373. Structure and Amæbicidal Activity. Part I. Aliphatic Diamines. By D. Muriel Hall, Sardar Mahboob, and E. E. Turner. Fourteen aliphatic diamines of the type $\mathrm{NH_2}\text{-}\mathrm{CHR}\text{-}[\mathrm{CH_2}]_n\text{-}\mathrm{CHR}\text{-}\mathrm{NH_2}$ have been synthesised as their dihydrochlorides. Three of them with n=3 and one with n=4 are effective against *Entamæba histolytica* at a concentration of 1 in 10^5 . (Emetine is effective at a concentration of 1 in 5×10^5 .) ATTEMPTS to dissect out that portion of the emetine molecule which might be responsible for the amœbicidal action of the alkaloid have so far met with little success. Thus, Child and Pyman (J., 1929, 2010) basing their ideas on Pyman's emetine formula (I) (J., 1927, 1067) prepared a series of compounds of the type (II), or closely related thereto, with n=4, 5, or 8. None of the substances examined was active against *Entamæba histolytica* at dilutions of 1 in 5000, whereas emetine is effective at 1 in 500,000. Later, however, Pyman (*Rep. Brit. Ass.*, 1937, 107, 57) reported some amœbicidal activity on the part of 1:10-bisdiamylaminododecane. Goodson, Gorvin, Goss, Kirby, Lock, Neal, Sharp, and Solomon (*Brit. J. Pharmacol.*, 1948, 3, 49) examined a considerable series of compounds, including some of the types $[3:4:1-(OMe)_2C_6H_3\cdot NH]_2>[CH_2]_n$ and $(n-C_8H_{17}\cdot NH)_2>[CH_2]_n$ and also the one primary diamine $NH_2\cdot [CH_2]_{10}\cdot NH_2$. The correction of the formula for emetine to (III) (Robinson, Nature, 1948, 162, 524; Pailer and Porschinski, Monatsh., 1949, 80, 94; Battersby, Openshaw, and Wood, Experientia, 1949, 5, 114; Battersby and Openshaw, J., 1949, 3207) does not bear materially on the interpretation of the search for amœbicides outlined above. [It is interesting to note that the central portion—within dotted lines in (III)—of the emetine structure contains the features of a partly decyclised ethylquinuclidine.] All the above compounds with the exception of the diaminodecane contain secondary or tertiary nitrogen atoms. In the present work a study has been made of long-chain diamines containing two *primary* amino-groups and having the general formula $NH_2\cdot CHR\cdot [CH_2]_n\cdot CHR\cdot NH_2$. In vitro activities against E. histolytica found within the series are as high as 1 in 100,000. As expected, simple polymethylene diamines of low molecular weight (R = H, n = 1 or 2) are inactive. With the introduction of alkyl groups having 4, 5, 6, or 8 carbon atoms, activity is consistently manifested when n = 3 (see Table). When n = 4 or 5 (see Table) the dystherapeutic effect of increasing molecular weight becomes evident and compounds 11 (R = 2-ethylhexyl; n = 4) and 14 (R = n-hexyl; n = 5) are inactive. This is an interesting result in view of the fact that the emetine molecule contains, apart from the methoxyl groups, a skeleton of 25 carbon atoms (compounds 11 and 14 have 22 and 19 carbon atoms, respectively). However, in emetine the two nitrogen atoms are separated by five carbon atoms, corresponding to n = 3 in our series. The straight chain diamines are in several cases more active that the corresponding compounds with branched chains. Thus, the activities of compounds $1 (R = Bu^n; n = 3)$ and 3 (R = n-amyl; n = 3) are reduced when R becomes isobutyl and isoamyl, respectively (compounds 2 and 4). The diamines were prepared (in the form of their hydrochlorides) by the following general procedure: All the compounds were tested as the water-soluble hydrochlorides. In vitro amæbicidal activities of dihydrochlorides of NH₂·CHR·[CH₂]_n·CHR·NH₂. | Compound no | Diamines of the pentamethylene series (n = 3). 5: 9-Diaminotridecane 4: 8-Diamino-2: 10-dimethylundecane 6: 10-Diaminopentadecane 5: 9-Diamino-2: 12-dimethyltridecane 7: 11-Diaminoheptadecane 7: 11-Diamino-5: 13-diethylheptadecane | R. Bu ⁿ Bu ⁱ n-amyl isoamyl n-hexyl 2-ethylhexyl | Activity. 1 in 10,000 1 in 1,000 1 in 100,000 1 in 100,000 1 in 100,000 1 in 100,000 | |-------------------------|--|--|--| | 7
8
9
10
11 | Diamines of the hexamethylene series (n = 4). 5: 10-Diaminotetradecane 6: 11-Diaminohexadecane 5: 10-Diamino-2: 13-dimethyltetradecane 7: 12-Diamino-octadecane 7: 12-Diamino-5: 14-diethyloctadecane | Bu ⁿ n-amyl isoamyl n-hexyl 2-ethylhexyl | 1 in 10,000
1 in 10,000
1 in 10,000
1 in 100,000
inactive | | 12
13
14 | Diamines of the heptamethylene series (n = 5). 5:11-Diaminopentadecane 4:10-Diamino-2:12-dimethyltridecane 7:13-Diaminononadecane | Bu ⁿ
Bu ⁱ
n-hexyl | 1 in 10,000
1 in 10,000
inactive | ## EXPERIMENTAL. ## Microanalyses by Drs. Weiler and Strauss. Ethyl Alkanetetracarboxylates and Derived Acids.—Normal procedure was adopted for condensing polymethylene dibromides with the sodio-derivatives of substituted malonic esters (compare Perkin and Prentice, J., 1891, **59**, 818). The following esters were thus prepared (yields are given in parentheses) and were hydrolysed to the tetracarboxylic acids by boiling them with alcoholic potassium hydroxide. Ethyl tridecane-5:5:9:9-tetracarboxylate (25%), b. p. 198—202°/1 mm., 214—216°/4 mm., crystallised from methyl alcohol, melted at 35—37° (Found: C, 63·5; H, 8·6. C₂₅H₄₄O₈ requires C, 63·5; H, 9·3%). The derived acid, crystallised from water, had m. p. 149—151° (decomp.) (Found: C, 56·0; H, 7·8. C₁₇H₂₈O₈ requires C, 56·5; H, 7·8%). Ethyl 2:10-dimethylundecane-4:4:8:8-tetracarboxylate (33%), crystallised from methyl alcohol, melted at 45—47°. Perkin and Prentice (loc. cit.) did not obtain a crystalline specimen. The derived acid, crystallised from aqueous acetic acid, had m. p. 148—150° (decomp.) (Found: C, 56·1; H, 7·8. C₁₇H₂₈O₈ requires C, 56·5; H, 7·8%). Perkin and Prentice (loc. cit.) prepared this acid but did not optify it or analyse it. not purify it or analyse it. Ethyl pentadecane-6: 6: 10: 10-tetracarboxylate (32.5%) had b. p. 234°/2 mm.; $n_1^{18.5}$ 1.4492 (Found: C, 64.9; H, 9.2. $C_{27}H_{48}O_8$ requires C, 64.7; H, 9.6%). The derived acid, crystallised from dilute aqueous acetic acid, had m. p. 175.5° (decomp.) (Found: C, 58.4; H, 8.4. $C_{19}H_{32}O_8$ requires C, 58.7; (36%). Ethyl 2:12-dimethyltridecane-5:5:9:9-tetracarboxylate (36%) had b. p. 225°/2 mm., n_D^{20} 1·4480 (Found: C, 65·0; H, 9·5. $C_{27}H_{48}O_8$ requires C, 64·7; H, 9·6%). The derived acid, crystallised from aqueous acetic acid, had m. p. 196—197° (decomp.) (Found: C, 57·3; H, 8·4. $C_{19}H_{32}O_{8}, \frac{1}{2}H_2O$ requires C, 57.4; H, 8.3%). Ethyl heptadecane-7:7:11:11-tetracarboxylate (39%) had b. p. $254^{\circ}/5$ mm., $270^{\circ}/9$ mm., n_D^{17} 1·4530 (Found: C, 65·9; H, 9·9. $C_{29}H_{52}O_8$ requires C, 65·8; H, 9·9%). The derived acid, crystallised from dilute aqueous acetic acid, had m. p. 175—177° (decomp.) (Found: C, 60·6; H, 8·5. $C_{21}H_{36}O_8$ requires C, 60.5; H, 8.7%). Ethyl 5: 13-diethylheptadecane-7: 7:11:11-tetracarboxylate (28.5%) had b. p. 258°/3 mm., n_D¹⁸ 1.4569 (Found: C, 68.2; H, 10.3. C₃₃H₆₀O₈ requires C, 67.8; H, 10.3%). The derived acid, crystal-lised from aqueous acid, had m. p. 167—168° (decomp.) (Found: C, 63.7; H, 9.3. C₂₅H₄₄O₈ requires C, 63.5; H, 9.3%). Ethyl tetradecane-5:5:10:10-tetracarboxylate (70%), crystallised from light petroleum (b. p. 40—60°), melted at 31—32° (Found: C, 64·0; H, 9·6. C₂₆H₄₆O₈ requires C, 64·1; H, 9·5%). The derived acid, crystallised from benzene-acetic acid, had m. p. 194—197° (decomp.) (Found: C, 58·0; H, 8·2. $C_{18}H_{30}O_8$ requires C, 57-7; H, 8.0%). Ethyl hexadecane-6:6:11:11-tetracarboxylate (42%) had b. p. 244—246°/2 mm., n_D^{22} 1-4495 (Found: C, 65-8; H, 9-9. $C_{28}H_{50}O_8$ requires C, 65-3; H, 9-8%). The derived acid, crystallised from aqueous acetic acid, had m. p. 189—191° (decomp.) (Found: C, 60-0; H, 8-7. $C_{20}H_{34}O_8$ requires C, 59-7; H, Ethyl 2: 13-dimethyltetradecane-5: 5:10:10-tetracarboxylate (46%) had b. p. $242^{\circ}/3$ mm., n_D^{**} 1·4465 (Found: C, 65·3; H, 9·7. $C_{28}H_{50}O_8$ requires C, 65·3; H, 9·8%). The derived acid, crystallised from aqueous acetic acid, had m. p. 213° (decomp.) (Found: C, 59·3; H, 8·5. C₂₀H₃₄O₈ requires C, 59·7; H, aqueous acetic acid, had in. p. 210 (accomp.) (color), (colo Ethyl peniadecane-5:5:11:11-tetracarboxylate (70%), crystallised from light petroleum (b. p. 40-60°), melted at 44—46° (Found: C, 64·8; H, 9·5. C₂₇H₄₈O₈ requires C, 64·7; H, 9·6%). The derived acid, crystallised from aqueous acetic acid, had m. p. 169—171° (decomp.) (Found: C, 59·0; H, 8·3. $C_{19}H_{32}O_8$ requires C, 58-7; H, 8-3%). Ethyl 2:12-dimethyltridecane-4:4:10:10-tetracarboxylate (70%), crystallised from light petroleum (b. p. 40—60°), melted at 63—65° (Found: C, 65-6; H, 9-2. $C_{27}H_{48}O_8$ requires C, 64-7; H, 9-6%). The derived acid, crystallised from benzene-acetic acid, had m. p. 153—155° (decomp.) (Found: C, 57-8; H, 8.4. $C_{19}H_{32}O_{8,\frac{1}{2}}H_{2}O$ requires C, 57.4; H, 8.3%). Ethyl nonadecane-7: 7: 13: 13-tetracarboxylate (50%) had b. p. $248-250^{\circ}/2-3$ mm., $n_{\rm D}^{13}$ 1·4550 (Found: C, 66·8; H, 9·7. C₃₁H₅₆O₈ requires C, 66·8; H, 10·1%). The derived acid, crystallised from benzene-acetic acid, had m. p. 174—176° (decomp.) (Found: C, 61·5; H, 8·8. C₂₃H₄₆O₈ requires C, 62·1; H, 9·1%). Dicarboxylic Acids.—These were obtained in almost quantitative yield by heating the tetracarboxylic acids at a pre-determined optimum temperature which is given in parentheses immediately after the name of the acid Tridecane-5: 9-dicarboxylic acid (205°) crystallised from aqueous acetic acid in plates, m. p. 107-108° (Found: C, 66.7; H, $10\cdot1$. $C_{15}H_{28}O_4$ requires C, $66\cdot1$; H, $10\cdot3\%$). 2:10-Dimethylundecane-4:8-dicarboxylic acid, crystallised from light petroleum (b. p. $80-100^\circ$), had m. p. $107-109^\circ$ (Found: C, $66\cdot7$; H, $10\cdot1$. Calc. for $C_{15}H_{28}O_4$: C, $66\cdot1$; H, $10\cdot3\%$) (Perkin and Prentice, loc. cit., give m. p. indefinite, 82-84°). Pentadecane-6: 10-dicarboxylic acid (160°) crystallised from aqueous acetic acid in plates, m. p. 109— 12.5° (Found: C, 67.9; H, 10.6. C₁₇H₃₂O₄ requires C, 67.9; H, 10.8%). 2: 12-Dimethyltridecane-5: 9-dicarboxylic acid (190°) crystallised from light petroleum (b. p. 60—80°) in shining plates, m. p. 140° (Found: C, 67.2; H, 10.6. C₁₇H₃₂O₄ requires C, 67.9; H, 10.8%). Heptadecane-7: 11-dicarboxylic acid (180°) crystallised from benzene in shining plates, m. p. 112—114° (Found: C, 70.0; H, 10.8. C₁₉H₃₆O₄ requires C, 69.4; H, 11.0%). 5: 13-Diethylheptadecane-7: 11-dicarboxylic acid (160°), obtained as an oil, gave a silver salt (Found: Ag, 36·1. C₂₃H₄₂O₄Ag₂ requires Ag, 36·0%). (Found: Ag, 36·1. C₂₃H₄₅Q₄Ag₂ requires Ag, 36·0%). Tetradecane-5: 10-dicarboxylic acid (170°), crystallised from light petroleum (b. p. 40—60°), had m. p. 103—109° (Found: C, 66·9; H, 10·5. C₁₆H₃₆O₄ requires C, 67·1; H, 10·5%). Hexadecane-6: 11-dicarboxylic acid (190°), crystallised from light petroleum (b. p. 60—80°), had m. p. 99° (Found: C, 69·0; H, 10·7. C₁₈H₃₄O₄ requires C, 68·7; H, 10·9%). 2: 13-Dimethyltetradecane-5: 10-dicarboxylic acid (190°), crystallised from light petroleum (b. p. 60—80°), had m. p. 119—121° (Found: C, 69·0; H, 10·9. C₁₈H₃₄O₄ requires C, 68·7; H, 10·9%). Octadecane-7: 12-dicarboxylic acid (165°) crystallised from light petroleum (b. p. 40—60°) and had m. p. 97° in a sealed tube (Found: C, 70·0; H, 11·2. C₂₀H₃₈O₄ requires C, 70·1; H, 11·1%). 5: 14-Diethyloctadecane-7: 12-dicarboxylic acid (175°), obtained as an oil, gave a silver salt (Found: Ag 35·2%). 5: 14-Diethyloctadecane-7: 12-dicarboxylic acid (175°), obtained as an oil, gave a silver salt (Found: Ag, 35·0. C₂₄H₄₄Ag₂ requires Ag, 35·2%). Pentadecane-5: 11-dicarboxylic acid (160°) crystallised from aqueous acetic acid in rods, m. p. 90—94° (Found: C, 67·7; H, 10·8. C₁₇H₃₂O₄ requires C, 67·9; H, 10·8%). 2: 12-Dimethyliridecane-4: 10-dicarboxylic acid (160°), crystallised from aqueous acetic acid, had m. p. 111—112° (Found: C, 67·5; H, 10·4. C₁₇H₃₂O₄ requires C, 67·9; H, 10·8%). Nonadecane-7: 13-dicarboxylic acid (175°), crystallised from light petroleum (b. p. 40—60°), had m. p. 72·5—75·5° (Found: C, 69·1; H, 11·1. C₂₁H₄₀O_{4·2}H₂O requires C, 69·0; H, 11·3%). Diamines.—Schmidt's reaction was used for the preparation of the diamines from the long-chain dicarboxylic acids: Up to the present it had been applied only to three aliphatic dicarboxylic acids: succinic adinic and dodecane-1: 12-dicarboxylic acid. The following general conditions were used: succinic, adipic, and dodecane-1: 12-dicarboxylic acid. The following general conditions were used: the dibasic acid was dissolved in concentrated sulphuric acid and benzene added (3—5 c.c. of acid and 3—6 c.c. of benzene for each g. of dibasic acid). Powdered activated sodium azide (Nelles, Ber., 1932, 65, 1345) was added (2-4 g.-mols. for 1 g.-mol. of dibasic acid) in small portions, with stirring at such a rate that the reaction mixture remained at a suitable temperature (usually ca. 30°). In a few cases the reaction mixture was subsequently warmed to a higher temperature to complete the reaction. Sodium hydroxide solution (30%) was added with strong cooling and the base extracted with benzene. Hydrogen chloride was passed into the dried extract and the precipitated hydrochloride separated. 5: 9-Diaminotridecane was obtained as the hydrochloride (compound 1) from tridecane-5: 9-dicarboxylic acid in 50—60% yield. The reaction was carried out at 35—45°. The di(hydrogen oxalate) crystallised from alcohol and had m. p. 198-5—199° (Found: C, 52-3; H, 8-2; N, 7-1. C₁₇H₃₄O₈N₂ requires C, 51.8; H, 8.7; N, 7.1%). 4:8-Diamino-2:10-dimethylundecane was obtained as the hydrochloride (compound 2) (decomp. 4:8-Diamino-2:10-dimethylundecane was obtained as the hydrochloride (compound 2) (decomp. above 225°) in 75% yield. The reaction mixture was heated to 45° to start the reaction but thereafter it proceeded smoothly at 30—32°. The dipicrate crystallised from aqueous ethyl alcohol in needles, m. p. 187—190° (Found: C, 44.9; H, 5.3; N, 16.5. C₂₅H₃₆O₁₄N₈ requires C, 44.6; H, 5.3; N, 16.6%). 6:10-Diaminopentadecane hydrochloride (compound 3) was obtained in 78% yield. The reaction was carried out at 25—30°. The dipicrate, crystallised from benzene—ethyl alcohol, had m. p. 130—133° (Found: C, 47.0; H, 5.4; N, 15.8. C₂₇H₄₆O₁₄N₈ requires C, 46.3; H, 5.7; N, 16.0%). The diacetyl derivative, crystallised from aqueous alcohol, had m. p. 179—180° (Found: N, 8.8. C₁₉H₂₈O₂N₂ requires N, 8.5%). 5: 9-Diamino-2: 12-dimethyltridecane hydrochloride (compound 4) was obtained in 80% yield. The reaction was carried out at 20—30°. The dipicrate, crystallised from benzene-ethyl alcohol, had m. p. 167—170° (Found: N, 15.9. C₂₇H₄₀O₁₄N₈ requires N, 16.0%). 7:11-Diaminoheptadecane hydrochloride (compound 5) was obtained in 75% yield, the reaction being carried out at 25—30°. The dipicrate, crystallised from benzene-ethyl alcohol, had m. p. 144—146° (Found: N, 15·2. C₂₉H₄₄O₁₄N₈ requires N, 15·3%). The diacetyl derivative, crystallised from aqueous ethyl alcohol, had m. p. 186° (Found: C, 70·9; H, 12·1; N, 7·7. C₂₁H₄₂O₂N₂ requires C, 71·1; H, 12·0; 7: 11-Diamino-5: 13-diethylheptadecane hydrochloride (compound 6) was obtained in 25—35% yield. The reaction was carried out at 25—30°. The dihydrochloride could only be isolated with water of crystallisation which it retained even after intensive drying in vacuo. It melted at 134-138° (Found: C, 60·4; H, 11·8; N, 6·8; Cl, 17·0. $C_{21}H_{46}N_{2}$, 2HCl, $H_{2}O$ requires C, 60·4; H, 12·0; N, 6·7; Cl, 17·0%). The dipicrate, crystallised from benzene-ethyl alcohol, had m. p. 151—153° (Found: C, 50·3; H, 6·7; N, 13·8. $C_{33}H_{52}O_{14}N_{5}$ requires C, 50·5; H, 6·6; N, 14·2%). 5: 10-Diaminotetradecane hydrochloride (compound 7) was obtained in 60% yield, the reaction being carried out at 25—30°. The *dipicrate*, crystallised from water, had m. p. 205—206° (Found: C, 45·8; H, 5·7; N, 16·5. C₂₆H₃₈O₁₄N₈ requires C, 45·4; H, 5·5; N, 16·3%). 6: 11-Diaminohexadecane hydrochloride (compound 8) was obtained in 60% yield, the reaction being 6:11-Diaminonexadecane hydrochloride (compound 8) was obtained in 60% yield, the feaction being carried out at 25—30°. The dipicrate, crystallised from benzene-ethyl alcohol, had m. p. 155—158° (Found: C, 46·7; H, 5·7; N, 14·6. C₂₈H₄₂O₁₄N₈ requires C, 47·0; H, 5·9; N, 15·7%). 5: 10-Diamino-2: 13-dimethyltetradecane hydrochloride (compound 9) was obtained in 76% yield, the reaction being carried out at 25—30°. The dipicrate, crystallised from benzene-ethyl alcohol, had m. p. 205° (decomp.) (Found: C, 47·5; H, 5·8; N, 14·8. C₂₈H₄₂O₁₄N₈ requires C, 47·0; H, 5·9; N, 15·7%). 7: 12-Diamino-octadecane (compound 10) was obtained as the picrate in 75—80% yield, the reaction being carried out at 25—30°. The dipicrate crystallised from benzene-ethyl alcohol, had m. p. 176—180° being carried out at 25—30°. The dipicrate, crystallised from benzene-ethyl alcohol, had m. p. 176—180° (Found: C, 48.9; H, 6.1; N, 15.1. $C_{30}H_{46}O_{14}N_8$ requires C, 48.5; H, 6.2; N, 15.1%). 7:12-Diamino-5:14-diethyloctadecane hydrochloride (compound 11) was obtained in 70—87% yield, the reaction being carried out at 30—35°. The dipicrate, crystallised from benzene-ethyl alcohol, had m. p. 157—159° (Found: C, 51·1; H, 6·6; N, 14·0. C₃₄H₅₄O₁₄N₈ requires C, 51·1; H, 6·8; N, 14·0%). The dihydrochloride was prepared in benzene-carbon tetrachloride (Found: C, 64·1; H, 11·5; N, 6·70°). 14.0%). The dihydrochloride was prepared in benzene—carbon tetracinoride (round . C, 04.1, 11.1.0, N, 6.6. C₂₂H₄₈N₂,2HCl requires C, 63.9; H, 12.1; N, 6.7%). 5:11-Diaminopentadecane hydrochloride (compound 12) was obtained in 79% yield, the reaction being carried out at 25—30° The dipicrate, crystallised from aqueous ethyl alcohol, had m. p. 198—199° (Found: C, 46.3; H, 5.9; N, 15.8. C₂₇H₄₀O₁₄N₈ requires C, 46.3; H, 5.7; N, 16.0%). 4:10-Diamino-2:12-dimethyltridecane hydrochloride (compound 13) was obtained in 50—55% yield, the reaction being carried out at 20—25°. The dipicrate, crystallised from water, had m. p. 194—10° (Found: C, 46.5; H, 5.7; N, 16.0%). yield, the reaction being carried out at 20—25. The arphirate, crystalised from water, had in p. 187—185° (Found: C, 46·5; H, 5·7; N, 16·10 %). 7: 13-Diaminononadecane (compound 14) was obtained as the hydrochloride (m. p. 188—189°) in 80% yield, the reaction being carried out at 20—25°. The dipicrate, crystallised from benzene—ethyl alcohol, had m. p. 157—159° (Found: C, 49·8; H, 6·1; N, 14·4. C₃₁H₄₈O₁₄N₈ requires C, 49·2; H, 6·3; N, 14·8%). Our thanks are proffered to the Medical Research Council, to Imperial Chemical Industries Limited and to the Hyderabad State Scholarship Committee, for grants, and to Dr. J. D. Fulton, of the National Institute for Medical Research, for the biological tests. University of London. Bedford College. [Received, April 11th, 1950.]