-	10 -6 ×

e.g., M Ω . denotes megohm; kw., kilowatt; and µg., microgram. The use of µµ. instead of mµ. to denote 10⁻⁷ cm., or of γ to denote microgram is deprecated.

4. Subscripts and other Modifying Signs.

(a) Subscripts to symbols for quantities.

L, II 1, 2 A B i u	(especially with symbols for thermodynamic functions, referring to different systems or different states of a system. referring to molecular species A, B, etc. referring to a typical ionic species i. referring to an undissociated molecule.
+	referring to a positive or negative ion, or to a positive or negative electrode.
p, v, T	indicating constant pressure, volume, and temperature respectively.
q	indicating adiabatic conditions.
w	indicating that no work is performed.
р, с. в	with symbol for an equilibrium constant, indicating that it is expressed in terms of pressure, concentration, or activity.
Q, V, L, X	referring to gas, vapour, liquid, and crystalline states, respectively.
f, e, s, t, d	referring to fusion, evaporation (vaporisation of liquid), sublim- ation, transition, and dissolution or dilution respectively.
c	referring to the critical state or indicating a critical value.
0	referring to a standard state, or indicating limiting value at infinite dilution.
0, D P	with symbols for optical properties, referring to a particular wave- length.
Where a	a subscript has to be added to a symbol which already carries a

Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.

(b) Other modifying signs.

0

as right-hand superscript to symbol (particularly to a symbol for a
general thermodynamic function—see p. 5), referring to a
standard state.

- [] enclosing formula of chemical substance, indicating its molar concentration.
- {} enclosing formula of chemical substance, indicating its molar activity.

In crystallography it is recommended that :

Millerian indices be enclosed in parentheses, (); Laue indices be unenclosed; Indices of a plane family be enclosed in braces, { }; Indices of a zone axis or line be enclosed in brackets, [].

Numerals attached to a symbol for a chemical element in various positions have the following meanings:

upper left mass number of atom. lower left nuclear charge of atom. lower right number of atoms in molecule. e.g., ${}_{2}^{2}Li; {}_{1}^{2}H_{2} (= D_{2}).$

ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.

The name of any quantity for which a given symbol is a second preference is printed in parentheses.

- A free energy—Helmholtz; atomic weight; surface area
- A. Ångstrom unit.
- a activity; (acceleration).
- a. ampère, in sub-units-see footnote, p. 2093.
- *B* magnetic induction.
- C concentration; electrostatic capacity. with subscript: molecular heat capacity.
- c. Centigrade.
- c velocity of light in vacuo.
- c velocity; concentration. with subscript: specific heat.
- D diffusion coefficient.
- d diameter; distance; (density).
- d differential.
- ∂ partial differential.
- *E* energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.
 - with subscript : single electrode potential.
- e electronic charge—charge equal and opposite in sign to that of an electron.
- e quantity of electricity, especially electrostatic charge. with subscript : single electrode potential.
- e base of natural logarithms.
- **F** Faraday's constant.
- F force; (free energy—Helmholtz).
- F. farad; Fahrenheit. acceleration; activity coefficient, for molar concentration; partition function.

- f function.
- G thermodynamic potential, Gibbs function, free energy-G. N. Lewis.
- acceleration due to gravity, standard value. g
- acceleration due to gravity, as a variable; osmotic coefficient. g
- gram. g.
- H enthalpy, total heat, heat content; magnetic field strength.
- н. henry.
- Planck's constant. h
- h height.
- Ι moment of inertia; ionic strength; electric current; intensity of light.
- vapour pressure constant; van 't Hoff's factor. i
- J mechanical equivalent of heat.
- J K gram-equivalent weight.
- chemical equilibrium constant; (compressibility). K, solubility product.
- к. Kelvin.
- Boltzmann's constant. k
- thermal conductivity; velocity constant of chemical reaction. k
- L latent heat per mol; self inductance; (solubility product).
- l latent heat per g.; length; mean free path of molecules. with subscript : equivalent ionic conductance, " mobility ". 1. litre.
- М molecular weight; mutual inductance; magnetic moment.
- M. molar concentration.
- m rest mass of an electron.
- m mass.
- m. metre.
- Avogadro's number. N
- N mol fraction.
- N. normal concentration.
- number of mols. n with subscript : (transport number). with subscript : refractive index.
- Ρ pressure.
- [P] parachor.
- р Q pressure.
- quantity of electricity.
- heat entering a system. q
- gas constant per mol; Rydberg's constant. R
- R electrical resistance.
- [R] with subscript : molecular refraction.
- radius; (specific resistance). with subscript : specific refraction.
- Röntgen unit. r.
- S entropy.
- solubility: (surface area). S
- Т temperature, on absolute Kelvin scale. with subscript : transport number.
- t time; (temperature—not on absolute scale).

- intrinsic energy.
- U velocity component. u with subscript : velocity of ions.
- V volume; potential, potential difference, including Volta potential.
- v. volt.
- volume; velocity; velocity component. V
- W (work done by or on a system).
- w. watt.
- work done by or on a system; velocity component. W
- Χ force component; potential gradient in electric field.
- mol fraction. x
- Y force component.
- Ζ force component; g.-equivalent weight; number of molecular collisions per second; atomic number.
- valency of an ion. z
- degree of electrolytic dissociation; angle of optical rotation. α
- specific optical rotation. [α]
- surface concentration excess. Г
- ratio of specific heats; surface tension.
- γ Δ increment.
- δ very small increment.
- dielectric constant; molar extinction coefficient. E
- ζ electrokinetic potential.
- efficiency of any process; viscosity; electrolytic polarisation, overvoltage. η θ
- angle of contact; temperature-not on absolute scale.
- compressibility; specific conductance; magnetic susceptibility-volume. κ
- Λ equivalent conductance.
- λ wave length.
- chemical potential; dipole moment; magnetic permeability. μ with subscript : (refractive index).
- micron. μ.
- v frequency; wave number.
- Π pressure, especially osmotic pressure.
- product. Π
- (electrolytic polarisation, overvoltage). π
- ratio of circumference to diameter. π
- density; specific resistance.
- ρ Σ sum.
- diameter of molecules; (surface tension); (specific conductance). σ
- time interval, especially half or mean life. τ
- fluidity; electronic exit work function; magnetic flux. ø
- function. φ
- magnetic susceptibility—mass.
- χ ψ Ω. wave function.
- ohm.
- angular velocity; specific magnetic rotation. ω