SYMBOLS FOR THERMODYNAMICAL AND PHYSICO-CHEMICAL QUANTITIES AND CONVENTIONS RELATING TO THEIR USE, ADOPTED AS RECOMMENDED PRACTICE BY THE CHEMICAL SOCIETY.

(Where two or more symbols separated by commas or semicolons are given for a quantity, these symbols are to be regarded as alternatives for which no preference is expressed. On the other hand, where two symbols are separated by a dotted line, the former is the first preference.)

1. To be Printed in Black Italic.

(Certain important physical constants.)

- F Faraday's constant.
- J Mechanical equivalent of heat.
- N Avogadro's number.
- R {Gas constant per mol. Rydberg's constant.
- e Velocity of light in vacuo.
- e Electronic charge (charge equal and opposite in sign to that of an electron).
- g Acceleration due to gravity (standard value, if variation from standard is significant).
- h Planck's constant.
- k Boltzmann's constant.
- m Rest mass of an electron.

2. To be Printed in Ordinary Italic, when not Greek.

General Physics and Chemistry.

Length							. `) ,
mean free	path	of mo	lecules	s				,,
								h
diameter, dis	tance							d
diameter o	f mol	ecules						σ
radius .	•		•				•	<i>r</i>
Mass .								m
molecular we								M
atomic weigh								\boldsymbol{A}
atomic numb								Z
gram-equival						•		Z, J
Time								t
time interval	esne	cially	half-	or me	an_lif	_	•	τ
		clairy	IIaII-	OI IIIC	.a11-111	C	•	ν
frequency	•	•	•	•	•	•	•	<i>V</i>
Velocity .		•						v; c , (u, v, w)
of ions		•						u (with subscript)
angular	•		•	•	•	•		ω
Acceleration	•		•	•	•		•	$f \dots a$
due to gravit	ty (as	varia	ble)	•		•	•	g
Force .								F, (X, Y, Z)
Moment of iner	rtia				•			I
			•					p, P
especially os	motic	•	•	•	•	•		Π
Volume .								v, V
Density .		•				•		ho d
Compressibility	7		•	•	•	•		κΚ

Viscosity Fluidity	:		:		:	$oldsymbol{\eta}{oldsymbol{\phi}}$
Surface area		•				A s
Angle of contact . Surface tension .	•	•	•	•	:	θ γσ
Parachor					•	[P]
Surface concentration ex Number of mols .	cess	•	٠	•	•	Γ
Concentration, mol fract	ion	•	:		:	n N, x
in other t	erms	•				c, C
Solubility Diffusion coefficient .			•	•		s D
Chemical equilibrium con	stant ((prodi	ucts/r	eacta	nts)	
					•	$K_{\bullet} \dots L$
velocity constant of cher	nical i	reacti	on			k
Number of molecular col	lisions	per s	econd	l .		\boldsymbol{z}
Partition function .		•			•	f
Efficiency, of any process	s .					η
Wave function .		•	•	•	•	ψ
	Heat	and :	Therm	odyn	amic.	s .
Temperature, on absolute	e scale	(°K)				T
on other so		·, (,				$ ilde{ heta}$ t
Thermal conductivity	•					\boldsymbol{k}
Energy (general symbol)						\boldsymbol{E}
Work done by or on a sy	stem	•	•	•	•	$w \dots W$
Heat entering a system Specific heat	•	•	•	•	•	q a and a
molecular heat	:		•	•	•	c_p and c_v C_p and C
Ratio of specific heats	·			•	:	γ
Ratio of specific heats Latent heat, per g						i
per mol		•			•	L
Intrinsic energy .						$U \dots E$
Enthalpy, total heat, or l	neat co	onten	t.	•	•	H
Entropy Free energy (Helmholtz)	•	•	•	•	•	S $A \dots F$
Thermodynamic potentia	al. Gi	bbs f	incti	on f	ree	A F
energy (G. N. Lewis)						\boldsymbol{G}
Vapour pressure constant						i
	•	•	•	•	•	•
Chemical potential . Activity	•	•	•	•		μ a
coefficient (for molar co	oncent	ratior	ı)	:	:	f
Osmotic coefficient .			,			
Van 't Hoff's factor .						$oldsymbol{argamma}_{oldsymbol{i}}$
		Ele	ectrici	ty.		
Quantity of electricity						0
especially electrostatic	charge	:				e
Potential (difference)					.)	V
Volta potential .	•	•	•	•	.]	y
electrokinetic potential especially electromotive	force	of wa	iltain	calle	•	ζ E
Potential gradient, in elec	tric fi	eld	ntale (cens	•	X
Electronic exit work func			:		:	φ
						,

Current						1	
Resistance	_				•	\overline{R}	
specific resistance.	•	•	•	•	•		
		•	•	•	•	$\rho \dots \gamma$	
specific conductance	•	•	•	•	•	κσ	
Inductance, self .						L	
	•	•	•	•	•		
mutual .	•		•	•	•	M	
Electrostatic capacity						$\boldsymbol{\mathcal{C}}$	
Dielectric constant .						€	
						•	
Dipole moment .	•	•	•	•	•	μ	
		Elect	rocher	nistry	•		
Dames of the 1 12 12	٠,			•			
Degree of electrolytic dis	ssociat	ion	•	•	•	α	
Valency of an ion .						z	
Ionic strength						I	
•					-	_	
Equivalent conductance					•	Λ	
equivalent ionic condu	ictance	e, " m	obilit	v ''		l (with subscript)	
an i				-		T (with subscript)	
- amproit mamou.	•	•	•	•	•		
						n (with subscript)	
Single electrode potentia	1					e (with subscript),	
om-810 offortrado potentia	•	•	•	•	•		
Tilandan landin and a sing dia s		1,				E (with subscript)	
Electrolytic polarisation,	, overv	oltag	е.	•	•	$\eta \ldots \pi$	
			_	_			
		M	agneti	ism.			
M			•			***	
Magnetic field strength	•	•	•	•	•	H	
flux						ϕ	
permeability						$\overset{\cdot}{\mu}$	
susceptibility-			-	-	-	K	
susceptibility—			•	•	•	^	
	mass	•		•	•	X.	
moment .	•	•	•	•		M	
induction .						B	
Optics.							
			o pitto.				
Wave length		•	•	•	•	λ	
Wave number						ν	
Intensity of light .						I	
Refractive index	•	•	•	•	•	-	
Renactive fidex .	•	•	•	•	•	n (with subscript)	
						$\dots \mu$ (with subscript)	
specific refraction .						r (with subscript)	
molecular refraction						[R] (with subscript)	
Molar extinction coefficie	ent					€	
		•	•	•	•		
Angle of (optical) rotation)[]	•	•	•	•	α	
specific rotation .	•	•	•	•	•	[α]	
Specific magnetic rotation	n					ω	
•							
2 To be T	3-i-4 -	a :	Dam		h a	m mot Cmoole	
3. 10 be i	rime	u 111	RUII	ıaıı,	MTG	n not Greek.	
(a) Example:	s of M	athem	atical	Cons	tants	s and Operators.	
• •	•			00		o with o per more.	
Base of natural logarithr	ns	•	•	•	•	e	
Ratio of circumference to	o diam	eter				π	
						3	
Differential	•	•	•	•	•	d	
partial	•				•	9	
Increment						Δ	
very small increment		_				δ	
_ *	•	•	•	•	•	$\overset{o}{\Sigma}$	
Sum	•	•	•	•	•		
Product						Π	

(b) Examples of single-letter abbreviations.

*Ampère	(in su	ıb-uni	ts)					a.
Volt			•					v.
Ohm				•				Ω .
Watt								w.
Farad								F.
Henry						•		н.
Centigrac	le.		_					c.
Fahrenhe								F.
Kelvin								ĸ.
Ångstron	n unit							A.
micron			•					μ.
metre				•	•		•	m.
gram								g.
litre								Ĩ.
Röntgen	unit					•		r.
†Normal	(conce	entrat	ion)					N.
†Molar (c								M.

The following prefixes to abbreviations for the names of units should be used to indicate the specified multiples or sub-multiples of these units:

M	mega-	$10^6 \times$
k	kilo-	$10^3 \times$
d	deci-	$10^{-1} \times$
С	centi-	$10^{-2} \times$
m	milli-	$10^{-3} \times$
μ	micro-	$10^{-6} \times$

e.g., $M\Omega.$ denotes megohm; kw., kilowatt; and µg., microgram. The use of µµ. instead of mµ. to denote 10^{-7} cm., or of γ to denote microgram is deprecated.

4. Subscripts and other Modifying Signs.

(a) Subscripts to symbols for quantities.

	(a) Subscripts to symbols for quantities.
I, II 1, 2 A B . i	sespecially with symbols for thermodynamic functions, referring to different systems or different states of a system. referring to molecular species A, B, etc. referring to a typical ionic species i. referring to an undissociated molecule.
+	referring to a positive or negative ion, or to a positive or negative electrode.
p, v, T	indicating constant pressure, volume, and temperature respectively.
q	indicating adiabatic conditions.
w	indicating that no work is performed.
p, c. a	with symbol for an equilibrium constant, indicating that it is expressed in terms of pressure, concentration, or activity.
G, V, L, X	referring to gas, vapour, liquid, and crystalline states, respectively.
f, e, s, t, d	referring to fusion, evaporation (vaporisation of liquid), sublimation, transition, and dissolution or dilution respectively.
0	referring to the critical state or indicating a critical value.
0	referring to a standard state, or indicating limiting value at infinite dilution.

^{*} E.g. "ma." for "milliampère"; but "amp." is preferred for "ampère."
† Separated by a hyphen (and no full stop) from a chemical formula which follows it.

o, D F with symbols for optical properties, referring to a particular wavelength.

Where a subscript has to be added to a symbol which already carries a subscript, the two subscripts may be separated by a comma or the symbol with the first subscript may be enclosed in parentheses with the second subscript outside.

(b) Other modifying signs.

- o as right-hand superscript to symbol (particularly to a symbol for a general thermodynamic function—see p. 5), referring to a standard state.
- [] enclosing formula of chemical substance, indicating its molar concentration.
- { } enclosing formula of chemical substance, indicating its molar activity.

In crystallography it is recommended that:

```
Millerian indices be enclosed in parentheses, ();
```

Laue indices be unenclosed;

Indices of a plane family be enclosed in braces, { };

Indices of a zone axis or line be enclosed in brackets, [].

Numerals attached to a symbol for a chemical element in various positions have the following meanings:

```
upper left mass number of atom.
lower left nuclear charge of atom.
lower right number of atoms in molecule.
```

e.g., ${}_{3}^{7}\text{Li}$; ${}_{1}^{2}\text{H}_{2}$ (= D₂).

ALPHABETICAL INDEX OF RECOMMENDED SYMBOLS, and single-letter abbreviations.

including all those given in the above lists except prefixes, subscripts and other modifying signs.

The name of any quantity for which a given symbol is a second preference is printed in parentheses.

```
A free energy—Helmholtz; atomic weight; surface area.
```

A. Ångstrom unit.

a activity; (acceleration).

a. ampère, in sub-units—see footnote, p. 2093.

B magnetic induction.

C concentration; electrostatic capacity.

with subscript: molecular heat capacity.

c. Centigrade.

e velocity of light in vacuo.

c velocity; concentration.

with subscript: specific heat.

D diffusion coefficient.

d diameter; distance; (density).

d differential.

partial differential.

E energy; (intrinsic energy); potential difference, especially electromotive force of voltaic cells.

with subscript: single electrode potential.

e electronic charge—charge equal and opposite in sign to that of an electron.

e quantity of electricity, especially electrostatic charge. with subscript: single electrode potential.

```
base of natural logarithms.
е
     Faraday's constant.
F
\boldsymbol{F}
    force: (free energy—Helmholtz).
     farad: Fahrenheit.
F.
     acceleration; activity coefficient, for molar concentration; partition
       function.
f
     function.
G
     thermodynamic potential, Gibbs function, free energy—G. N. Lewis.
     acceleration due to gravity, standard value.
g
     acceleration due to gravity, as a variable; osmotic coefficient.
g
g.
     enthalpy, total heat, heat content; magnetic field strength.
н.
     henry.
     Planck's constant.
h
h
     height.
Ι
     moment of inertia; ionic strength; electric current; intensity of light.
     vapour pressure constant; van 't Hoff's factor.
     mechanical equivalent of heat.
     gram-equivalent weight.
     chemical equilibrium constant; (compressibility).
     K_s solubility product.
    Kelvin.
K.
    Boltzmann's constant.
k
     thermal conductivity; velocity constant of chemical reaction.
k
L
    latent heat per mol; self inductance; (solubility product).
    latent heat per g.; length; mean free path of molecules.
     with subscript: equivalent ionic conductance, "mobility".
1.
    molecular weight; mutual inductance; magnetic moment.
M
    molar concentration.
M.
    rest mass of an electron.
m
    mass.
m
m. metre.
N Avogadro's number.
    mol fraction.
N
    normal concentration.
N.
    number of mols.
    with subscript: (transport number).
    with subscript: refractive index.
\boldsymbol{P}
    pressure.
[P] parachor.
    pressure.
Q
    quantity of electricity.
    heat entering a system.
    gas constant per mol; Rydberg's constant.
R
R
    electrical resistance.
[R] with subscript: molecular refraction.
    radius; (specific resistance).
    with subscript: specific refraction.
    Röntgen unit.
r.
S
    entropy.
    solubility; (surface area).
T
    temperature, on absolute Kelvin scale.
    with subscript: transport number.
    time; (temperature—not on absolute scale).
\boldsymbol{U}
    intrinsic energy.
    velocity component.
u
    with subscript: velocity of ions.
```

volume; potential, potential difference, including Volta potential.

V

```
v. volt.
    volume; velocity; velocity component.
W
     (work done by or on a system).
    work done by or on a system; velocity component.
w
\boldsymbol{X}
    force component; potential gradient in electric field.
    mol fraction.
x
\boldsymbol{Y}
    force component.
\boldsymbol{z}
    force component; g.-equivalent weight; number of molecular collisions
       per second; atomic number.
    valency of an ion.
z
    degree of electrolytic dissociation; angle of optical rotation.
α
[a] specific optical rotation.
    surface concentration excess.
    ratio of specific heats; surface tension.
_{\Delta}^{\gamma}
    increment.
δ
    very small increment.
    dielectric constant; molar extinction coefficient.
ζ
    electrokinetic potential.
    efficiency of any process; viscosity; electrolytic polarisation, overvoltage.
\theta
    angle of contact; temperature—not on absolute scale.
    compressibility; specific conductance; magnetic susceptibility—volume.
ĸ
Λ
    equivalent conductance.
    wave length.
    chemical potential; dipole moment; magnetic permeability.
μ
    with subscript: (refractive index).
μ.
    micron.
    frequency; wave number.
ν
    pressure, especially osmotic pressure.
Π
Π
    product.
     (electrolytic polarisation, overvoltage).
π
    ratio of circumference to diameter.
π
    density; specific resistance.
    sum.
    diameter of molecules; (surface tension); (specific conductance).
σ
     time interval, especially half or mean life.
     fluidity; electronic exit work function; magnetic flux.
ф
     function.
φ
χ
ψ
    magnetic susceptibility—mass.
     wave function.
     ohm.
```

angular velocity; specific magnetic rotation.