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212. Some Considerations on the Strengths of Hybrid Bonds in 
Excited States of the Hydrogen Molecule-ion. 

By H. 0. PRITCHARD and H. A. SKINNER. 
The potential-energy curves for a series of defined states of H2+ are 

calculated by the molecular-orbital method. The results are compared with 
those of a similar study by Pauling and Sherman, from which the present work 
differs in that the correct H atom eigenfunctions are used in place of the 
approximate Slater eigenfunctions. 

The calculated ratio of 1 : 3 : 4 obtained by Pauling and Sherman for the 
relative strengths of s-s, $+I and sp3-sp3 bonds in the 2- and 3-quantum 
states of H2+ is not found from the results of this paper. 

Calculations on the ground state of Ha+ show that the description of this 
state as a ls-2p hybrid (2 = 1) gives a very close approximation in respect 
of the energy, but the calculated bond length is too small, and the calculated 
force constant too large. The additional variation in 2 (Dickinson) corrects 
the error in re. 

An examination of Badger’s rule (&-a cc re) applied to the calculated 
constants for the different states of H2+ shows that the rule is followed rather 
closely when states of similar bonding are considered as a class. 

AN important postulate of the quantum-mechanical theory of directed valence, as developed 
in a simple way by Slater (Phys. Review, 1931, 88, 1109) and Pauling ( J .  Amer. Chem. Soc., 1931, 
53, 1367), is that the relative “ bond-forming power ” of an orbital is proportional to the 
magnitude of the angular part of the orbital along the bond axis. According to this postulate, 
the “ bond-forming powers ” of s-, p-, and sp3-orbitals of a given atom stand in the ratio 
1 : @ : 2, corresponding to a 1 : 3 : 4 ratio between the strengths of s-s, $+I, and sp3-sp3 bonds 
formed by the atom. In their paper “ A Quantitative Discussion of Bond Orbitals,” Pauling 
and Sherman ( J .  Amer. C h e w  SOC., 1937, 59, 1450) sought to verify this simple postulate by a 
calculation (using the method of molecular orbitals) of the strengths of the 1-electron bond in 
various hypothetical states of the H2+ molecule-ion. They obtained the ratio 1 : 2.7 : 4.1 for 
the order of the strengths of the 2-quantum s-s, P-P, and sp3-sp3 bonds in H2+, in good agreement 
with the expected 1 : 3 : 4 ratio. 

The quantitative treatment of hybridization by Pauling and Sherman makes several 
simplifying assumptions. For reasons explained in their paper, Pauling and Sherman chose to  
use the approximate Slater wave-functions in constructing molecular orbitals describing excited 
states of the H2+ molecule-ion. The use of these approximate atomic orbitals required other, and 
more drastic, approximations in the subsequent evaluation of the energy integrals. 

We have thought it of interest to re-examine the problem, following essentially the procedure 
of Pauling and Sherman, except that we use the correct H atom eigenfunctions throughout, and 
thus avoid all approximations except the general one of the L.C.A.O. method, i . e . ,  the 
approximation involved in representing the molecular orbitals by some linear combination of 
atomic orbitals. 

%Quantum Slates.-We consider the 1-electron bonding in various 
hypothetical states of H2+, presumed to be derived from a proton and an excited H atom. 
Representing the molecular orbitals by 

Excited States of H2+: 

$l/ = c(+* + +J . . . . . . . . ‘ (1) 
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where +A and are similar atomic orbitals for the atoms A and B, the case of 2s-2s bonding 
requires that 4, and tPB be 2s atomic orbitals, and the case of 2p-29 bonding correspondingly 
that 4, and are 2Pe orbitals. The 2s, 2ps orbitals are known precisely for the H atom, viz. : 

. . . . . . . . . . . .  p = Z / 2 a o  (4) 

The potential-energy curves (2 = 1) calculated for s-s and p+ bonding with equations 
Curve C of the same figure represents 

The eigenfunction t,hh 

( l ) ,  (2) ,  and (3)  are shown by curves A and B of Fig. 1. 
the most stable hybrid arising from the interaction of states A and B. 
representative of the hybrid state C is given by : 

where g1 describes state A, and Curve C corresponds to values of the 
mixing coefficients a, b in equation (5 )  which minimize the energy integral It,4hHt,4hdt a t  each value 
of the internuclear separation. 

. . . . . . . .  #h=(IrlI+b$n * (5 )  
describes state B. 

A ,  2s-2s. B, 2p-2p. C ,  Best sp-hybvzd. A ,  B,  spS-Hybrids. C ,  Best sp-hybrid. 

There are both qualitative and quantitative differences between the curves in Fig. 1 and the 
corresponding curves calculated by Pauling and Sherman. The numerical differences- 
expressed in terms of the calculated dissociation energies D,, and equilibrium distances re- 
are summarized in Table I. The D, values are measured in units @/Za, (&/2ao = ionization 
potential of normal H atom), and the re values are in atomic units (z.e., units of a, = Bohr 
radius = 0.529 A.) .  

TABLE I. 
Calculated constants in excited states of H,+. 

Bond. D, (this paper) .  ye. D, (P. and S . ) .  Y,. 

2s-2s. ............................................... 0.0207 10.72 0.040 7.8 
2p-2$ ............................................. 0.1094 4.58 0.108 4.6 
Best s-p hybrid ................................. 0.1272 4.10 0.170 4.72 

The qualitative differences between the curves in Fig. 1 and the PaulingSlater curves are 
The differences originate in the nodeless 

Thus 
most apparent in case of curve C and its counterpart. 
character of the Slater 2s atomic orbital, compared with the nodal function (equation 2).  
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the Pauling-Sherman analogue of curve C corresponds at all distances to positive values for the 
ratio ajb of the mixing coefficients a, b of equation (5 ) ,  whereas curve C reflects a reversal in 
sign of a/b in the region t = 3.7 (1 = ZR/na,). 

In this we have plotted energy 
for the @-bonded H2+ molecule. 

where @f is a hybrid atomic orbital, 

The point is perhaps emphasized more clearly by Fig. 2. 
These are the states described by the molecular orbital 

. . . . . . . . .  #,pl = C(@Afl + #f) 

4 3  

(6) 

(7) +r = &$: & y b f ;  . . . . . . . . . .  
Curve A results from use of the positive sign in (7), and curve B from that of the negative sign. 
Curve C, representing the best s+ admixture, is the same as curve C of Fig. 1.  

found that the sp3-hybrid (positive 
sign) closely approximates the best bonding attainable from s+ mixing. This is not the case 
when the true c#:, & are used, for neither of the curves A and B of Fig. 2 corresponds to binding 

Pauling and Sherman, using Slater 2s functions for +iJ 

FIG. 3.  
3-Quantum States of H,+ [Hf + H (3s ,  3p, 3 d ) l .  

FIG. 4. 
3-Quantum States of H,+ [H+ + H (3s ,  3p,  3d)l. 

'2 3 4 5 6 7 8 9 
t = ZR/na,. 

a, 3s-3s. b, 3 p 3 p .  c ,  3d-3d. d ,  Best spd-hybrid. e ,  sd-Hybrid. f, sp-Hybrid. g, pd-Hybvid. 

of comparable firmness to that shown in curve C ; only at large internuclear separations does 
curve A begin to resemble curve C. 

Excited States of H2+ : 3-Quantum States.-In this section, the calculations are extended to 
the 3-quantum states of H2+, covering the bonding types s-s, p+, d-d, and the hybrid admixtures 
sp-, sd-, pd-, and spd-. The eigenfunctions of the 3-quantum states of the H atom were used 
in the following form : 

. . . . . .  +:= J<.(l  - 2 y ~ A +  gFAa)e-vA (8) 

- 
. . . . . . .  +? = 42. rA2 (cosz 0, - k)e-rA ( 10) 

y = 2 / 3 ~ , .  ' (11) . . . . . . . . . . . .  
The calculated potential-energy curves (2 = 1)  for the s-s, p-p, and d-d bonded states are 

The curve d in this same figure represents the best bonding shown 3n curves a, b,  and c of Fig. 3. 
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attainable by spd-hybridization. The molecular constants of these states are summarized in 
Table 11, and compared with the values calculated by Pauling and Sherman on the basis of the 
Slater approximations to equations (S), (9), and (10). 

Curves representing the best hybrid states attainable from sp-, sd-, and pd-mixing are shown 
separately in Fig. 4. 

The Ground-state of H,+: ls-2p Hybridization.-It is well known that the binding in the 
ground state of the H,+ ion is not adequately described in terms of ls-1s bonding. The potential- 

TABLE 11. 
Calculated constants in 3-quantum states of H,+. 

Bonding. 
3s-3s .................................... 
3p-3p .................................... 
3d-3d .................................... 
@-Hybrid .............................. 
sd-Hybrid .............................. 
pd-Hybrid .............................. 
spd-H ybrid .............................. 

De re De re 
(this paper). (P. and S.). 

0.00765 24-73 0.028 16.0 
0.0254 18.52 0-074 10.5 
0.0453 12-22 - - 
0.0264 14.33 0.12 11.0 
0.0453 12-22 - - 
0.0490 11.82 - - 
0-0501 11.92 - - 

energy curve for the ls-1s type of bonding (2 = 1) is shown in curve X of Fig. 6,  and represents 
a form of bonding appreciably weaker than exists in the actual molecule. Curve X shows a 

FIG. 5. 

H+ + H(1s). X ,  ls-1s. Y = ls-2p-Hybrid. 

dissociation energy only 63% of the experimental 
value. The calculated dissociation energy can be 
raised to 80% of the true value by varying the 
parameter 2 (Finkelstein and Horwiotz, 2. Physik, 
1928, 48, 118) and raised still further to 97%, by 
simultaneously varying 2 and using hybrid ls-2p 
orbitals (Dickinson, J .  Chem. Phys., 1933, I, 317). 
The curve Y of Fig. 5 is calculated for the best 
ls-2p hybrid, without, however, making any 
variation in 2 from the value 2 = 1. It leads to a 
dissociation energy almost equal to that obtained 
by Dickinson. 

These calculations suggest that the most effective 
single addition to the ls-1s description of the 
bonding in the ground state of H2+ is attained by 
the hybridization of the 1s with the 2p, atomic 
orbitals, although there is a very large energy 
separation ( 10.2 ev.) between these orbitals. 

In case of the ground state of the H, molecule, 
the calculations of Rosen (Phys. Review, 1931, 38, 
2099) show that a mixing of 1s and 2p, orbitals 
leads to a significant increase in the calculated 
energy, but here variation in the parameter 2 is 
more effective per se than is the polarization of 
the ls-orbitals. By simultaneous variation in 2, 
and mixing of ls-2pZ orbitals, Rosen arrived at  a 
dissociation energy approaching 85 yo of the 

experimental value. I t  is interesting, however, that, a t  internuclear separations comparable 
with those near the equilibrium separation in H2+, Rosen finds that the effect of hybridization 
asserts itself as the dominant factor in raising the energy relative to that of the ls-1s bonded 
molecule. 

The very significant contribution of the 2p, orbitals to the bonding in H2+, and the lesser 
but nevertheless important contribution in H,, should be stressed. The relatively large energy 
separation of the 1s and 2p atomic orbitals of the H atom is seen to present a barrier insufficient 
to prevent an appreciable mixing of these orbitals when bond formation occurs. As a 
consequence, it is reasonable to expect that hybridization occurs more frequently than not, for 
in general the energy separations between neighbouring orbitals in atoms other than hydrogen 
are not larger than in the H atom itself. 
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DISCUSSION. 

From the data listed in Table I and 11, i t  is apparent that use of Slater functions to describe 
excited states of H,+ (coupled with the approximations attached thereto) leads to results markedly 
different quantitatively from those of this paper. For example, if we confine attention to the 
relative strengths of different bond types, we find quite different ratios from those of Pauling and 
Sherman, viz. : 

(a) 2-Quantum states, ss : pp : best sp-hybrid = 1 : 5.3 : 6.2, compared with 1 : 2.7 : 4.1 
(Pauling) . 

(b) 3-Quantum states, ss : pp : best sp-hybrid = 1 : 3.35 : 3.5, compared with 1 : 2.6, : 4.0, 
(Pauling) . 

The differences in these ratios are more serious than in a purely quantitative sense, for, 
whereas Pauling and Sherman found an approximate constancy in the ratios of ss : pp : sp3- 
hybrid in passing from the 2- to the 3-quantum states, our ratios do not show this type of 
behaviour. We hesitate to conclude that, in the general case, the strength of a hybrid bond 
stands neither in a simple nor in a constant ratio to the strengths of its parent bonds ; but, on 
the other hand, i t  seems to us that the assumption of a simple 1 : 3 : 4 ratio for the ratio 
ss : pp : sp3-sp3 bond strengths has little real justification. 

A further point of departure from Pauling and Sherman is seen in the comparison of the 
calculated bond lengths (re). The calculations of this paper show that the hybrid bonds are 
both stronger and shorter than their parents-eg., in the %quantum states re of the best hybrid 
is noticeably shorter than re of the s-s or p-p bonded states. Pauling and Sherman, on the 
contrary, found the re of the hybrids to lie in between the re of the parent bonds. Indeed, 
Pauling and Sherman concluded in their paper that “ there is no simple inter-relation between 
bond-energy and internuclear distance.” The calculations of this paper, whilst showing no 
very sharp dependence of dissociation energy on bond length, reveal that there exists a rough 
relationship in the sense that the shorter the bond, the stronger it is. 

There are some interesting relations between the calculated re values and the force constants 
(k , )  of the various states of the H,+ molecule-ion. The k,  values were obtained by fitting 
Morse curves through three points calculated in the vicinity of the equilibrium position, as 
described by Rosen (Zoc. cit.) and Coulson (Trans.  Faraday SOC., 1937, 33, 1485). These are 
given in Table 111, together with the calculated re and D,, expressed now in the more conventional 
units of A. and electron-volts. 

TABLE 111. 
Calculated constants of H,+ . 

Re (dynes x 
Bond. v, (A.) .  D, (ev.). 10s/cm.). 

lss ......... 1.318 1.755 0.979 
~ S S  ......... 5-67 0.2797 0-0172 
~ S S  ......... 13.09 0-1035 0.00148 
2pp ...... 2-42 1-480 0.0943 
3pp ...... 9.80 0.343 0.00 168 
3dd ......... 6.467 0.613 0.0205 

k,(dynes x 
Bond. v, (A) .  De (ev.). 1O6/Cm.). 

1 ~ 2 9  ...... 0.979 2.706 2.152 

3 ~ 3 p  ...... 7.583 0.358 0.0040 
3p3d ...... 6.255 0.663 0.0197 
3~3p3d ... 6-308 0.678 0.0161 

...... 2 ~ 2 p  2.170 1-721 0-208 

ex+, (Ob.) 1-06 2.77 1-566 

The relation of k ,  to re is shown in the plot of k-3 against Y, (Badger’s rule) in Fig. 6. The 
straight lines in Fig. 6 are drawn through points corresponding to bonds of similar description- 
e.g., curve A covers the lss-, 2ss-, and 3ss-bonded states. Whilst it is perhaps incautious 
to draw conclusions from our limited data, Fig. 6 gives some ground for examining the Badger 
rule in series of similarly-bonded molecules-e.g., the series of alkali-metal hydrides. This 
point is taken up more fully in the Appendix. 

The present work was undertaken with the purpose of establishing more firmly Pauling and 
Sherman’s semi-empirical relation between the strengths of hybrid and parent bonds. In this 
respect, the results obtained are disappointing, in that they suggest that hybrid bonding requires 
individual treatment in each specific case, and that simple generalizations are at best 
approximations. Some useful features that emerge from the present work may have a wider 
significance than in the particular and exceptional case of the H,+ molecule. For example, the 
considerable effect arising from the interaction of the states lss and 2pp in H,+ suggests that 
the simple description of many chemical bonds in terms of a single bond type-e.g., s-s-, p+, 
s-p-bonds-may require revision in terms of hybrid descriptions. Recent experimental evidence 
(Townes and Dailey, J .  Chem. Physics, 1949, 17, 782) and some theoretical considerations by 
Moffitt (Proc. Roy. SOC., 1950, A ,  202, 534) point in the same direction. 
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APPENDIX. 
The empirical relation between force constant (k,) and equilibrium bond length noticed by 

Badger (J. Chem. Physics, 1934, 2, 128) is expressed by the equation : 

FIG. 6 .  
Plot of k-* against re. Badger's rule. 

I 1 
0 5 I0 I 

r e ,  A. 
A ,  ss-Borzds. B,  sp-Hybrid bonds. C ,  pp-Bonds. 

. . . . . . ( i )  

FIG. 7. 
Badger's rule for hydrides of 1st and 2nd period. 

& M  

2.0 - 

";\" * *" 
I-5 - 

I I I I I 
PO 1.2 1.4 7.6 P 8  

r e ,  A- 
0 Well-established exfierimental data. 

Less-well-established experimental data. 

where dij, Cij are constants characteristic of diatomic molecules made up from one element in 
the i-th row and one in the j-th row of the periodic table. In favourable cases-as, e.g., in the 
ground states of the hydrides of the 1st- and 2nd-row elements (Fig. 7)-the Badger rule holds 
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good with an accuracy of the order 1%. In  Fig. 7, separate lines have been drawn through the 
points H F  + BeH, and BeH+ ,-> LiH (row l), and similarly for the points HC1- MgH, 
MgH+ + NaH (row 2), in order to discriminate between bonding which in first-order 

A ,  LiH, NaH, KH, RbH, CsH. 
B, HF, HCl, HBr, HI. 
C, CO, 50, GeO, SnO, PbO. 
D, BF, BCl, BBr. 

FIG. 8. 
Badgm’s rule applied to families. 

0 

E, BCl, AlCl, GaCl, InCl. 
F,  TlCl, TlBr, T1I. 
G, BeH, MgH, CaH, SrH, BaH. 

approximation may be described as ps (HF + BeH ; HCI + MgH), or as s-s (BeH+ + 
LiH ; MgH+ + NaH). 

It is not our purpose to examine Badger’s rule in the form in which it was originally proposed, 
but rather to apply i t  to series of similarly-bonded molecules, Such a series is provided by the 

FIG. 9. 
Badger’s rule for 1C,+ and ‘II, states of Li,, Na,, and K,. 

a,  12; States. b, ‘It, States. 

alkali-metal hydrides LiH, NaH, KH, RbH, CsH, in which the variation is in the principal 
quantum number of the valence electrons, comparing in this sense with the variation in passing 
from the lss- 2ss+ 3ss states of Ha+. Fig. 8 shows some examples of this mode of 
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application of Badger’s rule. The examples shown do not exhaust the possibilities of the 
method, and several other families not shown give good linear plots-e.g., [0,, SO, S,, Se,, Te,] ; 
[CS, SiS, PbS] ; [Cl,, Br,, I,] ; [P,, PN, N,]. 

Some significant deviations from linearity in a series may be caused by abrupt changes in 
bond character along a given series. For example, although the alkali-metal hydrides form a 
good linear family (curve A ) ,  the sub-group B hydrides (CuH, AgH, AuH) give a scattered set of 
points lying well removed from curve A .  We think i t  possible that the difference between the A 
and the B sub-groups arises from the low-lying ,D states of B sub-group metals ( 2 0  in Cu ; 3d@, 
4 9 )  giving weight to a measure of d-orbital bonding in the case of CuH, AgH, and AuH. 
Similarly, the break in the curve G (BeH, MgH-CaH, SrH, BaH) may reflect the onset of some 
degree of d-bonding at CaH-since the atoms Ca, Sr, Ba, possess relatively low-lying 3 0  states. 

Although the halogens Cl,, Br,, I,, IC1, ClBr, form a good example of a linear family, F, and 
F-containing interhalogens (FC1, FBr) lie off the main line. We can advance no good reason 
at the present for this deviation from linearity on the part of F-containing halogen compounds, 
but itmaybe significant in this respect that the dissociation energy of F, is low (Evans, Warhurst, 
and Whittle, J., 1950, 1524) by comparison with an extrapolation based on the dissociation 
energies observed for Cl,, Br,, and I,. 

A neat illustration of the point that in making a Badger’s rule plot for a family of compounds, 
the family should be restricted-in the sense that the bond character remains similar along the 
family series, or, alternatively, suffers no abrupt change-is provided by Fig. 9. This shows 
the plot for Liz, Na,, and K, in (a)  the ground (lZ;) states, and (b)  the excited ( I l l u )  states. We 
note that identical states give good linearity, but the two sets of data are separate and require 
two lines for their description. 
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