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242. Theory of Chromatography. Part V .  Separation of Two 
Solutes Following a Freundlich Isotherm. 

By E. GLUECKAUF. 

An attempt is made to  predict the behaviour during chromatographic separation of solutes 
following individually a Freundlich isotherm ac = 4". A method is shown for the graphical 
solution of the fundamental chromatographic equation dq,/dc, = dq,/dc,, which makes it 
possible to calculate the distribution of solutes in binary chromatograms for any type of 
isotherm. It is shown that in the case of Freundlich isotherms two essentially different types 
of chromatogram must be expected (see Figs. 4 and 6). In  order t o  obtain complete separability 
into two adjoining bands the condition must be fulfilled that the molar phase ratio at the point 
of separation of the bands k.FJ O > n ,  

If the leading solute has the lower value of n, L e . ,  if n,  < n,, this can always be achieved by 
working at low enough concentrations. If this condition is not fulfilled, solute 2 cannot be 
obtained pure, but can only be enriched. Pure solute 1 can always be obtained, though in the 
latter case not quantitatively. Chromatographic separation is the easier the smaller the ratio 
nl,/n2 of the Freundlich exponent. 

(a) An Isotherm for Multiple Sotutes.-The case of the Langmuir isotherm has been dealt with 
in considerable detail in an earlier publicstion. In deducing what happens in the case of two 
substances each following a Freundlich isotherm, the difficulty arises that no isotherm of the 
Freundlich type has so far been suggested for multiple solutes. Nevertheless, we may assume 
that, just as the simple Freundlich isotherm q = (ac)n can be replaced by a sum of Langmuir 
equations 

q =YlXc 9 avc . . . . . . .  (1) . .  
as has been suggested by Hinshelwood (I'  Kinetics of Chemical Change in Gaseous Systems ", 
2nd edition, p. 195), the multiple Freundlich isotherm, if it existed, might-be synthesised as 

An isotherm of this type, which still has a finite slope (dqkdc) at c, = 0 would show little difference 
in principle from the chromatographic behaviour of a " pure " Langmuir isotherm, and such 
differences would be confined mainly to a smaller rate of separation at the rear end (see, e.g., 
Part 111, Fig. 2). 

Another possibility is to write the Freundlich equation in the form 

. . . . . . . . . . .  ac = q ( 4 ) a - l  ( 3) 

(4) 

and compare it with the Langmuir equation in the form 

. . . . . . . . . . .  ac = q ( l  - j?q)-' 

where = b/a represents the amount of adsorbent occupied at saturation by 1 mol. of adsorbate. 
If the mechanism of adsorption is similar, we may reasonably assume that in both cases the 
concentration of the solute is in the first instance proportional to the concentration in the 
adsorbed state (q), modified by a factor which is dependent on the amount of free adsorbing 
space still available, which is a function of the amount absorbed. In  the case of the multiple 
Langmuir isotherm this modifying function is 
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We may assume that a similar additivity would exist for the occupied surface areas in the case 
of the modifying function of a multiple Freundlich isotherm, which would then have the form, 

Equation (5a, b) ,  which, like the Freundlich equation, can only be considered as empirical, 
should make it possible to predict the conditions of mixed adsorption when the single-solute 
isotherms are known, a t  least if the surface requirements p can be considered identical. 

Actually i t  is possible to make physical assumptions which link the Freundlich isotherm with the 
theoretically deduced Langmuir equation (though i t  cannot be discussed here how far these assumptions 
are justified). We may assume that every part of the surface can become an actively adsorbing spot, if 
raised temporarily to a higher energy level P which in this case corresponds to a state of unsaturation. 
The higher this degree of unsaturation, the larger must be the activation energy P,  but the greater will 
be the amount of desorption energy Q which an adsorbed solute requires for its removal from this 
activated spot. The simplest assumption would be that P and Q form, a t  a given temperature, a definite 
ratio PJQ = m, where m < 1 ,  so that activation + adsorption results in an exothermic process. 

A Maxwell-Boltzmann distribution being assumed for the P levels, the proportion of active surface 
ASQ adsorbing with an adsorption energy between Q and Q + AQ is 

. . . . . . . . .  - mQiRT (al) AsQ - 
a~ R T . ~  

There is no reason why in normal cases a group of active spots of uniform properties should not adsorb 
according to  the Langmnir isotherm : 

Replacement of ASQ in (a2) by means of (al) and elimination of Q by be leads to the equation 

and integrating over all values of Q, a'.e., for all adsorption factors b from 0 to 00, we have 

which for 0 < m < 1 results in 
mrKm q = P = A P  . . . . . . . . .  

This is the well-known form of the Freundlich isotherm. 
The same considerations can be applied to the case of two solutes. This leads eventually to 

db 1 . . . . .  41 = - + blcl + ( ~ ) ~ x ' m ' K , c z ]  

which integral appears to be soluble only for the case m,  = m2. 
equations for q ,  and q2 which are almost identical with the equations 5c, d. 
support for the multiple adsorption isotherms 5 4  b, though only in the case n,  = n,. 

In  this case, integration leads to 
This gives some theoretical 

Unfortunately, very few experimental data on mixed adsorption are available to test the 
usefulness of equation (5a, b) ,  one of the best examples being the adsorption of oxalic (1) and 
succinic (2) acids on charcoal (probably by Masius; see Freundlich, " Colloid and Capillary 
Chemistry," Methuen, Fig. 39, p. 200). The Freundlich isotherms of the single solutes obtained 
from the experimental data are 40c, = (q1)2.1 and 216c, = (4J3.6,  where c is measured in mol.11. 
and q in millimol. per g. of charcoal, from which would follow in accordance with eqn. (5a, b) , the 
multiple isotherms 

. . . . .  ( 5 4  4oc1 = 4 1  (41 + Z q 2 )  P * 

(bb') 

Fig. 1 shows the straight lines of the single-solute isotherms of succinic acid (S) and oxalic acid 
(O), as well as a number of points giving the measured adsorption equilibria for approximately 
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equimolar solutions of the mixed solutes, the points of coexisting concentrations being tied by 
arrows. From the values of q1 and q2 of these points the " theoretical " values of c1 and c, have 
been calculated by means of eqns. (5a') and (5b'), and the resulting points are shown in Fig. 1 
as circles : p,/p, has been chosen as 1.2 which slightly improves the agreement as compared with 
the assumption of equal surface requirements. Though the deviations of the calculated values 
of c1 and c, from the observed values are not negligible, it is apparent that the equations ( 5 4  
and (W), the constants of which are taken from the single-solute isotherm, express the conditions 
of mixed adsorption with reasonable approximation. 

Much better is the agreement with the experimental values if we consider the effect of the 
total adsorbate on the molar phase ratio 5 obtained from eqns. (5a) and (5b) : 

FIG. 1. 

I 1 I 
? -7-5 -r -0.5 

zog c. 
Adsor$tion of succinic and oxalic acid on charcoal. The lines represent the adsorption of the single solutes ; 

the $oints show the data of mixed adsorption of the two acids, coexisting concentrations being tied by 
arrows. (+) observed data, 0 calculated from single solute isotherms by eqn. (k', If). 

(see Fig. 2). Here the points correspond to the experimental values of cl, c,, ql, q2, and the line 
is obtained from eqn. (6) with p2/p1 = 1.2, and all the other constants are taken from the single- 
solute isotherms. E is the separation factor and its importance for the chromatographic 
separation is similar to that of the molar phase ratio of the gaseous and the liquid phase for 
fractional distillation. The agreement is so much better here because any effects of mutual 
attraction or repulsion between the different adsorbed solutes, eg . ,  due to the heat of mixing 
in the surface, which are not considered in eqn. ( 5 4  b) ,  are greatly reduced in E,. This, too, has 
its parallel in the vapour pressures of binary liquids, where the agreement between theory and 
experiment is always better for the molar phase ratio than for the concentration-pressure 
curves. 

Very similar conditions exist in the case of the binary adsorption of acetone (i) and acetic acid (ii) on 
charcoal. The single-solute isotherms are here (see experiments by Michaelis and Rona, Biochem. Z., 
1909,15, 204-207) 

25c, = q1"0 and 4 1 . 5 ~ ~  = 4z3'0 
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so that one might expect the multiple isotherms 

25C1 = 41(41 + E ~ P )  and 41'5h = 42 f: + 4a)* 

At high concentrations of acetone, deviations due to the heat of mixing in the surface are again very 
marked, but a t  lower concentrations of acetone agreement is quite good (see Table I, where the 
concentrations in the solvent have been calculated for given quantities of adsorbate, using a value of 
E = 0.66), and Table 11, where the amount of acetic acid required to produce a given distribution of 

FIG. 2. 
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Mixed adsorption of succinic and oxalic acids. Molar phase ratio (8) plotted against mixed adsorption 
density according to eqn. (6). 

41 q a  
.(milli-mol./g.). 

0.25 0.25 
0.57 1.30 
0.42 1.90 
0-5 1 2-04 
0.37 2.60 

TABLE I. 
c1 (mol./l.). cI (molJ1.). 

I -I -7 
Calc . Exp . Calc. Exp . 

0.0041 0.0016 0-0024 0~0010 
0.032 0.029 0.148 0.144 
0.028 0.031 0.296 0.302 
0.037 0-030 0.39 0.30 
0.030 0.033 0-625 0-628 

TABLE 11. 
Acetic acid added (milli-mol.). 

Total acetone 41 c1 c A 1 

used (milli-mol.). (milli-mol. Ig.). (mol./l.) . Calc. Exper. 
0.209 0.043 0.0033 33.4 34.2 

0.055 0.0031 13.9 17.1 
, I  0.061 0.0030 10.1 8.6 
# >  0.129 0.0016 0.4 0 

I s8 

solute 1 between 50 C.C. of water and 1 g. of charcoal has been calculated from the adsorption data of 
solute 1. 

These considerations should make i t  clear that substances separately obeying a Freundlich 
isotherm do not necessarily follow the binary isotherm (5a, b ) ,  but that this equation represents 
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a function which contains many, though not necessady all, the essential features, which may 
be expected from a multiple adsorption isotherm of such solutes. In particular, it contains the 
typical feature of the Freundlich isotherm of infinite slope at zero concentration. 

For 32, = nz, PI = Pa. Eqn. (5a, b) can also be written in the form 

alcl \ - . - -  . . . . (5 c, d )  
41 = (alcl + a2c2)1-1/n 

which shows at the same time the formal resemblance to and also the essential difference from 
the multiple Langmuir isotherms. 

FIG. 3. 

Contour lines of the ql-cl-c, and of the qa-cl-c, surfaces, as required for obtaining the curve of coexistent 
values of c1 and c2 i n  the mixed part of the chromatogram for a given case of initial concentrations 
olO, c02 (8). The three lines refer to three diflerent values of aJa2 (= a, 4, and 8). 
(b) Chromatographic Separation an the Case n, = nz.-In order to apply chromatographic 

equations to either eqn. (2)  or (5) ,  it is necessary to solve the fundamental differential equations 
governing the chromatographic process dqJdc, = dq2/dc2. As has been pointed out in Part I 
(PYOG. Roy. SOL, 1946, A ,  186, 54),  a general solution is so far only possible in the case of the 
" pure " Langmuir isothetm. We can, however, solve this equation by graphicaI evaluation 
and thus obtain the relationships between coexistent values in the chromatogram of c, and c2 
or q1 and q2 in any numerical case. 

For this purpose lines of equal q1 and of equal 4% are plotted on a system with the co-ordinates 
alcl and aac2 (or c1 and tg) (see Fig. 3). These represent the contour lines of the three-dimensional 
ql-alcl-a,c, and q2-a1cl-a2c2 diagrams. We may then start with a point [representing the 
conditions of the original solution (clO, cZ0) to be chromatographed] and, by a method of trial 
and error, find a neighbouring point which obeys the condition Aql/Ac, = Aqz/Ac2. Thence 
we proceed from point to point until one of the concentrations becomes zero. The resulting 
curve (thickly marked in Fig. 3) then represents the relationships between coexistent values in 
the mixed chromatogram of q1 and q2, c1 and c2. 
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In order to make a wider use of this diagram the evaluation has been made for three Merent  

values of al/az (= a, 9, Q) which thus represent three different isotherms of the same ty-pe. 
The contour lines of Fig. 3 have been calculated for eqn. (5a, b) with rt ,  = nB = 2 and 
pl/p, = 1. In this case the position of the " coexistence line " depends on the ratio alla2 only, 
so no lndividual values need be assigned to these constants. 

The starting concentrations of the adsorbate q10 and qsO have been chosen at random 
(q10 = 0-6, q 2 0  = 0.8) and consequently c10 = 0*84/a1, c20 = 0°12/a2. 

Each case of al/a2 results in a function of coexistent values of c1 and c2 (and of q1 and q2, 
respectively) and these functions differ greatly in their characteristics. It can be shown that 
different starting points clO, caO, q l O ,  q20 do not affect these characteristics, but that these depend 
on the ratio al/aa only. We always get types of function for coexistent values which can be 
represented with good approximation by the empirical equations (6a), (6b) and (64 ,  the value of 
the constants depending on the starting point. 

Equations for coexistent Constants for 41' = 0.6, 42' = 0.8. 
a1p2.  values of ql,  q2. R l *  k,. A,. 

0.64 0-5 0-5  (6a) 
(6b) 
(64 

- 42 = k l  + k241 + k3212 
4 2  = k l  + k d q *  0.37 0.55 
42 = W d q ,  + k2q1 0.77 0.25 - 2 

% 
These relationships for coexistent values of q1 and q2 make it possible to substitute qa in the 
mixed isotherm (5a, b). This leads to the " pseudo-single-solute " isotherm q1 = F(fl, required 
for the construction of the binary chromatograms according to the general equations given in 
Part 111. 

FIG.  4. 

Boundary lines of chromatograms calculated for mixed isotherm with the constants n, = n, 1 2 and mixed 
aJa2 = ). Complete separation is 
attaznable. 

Figs. 4, 5, and 6 show the calculated loci of the chromatographic boundaries for the three 
cases considered (.,/a2 = 4, +, 8). Curves A and B represent the loci of the rear boundary of 
the mixed band for solute I and I1 respectively; curve D shows the rear slope of the pure 
frontal band of solute I, and curve E gives the diffuse rear boundary of the pure rear band of 
solute 11. All the curves show the values of q1 or q2 plotted against the parameter a,x/v as 
abscissa. 

From these curves the actual form of the chromatograms can be obtained by fixing numerical 
values for the quantities of solutes (ml, m,) and for the volume ZI of solvent used. This defines 
the position x of the front boundaries of the mixed band and of the pure band of solute I. To 
make things clearer, these boundaries (for given cases of m and v) have been cross hatched; 
with these boundaries the abscissa represents the length of column (x)  in an arbitrary unit. 

We then see from Fig. 4 that, for solutes with values of a,/a, <+, the general arrangement 
of the binary chromatogram shows little Werence from that arising from a Langmuir isotherm 
(see Part I or Part 111, Figs. la+, Fig. l A ,  B). The principal differences are that (a) the rear 
band does not separate from the top of the column, a known feature for Freundlich isotherms 
(see Weiss, Zoc. cit., Fig. 4), and consequently is only very incompletely eluted, and (b) the 

Note similarity with the case of the Langmuir isotherm. 
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frontal band of solute 1 never completely separates from the rear band of solute 2, even after the 
mixed band has disappeared, because on account of the infinite value of dq/dc at c1 = 0, the tail 
of the frontal band moves infinitely slowly and thus would always be overtaken by any other 
substance with G > 0 (see Fig. 6 of Part IV), The complete separation into two distinct bands 

FIG. 5 .  

J 
3.0 

Boundary lines of chromatograms calculated for  mixed isotherm with the constants n, = n2 = 2 and 

of two solutes can therefore always be taken as a sign that the strict Freundlich isotherm does 
not apply t o  the faster-moving solute a t  very low concentrations, but that a pseudo-Freundlich 
isotherm of the type of eqn. (1) applies, which, as has been shown by a similar diagrammatic 
investigation, always permits separation into two distinct bands. 

.,/a2 = 4. Intermediate case between Figs. 4 and 6. 

FIG. 6. 

Boundary lines of chromatograms calculated fo. mixed isotherm with the constants n, = n2 = 2 and aJas = 

This conclusion agrees with the experimental findings by Schwab and Jockers (2. angew. 
Chem., 1937, 50, 646) that no white zones between coloured bands can be obtained when 
mixed inorganic solutes are chromatographed on alumina, where isotherms with Freundlich 
characteristics obtain. 

3. Note that no pure solute 11 i s  se9arabte ~ conseqauntly no complete separation i s  attainable. 
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The difference of the chromatograms from those of Langmuir isotherms becomes marked for 

small separability of the two solutes (1 > ql /qa  > 0.5) (see Fig. 6). Here the flat portion at the 
front of the pure tail band of solute I1 and the discontinuity at this point disappear. On the 
other hand, there is no longer a point of complete separation, as the curve representing ql now 
runs right back tb  the top of the chromatographic column (x = 0). In  this case, solute I1 
cannot even partially be obtained in the pure state, though a certain amount of solute I can be 
obtained pure at the front boundary. 

Here we 
have the very rare, and in practice never realised case where a pure rear band can form without 
a discontinuity at its forward boundary, and where, consequently, the equations (in particular 
6 and 7) suggested by Offord and Weiss (Nature, 1946, 155, 726), which do not normally hold 
good, become identical with those of Glueckauf (zbid., 156, 205). 

(c) The Case of n, =i= n,.-It can be shown by a graphical integration (as in Fig. 3) that the two 
types of chromatographic behaviour as shown in Figs. 4 and 6 will also occur if TZ, +. n,: As 
in the case shown in Fig. 4, separation of a pure rear band of solute 2 (with a discontinuity at 
x,) is confined to the essential conditions 

Between these two extremes lies the intermediate case, al[a2 = 9 (see Fig. 6). 

This gives the possibility of discussing, not only the case of the isotherm (5a, b), but also the 
general isotherm of the type 

c1 = 41 4(91,9s) c2 = 4 2  !4a1q1,~dz) - - - - - a) 
where $ and y3 are any functions, the latteibeing a symmetrical function with respect to a,q, 
and cr,q,. Then 

. . . . . . . . . . . .  [9] = #J(O,q,) 19) dq, !l1= 0 

Equating (9) and (10) results in 

which, after partial differentiation, leads to 

As dq,/dq, > 0, the condition for complete separability of the solutes is 

A useful application of (12) and (13) will in general be prevented by lack of knowledge of the 
0 is independent of value of qz0. 

q20 and results in 

and in the condition : 

If, as in the case of Fig. 3, nl = n2, 5, has the simple value a2/al. 

But in the case of the isotherm (5a, b) ,  [a log c z / a  log q&, 

= a,(to - $z2>/al(n2 - 1) . . . . . . .  (124  

[ 0 o n . ~ > 1  . . . . . . . . . .  ( 1 3 4  

For a mixed adsorption isotherm of the type (ria, b) log E is a linear function of log 4, + q2) ,  

and we can have two different cases, according to whether n, (less adsorbed solute) is smaller or 
larger than n, (rear solute). In the first case when n, <n, (or more generally, when t increases 
with decreasing concentration) the condition to> n, IS always fulfilled, as development can 
be continued until E is large enough (see Fig. 7a). The separation will be the more efficient the 
smaller (q10 + q20) ,  as this results in larger values of 5 0  and go. This case behaves thus quite 
differently from that of the Langmuir isotherm, where separation is accelerated by working a t  
high adsorption densities. 

c2 
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For the second case, when nl> n2 (or more generally, when E decreases with diminishing 
concentration) (see Fig. 7 4 ,  it is apparent that the separation, which increases with <, improves 
with increasing concentrations of the solutes. If, however, they are not high enough to result 

in a value of co> n2 or more generally to> g;zii:]q,5J, - which is essential for a clean 

separation of the solutes, the lowering of the concentrat'lons in the course of the development 
will result in values of E <1, at first for the rear, and eventually also for the front of the band. 
Thus, in the beginning, solute 1 will separate both in the front and in the rear with enrichment 
of solute 2 in the middle section of the band. Then, as the concentrations fall in the course of 
development, separation of solute 1 at the front will come to an end (Ew = 1) and will even be 
reversed (<,<1), whereby solute 2 again enters into the pure frontal band of solute 1 and 
eventually forms a frontal band of pure solute 2. 

In this case, it is obviously much more economical to work from the start a t  such low 
concentrations that E O  becomes (1. This means that the solutes change their subscript and 
order in the chromatogram, reverting thereby to the case shown in Fig. 7a. It follows from this 
that chromatography a t  low enough concentrations will always lead to some kind of separation 
or enrichment in the case of Freundlich isotherms, though, if n, > n2, chromatographic separation 
at  high concentrations may in some cases (Eo > n2) result in a faster and more efficient separation, 

FIG. 7 a. FIG. 7 b. 

T h e  separation factor 8 as funct ion of the adsorpfioPi density. (a) nr  < n2 : separation improves with the 
(b) n, > n,: sefmration improves with increasing concentration of the use of lower concentrations. 

solutes. 

particularly, when cl0 < czO, which would result in a relatively large value of cZ0 and hence also 
of Eo (of same order of magnitude as c20 and <O respectively ; this follows strictly for the Langmuir 
isotherm, and can be shown to be true for other isotherms by the graphical method). 

The first of these conclusions is confirmed by the chromatographic practice, where low 
concentrations are generally favoured. The second case, where high concentrations improve 
the separation, and which has apparently so far not been looked for, will be investigated 
experimentally in due course. 

It is also apparent from Fig. 7a and b that, if E O  is identical for two pairs of solutes, where one 
has n, <n2, and the other n, > n2. separation will be far easier in the first case where the leading 
solute has the lower value of n, since during the process of development the value of increases, 
while the converse is true if the leading solute has the higher n. More generally, it can be said 
that pairs of solutes with equal can be separated the more easily the smaller the value of 

These conclusions might be elaborated more quantitatively, if the proposed binary isotherm 
(5a, b) were more than a rough working model which, apart from the displacement effect, does 
not consider mutual influences on each other of the two solutes. The present state of our 
knowledge concerning binary adsorption isotherms, however, is such that much preliminary 
work must be directed towards establishing the mutual influence of adsorbed solutes on each 
other and the mathematical form of mixed isotherms, before further theoretical guidance can 
be given to the practical chromatographer. 

nllnz. 
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