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573. The Thermodynamics of Dissociating Solvents. 
By K. W. DUNNING and W. J. DUNNING. 

The thermodynamic properties of solvents which dissociate are examined. 
It is shown that if a certain species is present in a conventionally pure solvent 
as a result of dissociation, then no matter how complicated the equilibria may 
be which involve that species, (&L, /~wz) ,  of the solvent is zero. Other 
consequences of the dissociation are discussed. 

IT is well known that if the two components of a binary system form a chemical compound 
in both the liquid and the solid state, then the melting point-composition curve shows a 
maximum at the stoicheiometric point of the compound and that this maximum is more or 
less rounded, the greater or smaller the degree of dissociation of the compound. Theoretical 
consideration (H. A. Lorentz in Stortenbeker, 2. fllzysikal. Chew., 1892, 10, 183; Lewis, 
ibid., 1908, 61, 129; Van Laar, ibid., 1909, 66, 197) has been confined to the discussion of 
one simple equilibrium between the two components. Recent interest in this topic 
(Dunning and Nutt, Trans.  Faraday SOC., 1951, 47, 15; Gillespie, J . ,  1950, 2493; Gillespie, 
Hughes, and Ingold, J. ,  1950, 2552) presents the converse problem. A solvent is suspected 
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of dissociation. The dissociation products are not in the first instance known and they may 
be interrelated by any number of equilibria. Without a detailed knowledge of the products 
and the equilibria involved, the former methods of proof are inapplicable. A proof is 
offered which depends only on the fact that  if a certain species is present in the 
conventionally pure solvent, then (ap/am), of that species is not infinite. This 
appears in the second part of the paper. I n  the first part, at the suggestion of 
Professor E. A. Guggenheim, the approaches of Lewis and of Van Laar are extended to 
more complicated systems and not only is the proof more satisfactory, but it can be readily 
extended to any dissociating solvent, provided the products and equilibria are known. 
I t  is limited to slightly dissociated solvents. 

1. In  the first procedure, it is convenient to consider, as an example, the following 
equilibria in nitric acid : 

DunniPzg and Dun fling : 

. . . . .  2HNO, NO,+ + H,O + NO,- (1) 
H20 + HNO, H30+ + NO3- (2) . . . . . . .  

Quantities referring to  the species NO2+, H20, NO3-, and H,Ot will be designated by the 
subscripts n+, h, n-, and h+. In  the same way, % is the number of moles of the species 
HNO, which are present and is distinct from no, the number of moles of conventional nitric 
acid originally present. Suppose now that n, moles of water are added to the no moles of 
nitric acid, the following relations apply during the additions ; 

. . .  n, + 2%h + 3nh+ = ?z0 + 2?2, (Hydrogen-atom balance) (3) 
(4) 
(5) 
(6) 
(7) 

. . . . .  ~b + f in+ + nn-  = ?to (Nitrogen-atom balance) 
. . . . . . .  PZn+ - fin- + ?zh+ = 0 (Charge balance) 

. . .  2dps = dpR+ + dph + dpR- (Equilibrium 1) 
. . . . .  dph + dps = dph-i- + dpn- (Equilibrium 2) 

n8dps + fin+dpn+ + nn-dp.n- + nhdph + fih+dph+ = 0 (Gibbs-Duhem) . (8) 
By putting m,+ = nn+/lzs: and dpn+ = log ?nni-, etc., we obtain from (8), 

. . . .  dp, + RT(d?n,+ + dlnh + d%- + dlPzh+) = 0 (9) 
from (6), 

and from (7),  

Equations (3) and (4) give 
. . . .  -dmn+ + 2dmh - dmn- + 3dtnh+ - 2dm, = 0 (12) 

and (5) gives dm,+ - d%- + dlnh+ = 0 . . . . . . .  (13) 
The solution of these is 

dp.,jdm, = -2RT?nn-?n,/('mai %- + 4mh+?n,+ + mn-PEh+ + ?%+??th + mIl -vzh  + 
?nhmh+ + 12mn+?nn-~nht + 2?nu+snhm~+ + 6mn+mn-?nh + fnn-ffihmh+) (14) 

As inN approaches zero, mn- etc. all approach their values in the pure dissociated acid. 
Since these values are all finite and positive at  ?nFV = 0, it is clear that 

. . . . . .  dp,/dm, --+ Oas ?nnr -+ 0 (15) 

dp,/dmm7 = -2RT (16) 

By substituting for wz,l+ and mI,-, it is easily shown that equation (14) reduces to 
. . . . . . . .  

when excess of water is present. Under these conditions, the change in chemical potential 
of the solvent with change in the concentration of added solute is that of a solute which 
dissociates into two ions. 

The relationships (15) and (16) may be used to obtain the dependence of the osmotic 
properties of these solvents and solutes on the amount of solute added. Hence, it is found 
from (15) that, if a solvent dissociates, then the addition of one of the dissociation products 
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(water here) does not initially alter the freezing point. From (16) i t  is clear that at 
sufficiently high concentrations of this solute, the freezing point curve follows that 
predicted from van't Hoff's argument for i = 2. 

In  this no explicit calculations 
are made in which a knowledge of the equilibria present is necessary; the argument is 
therefore more general, and only the fact that  equilibria are present is used. 

We shall assume that a solvent (nitric acid) dissociates into certain species (H,O, 
KOB+, etc.). If t o  no moles of conventional nitric acid a small amount nw moles of water 
is added, then since the Gibbs free energy G of the system is a homogeneous function of the 
first degree in no and nw, we obtain 

Equation (17) can also be obtained from (8) by using ( 3 ) ,  (4), and (5) to eliminate I&*,+, nu-, 
and ?zh. 

2. The same conclusions follow from another argument. 

?t,d!*s + n,d[*h = 0 . . . . . . . . (17) 

There results the equation 
ns(2dj~s - dp,+ - d ! ~ l ,  -- d~.n-) + q ~ ~ ~ + ( - d p ~ l ~  - 3dp11 + dvn- + 2dpht) $- 

?Z,o(diln+ + dUh + dpn+) -+ 2fiRrdph = 0 

and comparison of the parenthetical terms with (6) and (7) then gives (17). 
Equation (17) is the Gibbs-Duhem equation in a form which would be used were one 

unaware of the dissociative process, only the suffises indicate that a dissociation is under 
consideration. Now 

(18) 

and by using (17) 

By putting 

where the subscript 0 designates the values in pure nitric acid when nn = 0, we now have 

The Taylor expansion (20) is permissible only when the solvent dissociates and the expanded 
quantity (&Lh/a%w in this case) refers to one of the dissociation products ; on]!- in this case 
are the derivatives a t  n, = 0 finite. 

If we put p-11 = oph + RT log (fhtbh/%&) . . . . . . . (23) 
with fh an activity coescient and o v h  the chemical potential of u'ater in a solution of unit 
activity, then 

I t  is necessary to comment that an alternative expression to (23) might have been 
chosen ; for example, 

However, since the chemical potential of water is finite in pure nitric acid, this means that 
f w  must become infinite when n,,,, the quantity of added water, becomes zero. This is 
inconvenient, and it is therefore better to choose (23)  in whichfi, will approach unity as nh 
becomes small; of course fh will probably still not be unity when ?zw = 0, unless 0p.h is 
chosen suitably. If o!Lh were so chosen, fil might then be different from unity in solutions 
where ?ih < (%h)o, for example, in solutions where the dissociation has been suppressed by 
addition of dinitrogen pentoxide, but this is not a serious disadvantage. In  other words, it 
is not possible to use an infinitely dilute solution of water in nitric acid as the norm, as is 

[Ill = 0 p . W  + RT log [f\\.n$r.'I(Ilo $- n,.)] . . . . . (25) 
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customary.* 
f h  = 1 when nZlv = 0. 
finite, but in most cases it will be small. 

We will therefore use (23) as the expression for jlh and choose oPh so that 
With this choice it is to be expected that (8 1 0 , a f ~ / ~ ~ , ) ~  will be 

Equation (24) can then be replaced by . .  the approximation 

By referring now to (22), it is seen that (i3ps/8nLv)o will be zero. The addition of small 
traces of water to pure nitric acid will not alter its chemical potential, whilst (a2ps/a~tw2)o, 
the curvature, will be given by equation (26) ; that is 

. . . . . . . .  (ap,~an,), = 0 (27) 
and 

To assess the significance of (28) the influence of the terms on the right may be examined; 
if the degree of dissociation is small (l/?zh),, will be large and (&,h/8&)0 will be just less than 
unity. On the other 
hand, if the degree of dissociation is large (l/fi~h)~ will be smaller and (2lz,/2n,), will be much 
less than unity, and so the curvature will be small. 

If now, instead of water, ?zP moles of dinitrogen pentoxide had been added to the pure 
nitric acid, instead of (17) there ~ o u l d  be obtained 

on the assumption that the p?nto.uidn, dissoziates into NO2+ and X03- ions. 

Hence the curvature of the pS-?cw function at  nJzlv = 0 will be large. 

nodps + np(dpn+ + dpll-) = 0 . . . . . .  (29j 
Whence, 

If complete ionization of the dinitrogen pentoxide is assumed, the curvature is given by 

If only the simple dissociation (1) is considered, (nn+)o = (nm-)o = (%h)o ; comparison of 
(31) with (24) then shows that the curvature of the ps-np function at  np = 0 will be about 
twice that of the ps-a.w curve at  n,v = 0. The additional equilibrium (2) complicates the 
issue, but there is another clue to the dissociation of the pentoxide. When the amount of 
added water or dinitrogen pentoxide greatly exceeds the amounts of the species present in 
the pure acid, that is, when 

then 
and equations (17) and (29) become 

. . . . . .  nz,aps/anh + nhaph/anh = 0 (32) 
. . . .  and 2120aps/a.12,- + n,-a(pn+ + p,-)/2n,' = o (33) 

These are the equations of the asymptotes which the ps-~zw or ps-np curves approach as ns or 
n, increases, and they are the conventional relations for non-dissociating and binary 
dissociating solutes, respectively. By examining the limiting behaviour for relatively 
large additions of dinitrogen pentoxide, a decision can be made regarding dissociation. 
Should there be additional equilibria such as 

2HN0, + N,O,+H,O . . . .  . . .  (34) 
. . . . . .  and N20, NO,+ +NO,- (35) 

the disentangling becomes more difi-cult. The experimental data would have to be accurate 
to the third order of differentiability, and deviations due to the non-ideality would become 
significant. 

* The best procedure for detailed calculations would be to refer the chemical potentials of water in 
the solutions and in the pure acid to  the pW-O of the water vapour. This procedure would, however, 
complicate the present discussion. 
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Considering now the addition of an inert solute C to the pure nitric acid, it will be clear 
by analogy with the preceding discussion that a normal behaliour is to be expected, since 
for an inert solute i3pc/8ufc becomes infinite as qzc approaches zero. Hence in such solutions 
pS will decrease linearly with 

Let us consider finally the addition of a solute such as potassium nitrate, which 
dissociates into one ion, K , which is inert, a ~ i d  another, NO,-, \vhicli takes part in the 
equilibrium. For this case 

and it can be shown that 

in the manner usual for dilute solutions. 

l l o  ?ps’a?L, -t 721% q p k  f p,,-) ;;1321, = 0 . . . . . (36) 

Expression (37) indicates that thc limiting slope of the ps--?ik curve for a solute such as 
potassium nitrate is finite, and the tangent a t  qzk = 0 has a slope equal to that of a normal 
solute. In other words, at  thc origin the NO,- ion is ineffective and only the I(+ ion has 
influence. Hence, over a limited range of concentration, potassium nitrate would uppear 
to  be undissociated and onlj- a t  higher concentrations would it behave as a dissociated 
electrolyte . 

These results show that, lion.e\ er complicated the dissociation of a solvent niay be, the 
addition of one of the dissociation products does not initially alter the chemical potential 
of the solvent. The curvature at  the origin gives some indication of the amount of that  
species already present as a result of the dissociation. This curvature is enhanced if the 
addedmaterial itself dissociates on addition and all its products take part in the dissociation 
of the solvent. J ihen the added material dissociates into x and y particles, of which x 
take part in the dissociation of the solvent and y do not, then the initial slope of the 
p,-concentration curve is -yn?’. 

For higher concentrations of added material, the dissociation of the solvent is suppressed 
and the rate of change in chemical potential with concentration approaches normal 
Ixhaviour. 

Our thanks are due to Professor E. A. Guggenheirn, F.R.S., for helpful discussion. 
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