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551. Excited States of Acetylene. Part III? Theoretical Methods for 

By C. K. INGOLD and G. W. KING. 
Rules of selection and intensity are developed in a sufficiently general 

form to permit discussion of coarse and fine structures, and also of intensity 
relations, in transitions of normal acetylene to non-linear but planar 
excited states. 

(1) CONVENTIONS AND APPROXIMATIONS 

(a) Co-ordinate Axes.-In order to  specify the motion of, and within, a polyatomic 
molecule, apart from its translatory motion, with which we shall have no concern, we need 
two sets of Cartesian axes, an " external " set, X ,  Y ,  2, which may be taken as having its 
origin at the centre of mass of the molecule, but must have its axial directions fixed in space, 
and an " internal " set, x ,  y,  x, which also may be given an origin at  the centre of mass but 
must have its axial directions fixed in the molecule. Three Eulerian angles will describe 
the instantaneous orientation of the internal set relatively to the external set, and, in the 
wave function of the molecule, will be independent variables of special significance for 
rotation, and for the directional behaviour in space of the total angular momentum. Co- 
ordinates taken relatively to the internal axes, or linear combinations of such co-ordinates, 
will specify instantaneous electron positions, and the nuclear displacements ; and, in the 
wave function, such co-ordinates will enter as independent variables important for the 
description of the relative movements of the electrons and nuclei, and of the directional 
distribution of angular momentum, whether due to rotation of the molecule, or to relative 
movements of its constituent particles, or to the spins of the latter. 

It is convenient to take the internal axes, x, y ,  z, as coincident with the principal axes 
of inertia, a, b, c, traditionally so labelled that the corresponding principal moments of 
inertia stand in the order Ia<Ib<Ic. By deciding to maintain the same one-to-one 
correlation between x, y ,  z and a, b, c, for the three models of acetylene that we shall be 
discussing, we can simplify notation by dropping the former labels, and employing the 
latter indiscriminately for internal co-ordinate axes and for the coincident axes of inertia. 
Indeed we shall use the same labels for axes of a third kind, viz., axes of symmetry, since 
these, in so far as they are present at all, always coincide with axes of inertia, and therefore 
with our chosen internal co-ordinate axes. For the three acetylene models with which we 
shall be dealing, the internal axes are taken as indicated in Fig. 2. 

The Dooh model is a prolate symmetric top : two of its principal moments of inertia are 
equal, while the unique one is the smallest of the three, and, indeed, would be zero but for 
zero-point energy, and the finite mass of the electrons : I ,  << Ib = I,. The C a  and CzV 
models are asymmetric tops, but can be described as prolate near-symmetric tops: 
Ia < Ib < I,. This arises from the considerably smaller mass of hydrogen than of carbon 
nuclei, taking into account also that, for such planar models, the relation I ,  + It, = I ,  will 
hold, apart from small deviations due to  zero-point energy and electronic mass. 

In  the Dooh model, a is an infinity-fold axis, and perpendicular axes are two-fold axes of 
symmetry. In the other models, a is not a symmetry axis, but in the C2h model c, and 
in the These symmetry properties are indicated in Fig. 2 
by the symbols in brackets. 

(b) Approximate Factorisation of Wave Functions.--It is a familiar idea that, in most 
circumstances, electronic orbital motion, nuclear vibration, and molecular rotation are 
nearly independent forms of motion, and that therefore, as an approximation, a wave- 
function #, which for energy E satisfies the wave equation of the molecule 

Hy5 = Ey5 
can be represented as the product of electronic, vibrational, and rotational factors satisfying 
the separate wave equations, 

Analysis of Near-ultra-violet Band-systems of Acetylenes. 

model b, are two-fold axes. 

H d e  = Ee#e Ht.#u = Et#u H r # r  = Ep$r 

* Part 11, preceding paper. 
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in the construction of which the original energy-operator and energy are treated as sums, 
and split into their component terms : 

#=Z/J&i#r H =  He+ H,+ HT E = Ee + E,+ E ,  . - - (1 )  

In  discussing the symmetry properties of Z/J and its factors, it is often convenient, 
following Mulliken, to group the first two factors together, calling their product the 
" vibronic " wave function &, whose energy E,, includes electronic and vibrational but 
not rotational energy 

. . . . . . .  #eu = Z/Je$, E,, = E, + E ,  (2) 
# = #& E = Ee, + Er (3) . . . . . . .  

In this, as in any approximation, a complete representation of # should contain an 
electronic spin factor &, and a nuclear spin factor but we shall not show either 
explicitly. As to $es, we assume that Pauli's principle is satisfied, so that t,bey5es is anti- 
symmetric in the electrons; and we shall avoid discussing multiplicity by confining 

FIG. 2. Internal co-ordinate axes, principal axes of inertia, and axes of symmetry of the three iiiodels 
of acetylene. 
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attention throughout to singlet electronic states, with the result that electron spin will not 
contribute to the total angular momentum represented in the quantum number J of 
rotational states and energy levels. Accordingly, we shall simplify rotation by omitting 
the spin-multiplicity symbol throughout. As to $m, we note that its effect on hyper- 
multiplicity and thus on the statistical weights of energy levels, and on the intensities of 
individual transitions, is standard and independent of the special features of the present 
problem, so that we can introduce it when necessary without having to carry its theory in 
our formulz. 

(2) ELECTRONIC STATES AND TRANSITIONS 

(a) ClassiJication of,  and Selection Rules for, Electrmic Wave Functions.-Although we 
shall not have to discuss the explicit forms of Z/J and its approximate factors, we shall have 
to make repeated use of their symmetry properties, most, though not all, of which differ 
according to the molecular model of acetylene taken. Discussion of the factors of # will 
lead to many selection rules, which are, however, approximate, because the factorisation is 
approximate. Discussion of # itself will yield a small number of exact selection rules. 
We deal now with the electronic factor t,be, using the internal system of axes, a ,  b, c, with 
respect to which the symmetry properties of the different models differ. 

First, as to the linear, or Dcch model, the possible types of behaviour of the electronic 
wave function, under the operations to which the electronic wave equation is invariant, 
are as shown in Table 1, a multiple-purpose table, of which we need now notice only the 
left and the middle section. The latter contains the factors (" characters ") which 
multiply the different species of wave function, as a result of the operations, ZC,", C p ,  and i, 
of rotation by any angle -J+ around a, of rotation by x around b or c, and of inversion 
through the origin; and also in consequence of the operation, iC,b", of reflexion across any 
plane through a. The first column of the Table shows the labels of the symmetry species, 
chosen to correspond to  those of diatomic molecules. The four species X are non- 

6a 
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1 1 -1 1 1 -1 
1 1 -1 -1 -1  1 
1 2 ~ 0 ~ 4  0 2 2 ~ 0 ~ 4  0 
1 2 ~ 0 ~ 4  0 -2  - 2 ~ 0 ~ 4  0 
1 2 ~ 0 ~ 2 4  0 2 2 ~ 0 ~ 2 4  0 
1 2 ~ 0 ~ 2 4  0 -2 - 2 ~ 0 ~ 2 4  0 

Ingold and King : 

c,- 0 0 (R,) 
C,+ 1 0 T, 
Itg 1 1 Rk nu 1 1 Tb 
Ag 0 2 - 
Au 0 2 - 

degenerate, and devoid of electronic angular momentum about the molecular axis a 
(A = 0) : the subscripts g and zd mean symmetry and antisymmetry under operation i, 
while the superscripts + and - signify symmetry and antisymmetry for operation iCp. 
The infinitude of remaining species, n, A, etc., are each doubly degenerate, and have 1, 2, 
etc., units h , h  of electronic angular momentum about the axis a (A = 1, 2, etc.) : g and 21 

mean the same as before. 

Elec. 
C,' 

TABLE 1. 
A M  
0 -  
0 -  
0 -  
0 Me 
1 -  
1 Mbc 
2 -  
2 -  

. . .  . . .  . . . I . . .  ... ... ... . . .  . . . / . . .  ... . . .  ... 

The third column of Table 1 indicates the symmetry properties of the electric 
moment M .  Their significance is that, when $"I)' contains a term with the symmetry 
properties of M ,  then, and then only, the intensity-controlling integral J#"M$'dc will not 
vanish on account of the symmetry. Here the double prime marks the lower and the single 
the upper of the combining states. In order to  determine the symmetry properties of 
#"+' we have to multiply the characters of +'' and +', as given in Table 1, and then, using 
the products, re-read Table 1 to obtain the symmetry of the species of #"I)'. This is one of 
several purposes requiring Table 2, which shows the results (" direct products ") of this 
procedure. From the occurrences there of Xu+ (the species of Ma),  and of nu (the species 
of Mbc),  we can deduce the selection rules for transitions involving electronic oscillations 
parallel and perpendicular, respectively, to a. 

TABLE 2. Direct products of species of the model D,,,. 
Xu+ Xu- s,+ Xu- nu A, Au 

I--- 

&+ 
&- 
x u +  
XU- 

&+ &- 
XU+ 

L b +  
XU- 

&+ 
XgTXg- Ag 

n, 

These selection rules are as follows : 

} . . .  (4) 
Parallel to  a : M = O J ~ f ~ Z d , + ~ + > - ~ ~ -  
Perpendicular to a : A A =  +l,g+24 

The AA rule is general for symmetric tops, the gu rule for molecules with a centre of 
symmetry and the 

For the tram-bent or Czh model there are four species of electronic wave function, as 
shown, with their symmetry properties, in the left and the middle section of Table 3. The 
operations which serve to classify the wave functions can be taken as any two out of the 
following three, namely, C;, oa6, and i, that is, rotation by x around c, reflection across the 
plane ab, and inversion through the origin. The labels A and B mean symmetry and 
antisymmetry respectively, with respect to C;, while g and u refer, as always, to i. The 
direct products are in Table 4, and from them, by comparison with the second column of 
Tabie 3, one may find the selection rules : 

rule for linear molecules. 

( 5 )  . . . . . .  Parallel to c : A +-+ A ,  B t+ B ,  g *-+ 11 

Perpendicular to c : -4 4-+ 3, g -++ I I  
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Elec. E c2= a o b  i 
1 1 1 
1 -1 -1 

-1 -1 1 
B" M d  I 1 -1 1 -1 

A9 
A" 
B, 1 
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Vibs. No. T ,  R 
A# 3 R, 
Au 1 T* 
B9 0 R a b  
B" 2 T a b  
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c2h ozh c2, 

A9 Cg+ A, 
AU Cu- A2 

C9: B, 
BU CUT Bl 
B9 

' 2 ,  DDoh c2, 

A9 + B, IIg,  ag, . . . . 
A,  + B, A,, rg, . . . . 
A u  + Bu nu, au, . . . . 
A ,  + Bu A,, ru, . . . . 

-42 + B ,  
A ,  + B ,  
A ,  + B ,  
A2 + B ,  

For the cis-bent model C,, there are again four species of electronic wave function, 
distinguished, as Table 5 shows, by their behaviour under any two of the operations Ct, 
@, obc, that is, rotation by x about b, and reflexion across the ab plane, or across 
the bc plane. Labels A and B mean respectively symmetry and antisymmetry under C l ,  
and subscripts 1 and 2 the same under oa6. The direct products in Table 6 lead to the 
following selection rules : 

Parallel to  b : A++A,Bt-,B 1t- ,1 ,2++2 
Parallel to a : 
Parallel to c : A t3 B 1 - 2  

A - B  1 f3 1 , 2  4- 2 1 . . . .  (6) 

TABLE 5. Species of electronic nizd vibrntionnl wave funct ions of model C2,. 

C2b @ ulk 1 VT;. NO. T R 
- A ill:, 1 1 3 Tb 
Rb - 1 

-1 2 T ,  Re 
0 Tc R* 

-l I G: - 1 -1 
-1 1 

A2 
B ,  Jfea 1 1 
B, Me . 1 -1  -1 1 I B2 

=Iec* ! 7 
TABLE 6. Direct products f o r  model Czo. 

A1 A2 Bl B2 
I 

As we shall have to consider transitions between the linear ground state of acetylene 
and possible bent excited states, it is important to correlate the species of the linear model 
with those of the bent models. Only then can we follow what happens to states of a given 
species of the Dmh model when the hybridisation changes, in particular, into what species 
of states of the C a  or of the CZ, model they will go. For this purpose we determine, by 
comparison of Tables 1, 3, and 5,  for each species of the Dan model, how it behaves under 
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From the correlations in Table 7, and the selection rules already given for electronic 
transitions between states of the same model of acetylene (relations 4, 5, and 6), we are 
able to  derive selection rules for transitions between any electronic state of the straight 
model Dmh and electronic states of either bent model CU, and Czv. The procedure is to 
apply to the correlated species selection rules determined by the symmetry common to the 
models. As the symmetry of the CU, model, and of the CzU model, is totally included in 
that of the Dmoh model, the electronic selection rules here to be applied to correlated species 
are simply those of the CU, and the Cav model (relations 5 and 6). The results of these 
processes are given in Table 8. 

-I'.kBLE 8. Selection r d e s  for electronic transitions bet-zeen the Dmh model of acetyleite 
and the CU, and the CzV model. 

c2h c 2 ,  

Dmh 

&7+ 

X U -  

&- 
X U +  

(b) Species of Lower Electronic States of Acetylene as given by the Theory of Molecular 
Structure.-The electronic ground state of acetylene is known to be a singlet state of the 
Dmh model. Its electronic configuration is written below, by using, as is customary, lower- 
case letters for one-electron wave functions, that is, for orbitals. Each parenthesis 
contains the symmetry symbol of the molecular or bond orbital, which in some cases is 
followed by the quantum classification of the parent atomic orbital or orbitals. The 
symmetry of the total electronic wave function #e will be the direct product of the 
symmetries of all those one-electron wave functions which enter t,be as factors. It follows 
from the absence of odd indices, or in detail by the use of Table 2, together with the Pauli 
principle, that #e is totally symmetrical, having the species symbol (cf. Table 1) indicated 
on the right : 

K4( og)4CH(og~SP)2CC("u2p)4CC . . . . . . . %+ 
As was noted in Part I, it would seem that the lowest orbital of the Dmh model into 

which a x electron could be lifted would be one of two equivalent antibonding xg2p orbitals 
one of them diagrammatically shown in Fig. 1 at  (B).  The resulting configuration is given 
below; and from Table 2 it can be found that electronic states z,he of three species thus 
arise, as indicated on the right : 

K4(og)4CH(og2SP)2CC(x~2p)3CC(Xg2p)CC - - - XU+, XU- J AU 
Another %quantum orbital which could conceivably be entered by an electron from 

the xu shell is the antibonding counterpart, oU2sp, of the og bonding orbital. For a reason 
explained in Part I, this receiving orbital, and the resulting molecular states, are expected 
to lie considerably higher than those already considered. The configuration and symmetry 
species are as follows : 

~ 4 ( ~ g ) 4 c ~ ( ~ g ~ ~ p ) 2 c c ( ~ ~ ~ ~ ) 3 c C ( ~ ~ ~ ~ ~ ) c c  * - - * * - n, 
After this we come to 3-quantum and higher orbitals, og3s, etc., the states being 

classifiable as Rydberg states, which we need not now discuss. 
Account must be taken, however, of the possibility that two or more of the xu electrons 

might be promoted to any of the three originally unoccupied 2-quantum orbitals. The 
resulting group of states will lie higher in energy than the one-promotion group just 
discussed; but there could be overlap between the energy ranges, and hence we should 
consider a t  least the lowest set of states of the two-promotion group, namely, those given 
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by double entry into the lowest of the initially unoccupied orbitals. 
the species are as follows : 

The configuration and 

K4(ag)4CH(~g2sp)2CC(~~2fi)2CC(~g2fi)2CC - - xg’, xg-, Ag, rg  

Suppose now that the hybridisation changes, and that the hydrogen atoms go over into 
the tram-positions of the C2h model. Then one xu orbital must become uncoupled to give, 
in first approximation, two non-bonding atomic orbitals of type 2sp2, which, in second 
approximation, interact to  form two molecular orbitals, one weakly bonding bu, and the 
other weakly antibonding a,. Omitting normalisation, these combinations are as written 
below, and their symmetries follow from Table 3 by comparison with Fig. 1 (C) (Part I), 
first as drawn, and then with the signs of one atomic orbital reversed : 

Large excitations apart, the electrons of the decomposed x, orbital must occupy two of the 
four places provided by these new orbitals, and the possibilities are that both go into either, 
and that one goes into each, to give any of three close-lying “ unexcited ” states, as they 
may roughly be called, although only one of them is the ground state, correlated with the 
normal state of linear acetylene. The configurations are written below, the symmetries 
of CC electrons with respect to the bent model being indicated by a prefixed symbol, SO 
that, for the o bond, for example, a,ag2sp2 means a molecular orbital a,, derived from a 
bond orbital o,, formed from atomic orbitals, 2sp2 ; the CC subscripts are dropped. The 
symmetries of y& follow from Table 4 : 

1~“(.~’)4c~(a~.~2sp2)2(a,~~2p)2(b~2sp2)2 . . . . . . A ,  
> >  J 7  9 ,  ,, (bu2sp2) (a,2sp2) . . . . . B, 
> >  9 ,  ? J  ,, ( a , 2 ~ p ~ ) ~  . . . . . . . A ,  

As compared with the linear normal state of acetylene, these ‘ I  unexcited ” bent states 
are energised; and the lowest of them would not even be metastable (unless it were made 
so by a spin change), but would revert immediately to the linear ground state. But the 
bent model offers nearly non-bonding, as well as anti-bonding, receiving orbitals for excit- 
ation; for in the orbitals b, and a, there are still two vacant places. Moreover, the 
excitation of one of the two electrons, which after the bending of the molecule first find 
themselves in the new, nearly non-bonding orbitals, up to an antibonding orbital, would 
require less energy than if the electron had to come from a bonding orbital. The former 
type of excitation, that is, one of an electron from the non-disrupted auxu bonding orbital 
to  either new nearly non-bonding orbital, b, or a,, will give the lowest group of excited 
states, the two having the configurations and symmetries here written : 

K4(agl)2CH(ag092Sp2)2(a,x,2p) ( b , 2 ~ p 2 ) ~ ( a , 2 s p ~ )  . . . . . A ,  
,, ,P J ,  ,, (b,2Sp2)(ag2sp2)2 . . . * Bg 

The other type of excitation, that from a nearly non-bonding orbital to an antibonding 
orbital, could employ the antibonding r g 2 p  orbital, which one can picture by supposing the 
orbital represented in Fig. 1 (B) to be turned by a right-angle about the C-C line, and then 
superposed on Fig. 1 (C). There will be two neighbouring states, depending on which 
nearly non-bonding orbital retains the unexcited electron : 

K4(~g’)2~~(~gog2s~2)2(a,x,2~)2(bu~sp2) (b,zg2p) . . . . . A ,  
Y ,  ,, J J  ,, (a,2sP2) ,, * - - - - B, 

These excited orbitals are expected to lie higher than the other two of the same symmetries. 
These orbitals could be formed from those others by taking two electrons from nearly 
non-bonding orbitals, and putting one into the bonding x,2p orbital, and the other into the 
antibonding x,2p orbital. Two arguments may be given for supposing that this would 
require a nett input of energy. First, the energy curves for the hydrogen molecule ion, 
which can be exactly calculated, show that a o,ls antibonding electron is energetically 
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more antibonding than a cgls bonding electron is bonding. Secondly, from the viewpoint 
of the valency-bond method, resonance between structures 6-C and C< should give more 
stable bonding than between structures c--C and (if we neglect the effect on bonding 
of the nearly non-bonding electrons), because interaction between a single electron and an 
electron pair is repulsive : a three-electron bond is more stable than a five-electron bond. 

The other 2-quantum antibonding orbital which could receive the excited electron, 
bu2sp2, provides the following excited electronic states : 

K4( Qg ') 4CH ( a,ag2sp2) 2 ( aux,2p) 2 (b, 2 s p )  (b,  Q, 2 S p )  . . . - A ,  
9 ,  ,, 7 7  7 )  (ng2sp2)  7 ,  . . .  . Bzf 

Taking account as before of the lowest set of two-promotion states, we find that it has 
only one member, and arises when the two bonding a,x, electrons are elevated to the two 
vacant places in the nearly non-bonding orbitals : 

K4(ag')4CH(agQg2SP2)2(b,2sp2)2(n,2sp2)2 . . . . . . A,  

The other bent model Cap furnishes a similar pattern of 2-quantum states. By putting 
the evicted tenants of the converted orbital into the lowest of the conversion-product 
orbitals, we obtain three " unexcited " states : 

K4(ag')"cll~alQg2sp2)2(b~xff2~)2(~12s~2)~ . . . . . * A ,  
9 ,  I ,  ? >  ,, (a12sp2)(b,2sp2) . . . . - Bl 
J 9  J Y  9 ,  ,, (b12s$2)2 . . . . . . . -4, 

K4(ag')4c~(alQg2sp2)2(b2"u2P) (a12sfi2)2(b12sp2) . . . . * A2 
, Y  Y Y  1 9  ,, (a12sp2)(b,2sp2)2 . - . . - B2 

K4( d g ) 4 c H ( a 1 ~ g 2 s p 2 ) 2  (b2x,2j)  (a12sp2) ( a21c,2P) . . . . - A2 
,, Y Y  7 1  9 ,  (b,2sP2) ,> - * - . - B2 

K4 ( G;) 4CH (a 1~g2sp2) ( b2x, 2fi) (a ,2s$ 2,  (b la&p2) . . . * Bl 
* A1 I> 23 J J  I, (b12SP2) 3 ,  . . .  

K4( C J ~ ' ) ~ ~ ~  (a l ~ g 2 s p 2 )  (a +p2)  (b  12sp2) . . . . - 4 

Promotion of an electron from the bonding x orbital to a nearly non-bonding orbital 
produces two excited states : 

Two more result from the promotion, alternatively, of a nearly non-bonding electron to the 
antibonding x orbital, 

and still two more, if the anti-bonding Q orbital receives the electron : 

Another state results, if we put both the bus;, electrons into the two vacant places in the 
nearly non-bonding orbitals : 

Using Table 7, we may correlate the linear with the bent states of acetylene, as in Fig. 3, 
in which the energy spacings, although largely arbitrary, reproduce the qualitative 
considerations already mentioned. As to  the Doch states, we have the guidance of Ross's 
recent calculations (Trans. Faraday SOC., 1952, 48, 973), without which we would not 
know, for example, how to place the lower two-promotion states relatively to  the higher 
one-promotion states. The " unexcited " CzD states are raised relatively to the corre- 
sponding set of C a  states, mainly because we know from vibration frequencies (next 
Section) that about twice as much force is needed to bend the normal acetylene molecule in 
the direction of the cis-model as to  bend it towards the trans-model. 

MTith the aid of Table 8 one can indicate which bent upper states are allowed to combine 
with the linear ground state of acetylene, and, using relations (a), which upper states 
become allowed only in consequence of the bending. This is done in Fig. 3 by the notes in 
parentheses, giving the direction of the electronic oscillation accompanying transition from 
the ground states to the various excited states. 
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(3) VIBRONIC STATES AND TRANSITIONS 

(a) Classi$cation of Vibrational Wave  Functions and Vibrations ; Grozcnd-state 
Vibrational Energies.-Total-vibrational wave functions #,, will contain parameters of z,he, 
and thus will be different in different electronic states. However, the factorisation which 
led to the isolation of y?" implies that its symmetry classification is the same for all #e. 

Furthermore, the system of classification of z,hv will be the same as that of #e : for, although 
the first is a function of nuclear &$lacements and the second a function of electron 
positions, both can retain or lose the various symmetry elements of the models, that is, 
behave in the same way under transformations of the internal axes a ,  b, c. So it comes 
about that we have already given the symmetry classification of #o for the three acetylene 
models; in the centre and right-hand portions of Tables 1, 3, and 5. 

,4 total-vibrational wave function #,, is taken as the product of all the ?t harmonic- 
oscillator wave functions #m(vm), one for each vibrational degree of freedom, each being that 
FIG. 3. Correlation of lower electronic states of the 

Dooh rtzodel with those of the C,, and C,, models of acetylene. The upper states of fransitzons which clcctyle?ie models.  
are allowed with theavound state are marked to in- 

F I G .  4- CoydatioFz of vibyatio~ls of the three 

dicate the directions if electroizic oscillatioi?s 

* Cs' , 

Rotation a axis 

+ & Rotation c axis 

CZh Dooh CZ7J 

function of the vibrational co-ordinate Q, which corresponds to the quantum number 'Om of 
the vibration : 

The species of i,bv is thus the direct product of the species of all the #m, and, if the latter are 
known, can be obtained from Tables 2,4, and 6. The species of #m depends on the quantum 
number zlm : if the latter is zero, #m is totally symmetrical ; if unity, then #m has the species 
of the vibrational co-ordinate; and if m, then the species of #m is the direct product of m 
factor-species, each one that of the vibrational co-ordinate. The symmetry species of 
the vibrational co-ordinates of the three acetylene models are indicated by the positions 
of the non-zero entries in the second columns of the right-hand parts of Tables 1, 3, and 5 .  
The figures there inserted show how many different vibrations have co-ordinates belonging 
to the various species; though in reading Table 1, it has to be remembered that each 
I-I vibration has two orthogonal co-ordinates. How such numbers of vibrations may be 
calculated has been illustrated before (cf. J., 1936,971). When the linear molecule becomes 
bent, one co-ordinate of a rI vibration becomes the co-ordinate of a rotation : the symmetry 
species of rotations, and of translations, are indicated in the last columns of Tables 1, 3, 
and 5. Some symmetry species contain no individual vibrations, but all will contain total 
vibrational wave functions involving the simultaneous excitation of several vibrations. 
Total-vibrational wave functions of the degenerate species, II, A, a, etc., are associated 

6 = A(%) * #2('O2) - * - - #m(vm)  - - - $n(vn) 
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with 1, 2, 3, etc., units h / 2 x  of vibrational angular momentum about the axis a ( I  = 
1, 2, 3, etc.). 

Knowing the numbers of vibrations in the various symmetry species, and also the 
correlation of species, given in Table 7, among the acetylene models, we can correlate the 
individual vibrations of these models, as is done in the approximate graphical representation 
of Fig. 4. 

For the characterisation of any upper electronic state of acetylene from ultra-violet 
spectra, we require a complete knowledge of the frequencies of the vibrations of the ground 
state. This information is available for acetylene and dideuteroacetylene, and the figures 
we have used are in Table 9 : they were obtained from infra-red spectra, some as 
fundamentals and some as difference frequencies, by Bell and Nielsen ( J .  Ch.em Phys., 
1950, 18, 1382) and Talley and Nielsen (Phys. Review, 1951, 82, 338). 

TABLE 9. Fu?cdamental vibration frequencies (cm.-l) of the linear ground state of acetylene 
and of dideuteroacetylene. 

CzHz ................................. 1974.0 3373.2 3282.5 613-3 730.74 
CzDz .................................... 1764.9 3701.84 2439- 1 511.38 538.66 

frequencies we compute a bending force constant, and then try to 
calculate the nu frequencies from it, we obtain 500 cm.-l for C,H, and 360 cm.-l for C2D2 
(Herzberg, " Infra-red and Raman Spectra," van Nostrand, New York, 1945, p. 180). The 
real values, more than 1/.% times larger, show that the energy curve from the linear ground 
state to the cis-bent ground state must start more than twice as steeply as the curve to the 
trans-bent ground state. How the curves continue we do not know, though it is unlikely 
that a difference of anharmonicity could reverse the order of the gradients. 

(b) CZassiJication of Vibronic Wave  Functions.-In preparation for the study of the 
symmetry and combining properties of rotational levels, which may belong to  any 
vibrational state associated with any electronic state, it is convenient to be able to  assign a 
collective symmetry to  the " vibronic " state, described by #en = &,bu (eqn. 2). This 
relation shows that, for any one molecular model, the vibronic wave function #etl must be 
subject to  the same classification of species (Tables 1, 3, and 5) as that which is common to 
# p  and is simply the 
direct product (Tables 2,4,  and 6) of the species of its factors #e and #u. 

When taking direct products of species of #e and t,bo of the linear model, one necessarily 
combines the quantum numbers A and I ,  which measure the components, respectively, of 
electronic and degenerate-vibrational angular momentum around the a-fold axis a. 
Each quantum number, when not zero, is the magnitude of numbers that can have either 
sign, their common magnitude covering a doubly degenerate state. Hence their combined 
value K ,  to which the same convention applies, is given by 

Vibrations &'(C) &+(W L+(H)  11, n v  

If from the 

It follows, furthermore, that the species of any particular 

. . . . . . . . .  K = I A f Z l  (7) 
(c) SeZection Rules and Intensities of Vibronic Transitions.--It follows from the corre- 

spondence between the systems of classifications of #cv and #e that the selection rules for 
transitions between particular vibronic states, that is, those governing the appearances of 
individual bands, are the same in general form as those for transitions between electronic 
states, that is, those which determine the occurrence of band-systems. 

For transitions between vibronic states of the linear model of acetylene, allowance must 
be made for vibrational contributions to the angular momentum about a,  and thus 
relations (4) must be rewritten, as a t  (8), with K ,  defined by equation (7) , replacing A : 

1 a :  A K = & l , g + + u  } . . . .  (8) 
1 1  a :  A K = o , g - ~ , + e + , - + + -  

- -  
To transitions between vibronic states of the trans-bent model, relations (5) apply 

To without modification, except with respect to the interpretation of the species labels. 
transitions between vibronic states of the cis-bent model, relations (6) similarly apply. 
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The correlation of vibronic species between the straight and the bent models of 
acetylene, is exactly the same as the correlation of electronic species, given in Table 7. 
This, together with the principle that selection rules for vibronic, as for electronic, 
transitions, between states of different molecular models, are to be deduced by treating as 
total symmetry what is common to the combining models, determine that the selection 
rules for vibronic transitions between states of the straight model and those of either bent 
model will be as given in Table 8. 

The above discussion is an application of the symmetry aspect of the Franck-Condon 
principle, as generalised for application to polyatomic molecules by Herzberg and Teller 
(2. fihysikal. Chem., 1933, 21, B, 410). The extended principle tells us what vibrations 
may change their quantum numbers, and by how much, and with what transition 
probability, during an electronic transition, thus contributing bands of varying intensity 
to the band system. 

A band is 
allowed in this system, if belongs to  the same species, that, is, if &,“z,hv’ has total 
symmetry. In absorption at temperatures not too high, nearly all the transitions start 
from the vibrationless ground state, #e”#n’’(0), in which #,”(O) has total symmetry; and 
therefore in this case the condition for the appearance of a band is that the upper vibrational 
state #: has total symmetry. Thus, only totally symmetrical vibrations can suffer un- 
restricted quantum changes, and so give rise to progressions, 0 +--- 0, 1 +- 0, 2 +-- 0, 
. . ., in the upper-state frequency. Non-totally symmetrical vibrations may be excited 
a s  even harmonics in the upper electronic state, 2 +-- 0, etc., but only with low intensity. 

If the temperature is high enough for collisions to excite vibrations in the lower electronic 
state, other band-series may appear. Totally symmetrical vibrations may yield 
progressions such as 0 +- 0, 0 +- 1, 0 i-- 2,  . . ., in their lower-state frequencies; 
and any vibration may produce a sequence without quantum change, 0 +- 0, 1 +--- 1, 
2 -+-- 2, . . ., in the difference between its frequencies in the two electronic states. All 
these combinations give total symmetry to  $v”#,,’. 

When the allowed electronic transition takes place between states belonging to  molecular 
models of different symmetry, then total symmetry, a s  used in the two preceding para- 
graphs, must be taken as the common symmetry of the combining models. In our 
problem, this is the symmetry of either bent model, which is fully included in that of the 
straight model. 

Quantitatively, band intensities are given by the product of the molecular population 
of the initial vibrational state, the transition probability, and the magnitude of the involved 
energy quantum. As to the first factor, the proportion of molecules in the vibrationless 
state is l /Q,  where Q is the partition function. Relatively to the population of the 
vibrationless state, the populations of the vibrationally excited initial states are given by 
Boltzmann factors ge-=lkT = ge--v/0*695T, where g is the degeneracy of the vibrational 
state, and v is in crn.-l. The intensities of vibronic transitions starting from the vibration- 
less state depend little on temperature, relatively to transitions from vibrating states : 
the latter are strengthened by heating, the more so the higher the initial vibrational energy. 

The calculation of vibronic transition probabilities, and thus of the intensities of the 
bands of a band-system, was first carried through for a diatomic molecule by Hutchisson in 
the example of hydrogen (Phys. Review, 1930, 36, 410). More recently, the corresponding 
calculation for the polyatomic molecule, benzene, has been accomplished by Craig (J., 1950, 
2146). In the present study of acetylene, we shall be concerned with the distribution of 
intensity within a progression of bands due to transitions which, as shown by temperature 
effects, start from the vibrationless ground state, and end on a series of states of quantum 
number z, of a totally symmetrical vibration m of the upper electronic state. For any 
band ‘o +- 0 of this progression, the Einstein absorption coefficient is 

In an allowed band system, #e”#e’ belongs to a certain symmetry species. 

and thus the intensity distribution among the bands is given by 
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where the v's are frequencies of the vibronic transitions * ZJ t- 0 and 0 t- 0, and the 
constant K includes the electronic transition probability, the integrals in the co-ordinates 
of vibrations whose quantum numbers do not change, the molecular population factor, and 
universal constants. Apart from the only slightly varying ratio of vibronic energy quanta, 
vov(voo, intensity distribution in the progression is governed by the overlap integral, SPOa, 
which in turn depends on the separation q of the origins of the co-ordinates of the lower- 
and upper-state vibrations m. For the purpose of expressing SqOa as a function of q, we 
have made the simplifying assumption of treating the CH groups as " compound atoms," 
thus neglecting the motion of hydrogen relatively to  carbon. This was one of the several 
sets of assumptions used by Craig, who, on this basis, gives Sqou in the following form : 

Here p = p1/p2 = v1/v2, the subscripts 1 and 2 referring respectively to the lower and upper 
electronic states, and the oscillator constant p = ( 2 n / h ) d &  where p is the 
" reduced mass," and k the force constant of the oscillator, whose frequency is v, so that 
k = 4n2v2p. Equations (9) and (10) together give the distribution of intensity among the 
bands as a function of q ;  and, having measured the intensities of a number of the bands, 
one can choose q to fit the distribution, thereby obtaining, not only a geometrical parameter 
of the upper electronic state, but also a means of. computing, as described below, the 
intensity of the whole electronic transition (even if partly obscured by overlapping) from 
observations on a few of its bands. 

With respect to the vth band, what is measured is the optical density DL, at a series of 
frequencies v within the band, and hence the optical density integral f D L d v  taken over 
the band, for an absorption-path L defined as in Part I1 (p. 2707). The intensity is then 
calculated as the absorption-coefficient integral Jadv, which, Beer's law being obeyed, is 
independent of L. Finally, it is re-expressed, conventionally, as an oscillator strength : 

(11) fv = (mc2/xNe2) (Jadv), . . . . . . . 
Here rn and e are the mass and charge of an electron, c is the velocity of light, and N is the 
number of molecules per C M . ~  in the vibrationless ground state, a t  the temperature of the 
measurement, but at the density the gas would have at 0" and 1 atm. For acetylene 
at O", the partition function Q is 1-14, so that N = 2-36 x 1019, and therefore the first 
factor in parentheses in eqn. ( l l ) ,  for temperatures near O", has the value 4-78 x lo-* cm.2. 

In order to obtain the intensity of the whole electronic transition from the measured 
intensity of the vth band, we can use the sum rule : 

m 

B o  (S9,,)2 = 1 
27 = 

If we disregard the weaker combinations of the vibrationless ground state, that is, its 
combinations with vibrations other than the mth of the upper electronic state, and if we 
also neglect the effect on intensity distribution of the proportionately small change in vOv 
between the vth band and the most intense part of the progression, it follows from this rule 
that the oscillator-strength of the whole electronic transition is given by the relation 

The numerator on the right-hand side having been measured, and the denominator 
calculated, following the estimation of q, each measured band should give the same value 
off, for the whole electronic transitions. It should be emphasised that intensity measure- 
ments, like the calculations based on them, are only approximate, but are nevertheless of 
value because spectroscopic intensities vary so widely. 

* Prof. Craig asks us to mention that, although ( 4 ~ ~ ) ~  is inadvertently written in his formula (4). 

f = fv/(Sqov)2 . . . . . . . . (12) 

his calculations were made with the correct formula containing only the first power of ( v n / v o ) .  
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(4) GYROVIBRONIC STATES AND TRANSITIONS 

(a) Classification of Rotational W a v e  Functions : Rotational Energies.-Rotational 
wave functions contain parameters of the vibronic states with which they are associated, 
but this does not affect the principles of their classification. They are classed, first, with 
respect to their behaviour under rotations of the external axes, X ,  Y, 2, and, secondly, for 
any given molecular model, under those transformations of the internal axes, a ,  b, c, to 
which the rotational wave equation is invariant. 

Rotations of the external axes lead to the familiar classification of st. according to  the 
values J = 0, 1, 2, . . . .  each J with (2J + 1)-fold degeneracy, where J is the number of 
units h/2x of total angular momentum, including any supplied by electronic orbital motion 
and by degenerate vibrations. Apart 
from one exception, the selection rule 

holds, and accounts for the usual division of bands into P, Q, and R branches, respectively. 
The exception relates to linear molecules, and it is that, in transitions between two vibronic 
states both having K = 0 (two C states), the allowed J combinations are reduced to 

This is one way in which t,hr may depend on $en. 

AJ = - l , O ,  +1 . . . . . . . .  (13) 

. . . . . . .  AJ = -1, +1 (for X - C) (14) 
so that the bands, which by equations (8) are of " parallel " type, have no Q branches. 

The rotational wave equation of the Dxh model is invariant to the transformations of 
a ,  b,  c,  summarised in the symbol D, ; and thus $r may be, in this case, classified according 
to its behaviour under rotations C", by & + round a ,  and C? by x round b or c, as shown 
in Table 10. The species are labelled Z, II, A, . . . .  according as K ,  the number of units of 
vibronic angular momentum about a ,  is 0, 1, 2, . . .  In this respect also t,br is dependent 
on $ee. The two non-degenerate C species together cover, and each degenerate species, 
n, A, etc., separately covers, all possible values of J ,  which, as a measure of total angular 
momentum, cannot be less than K ,  the measure of its figure-axial component. The direct 
products of Table 11 , in combination with the species of the electric moment M in Table 10, 
give the selection rules : 

Parallel to a : A K  = 0. Perpendicular to n : AK = &l . . .  * (15) 
TABLE 10. Species of rotatiomzl wave TABLE 11. Direct products of rotation 

fUltCti0n.S Of D;oh ? % O d d .  species D, of Dooh model. 
E 2C4" C? 
1 1 1 
1 1 -1 
2 2 c o s 4  0 
2 2 cos 24 0 

... . . .  ... 
The rotational wave equation for both the bent models C2h and Czll is invariant to  those 

transformations of the internal axes which are denoted by V ;  and thus the species of #r 
depend on its behaviour under rotations by x round any two of the axes a, b, and c,  a s  shown 
in Table 12. Symmetry under all three rotations is denoted by A , and under one only by B 
with the appropriate subscript. The direct products in Table 13, together with the electric- 
moment species in Table 12, give the selection rules : 

I l a :  A+-+Ba,B~f- ,B,  I l b :  At-,Bb,Bc+-+Ba 
1 1  C: A t-, Bcj B,++ Bb) * (16) 
TABLE 13. Direct products of rotation 

species V of the C2h and czu models. 
A B B b  Be 
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By examining the behaviour of the rotational species of the Dcoh model (Table 10) with 

respect to  the symmetry operations determining the rotational species of the C a  and the 
CzC models (Table 12), we can correlate the two sets of species, as is done in Table 14. If 
now, in the light of this correlation, we compare the selection rules (15) and (16), in order to 
discover what is common between them, or, in other words, derive selection rules for the 
combination of rotational states of the straight model with those of either bent model, we 
find the results summarised in Table 15. 

TABLE 14. Correlation of rotational species amofig the Dooh, C2h and CZ,, models. 
Symmetric top (model Dmh) ..................... c2 II, a, etc. A, @, etc. 
Asymmetric top (models Czh and Czw) ......... B a  Bb + B e  A + B a  

TABLE 15. Rotational selection rules for tramitions between the Dooh model of acetylene 
and either th.e C2h or Ctu models. 

cZh Or c2w 

Dmh II a II b II c 
c, B, Bb Be 
C, A Be Bb n Bb, B, A ,  B a  A ,  B s  
A A ,  B a  Bb, Be Bb, Be 

........................... 

........................... 
.............................. 
.............................. 

The energy levels of the linear model, considered as a rigid symmetric top, are given by 
the formula 

If is to be expressed in cm.-l, then A = 12/8x2cIa and B = h/8x2cIb, the constant h/8x2c  
having the value 27.983 x 

Because of the relative lightness of hydrogen, both the bent acetylene models, although 
they are asymmetric tops, will be nearly symmetric tops, so that an analogous energy 
fonnula, containing the average of B and C in place of either, will apply approximately : 

when C = h/8x2cIc. 
rigid, is 

where K is a parameter measuring the degree of asymmetry, 

and E(K)  is the energy quantity (Ray's modification of the Wang function) which has been 
evaluated by King, Hainar, and Cross ( J .  Phys. Chem., 1943, 11, 27; 1949, 17, 826) for all 

For analysis of the rotational structure of bands due to transitions from the normal 
electronic state of acetylene, we need information concerning the moments of inertia B of the 
latter, which depend on Ib, and thus on the internuclear distances. These quantities are 
evaluated by the rotational analysis of infra-red bands of C2H, and C2D2, and we have 
used the data in Table 16, furnished by Saksena's recent studies of bands in the photographic 
infra-red ( J .  Chem. Phys., 1952, 20, 95). 

. . . . . .  E = B J ( J +  1) + ( A  - B ) P  (17) 

g.-cm. 

E = +(B + C ) J ( J +  1) + ( A  - *(I? + C)>K2 

E = * ( A  + C ) J ( J  + 1) + +(A - C)E(K) 

K = (2B - A - C ) / ( A  - C )  

. . . .  (18) 

(19) 

However, the precise formula for the asymmetric top, supposed 

. . . . .  

J ,  K values up to J = 12 (K = 0, 1, . . .  J ,  and J = K ,  K + 1, . . . . .  12). 

TABLE 16. Dimensions of acetylene at zero-fioint energy in its normal electronic state. 
B (cm.-l) 1 6  g.-cm2) YCC (A) Y c H  (4 

.................. 1.058 C2H2 1-1 769 23-776 
C2D2 .................. 0.8479 33.004 1 1'208 

(b) Classification and Correlation of Gyrovibronic States of the Three Models of Acetylene.- 
In his papers on the theory of transitions between straight and bent states of a triatomic 
molecule (Zocc. cit.), Mulliken showed that, even when the atomic masses are of the same 
order of magnitude, a fairly large bending angle will still allow the resulting asymmetric 
top to obey approximately the K-containing energy formulae of the symmetric top, thus 
justifying description as a prolate near-symmetric top. This must be still more true of a 



[ 19531 Excited States of Acetylene. Part I I I .  2721 

molecule, such as acetylene, in which bending only moves light atoms off the line of 
considerably heavier ones : indeed, acetylene must be a prolate near-symmetric top 
independently of the bending angle. Thus for either bent model of acetylene, a quantity K 
exists with approximate significance as a quantum number measuring the angular 
momentum about a, though it can be defined exactly only by the limit to which it goes as 
the bent molecule is straightened. In the last stages of this imaginary process, the 
angular momentum will pass over from being carried by rotation and described in #r, to 
being carried by the electronic motion, or by degenerate vibrations, and described in 
&. However, the component of angular momentum itself will experience no discontinuity, 
but will merely become more definite, as the straightening process goes to  completion. 

As can be seen from Table 7 (p. 2711) in its application to vibronic states, any vibronic 
state of either bent model is correlated with an infinite series of vibronic states of the 
straight model: they differ with respect to angular momentum about a, that is, with 
respect to K .  For example, a vibronic A,  state of the trans-bent model is correlated with 

FIG. 5. Rotational, gyrovibrunic, and overall classification of energy levels of the Cm ntodel of 
acetylene : correlation with the D,a model. 

---- ---- 
-a +S -S +a - - - - +s -a +a -s 

-U +S -s +a 
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5s A _ .  

3 -S +a +s -a +a -s 

+S -a +a -s - - - - -a +S -s +a +s -a +a -s 
---- ---- A ---- 

BC 4 

I 

K=O 

linear CgS II,, A,, . . ., states for which K = 0, 1, 2, . . . The detailed meaning of this 
must be that to a vibronic bent state belong rotational states supplying infinitely various 
amounts and directions of angular momentum, which, as the molecule is straightened, 
converge, with respect to  the component of angular momentum about a, on the infinitude 
of discrete limits, corresponding to K = 0, 1, 2, . . . Mulliken has given the name gyro- 
vibronic state to a set of energy levels, such as those of any single column in Figs. 5 and 6, 
which belong to a particular vibronic state and to a particular value of K ,  whether precisely 
actual or defined by its limiting value. In either bent model of acetylene, one vibronic 
state contains infinitely many gyrovibronic states, but in the straight model, the vibronic 
is the same as the gyrovibronic state (because here rotation does not contribute to K).  One 
bent gyrovibronic state is correlated with one linear gyrovibronic, non-degenerate state. 



2722 Ingold and King: 
Two bent gyrovibronic states are correlated with one linear gyrovibronic doubly degenerate 
state. The correlations, which follow from Table 7, are shown by the top and the bottom 
sets of symbols in Figs. 5 and 6. Each gyrovibronic state of any model contains infinitely 
many energy levels which are distinguished with respect to J .  The way in which the 
levels of pairs of bent gyrovibronic states mix and converge to give the levels of linear 
degenerate gyrovibronic states will be noted in the next Section. 

(5) ENERGY LEVELS AND THEIR TRANSITIONS 

(a) CZass$cation of Unfactorised W a v e  FunctioPzs.--As Mulliken has pointed out (Zocc. 
cit.), this is a useful classification, because the few " overall " selection rules to which it leads 

FIG. 6. Rotational, gyrovibronic, and overall classification of energy levels of the C,, model of 
acetylene : correlation with the D,r model. 
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are strictly obeyed, even when the factorisation of # is far from strict, as may happen in the 
presence of perturbations. 

This 
leads to the J classification, already described on p. 2719. If # is factorised, and #r is a 
factor, then care is taken of the J classification in t,hr. If # is not factorised, then the J 
classification applies without modification to # itself. 

The second " group '' of operations amounts only to the inversion I of external axes, 
X, Y, 2, through their origin. This process multiples the wave function either by +1 or 
by -1, and so gives r ise to  the " parity " classification of # as + or -. The condition 
under which the intensity-controlling integral J$"M+'dc does not vanish, is that the 
integrand shall not change sign under I ,  and, since the electric moment M does change 
sign, the product #"#' must change sign also. 

Three groups of operations are involved. 
The first consists of the infinitude of rotations of the external axes, X ,  Y ,  2. 

The selection rule follows : 

+++- . * . . . . 6 . . (20) 
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The remaining group of operations consists in the possible permutations of labels 
between sets of nuclei whose positions can be interchanged by rotation without making 
any physical difference. In the case of acetylene, on any of our models, there is just one 
such permutation, P,, and this exchanges the labels of the two carbon atoms and of the 
two hydrogen atoms. According as P, does not or does change the sign of #, the latter is 
classed as symmetric s or antisymmetric a. Since M does not change sign under P,, the 
selection rule is as follows : 

s t 3 s  a + + a  . . . . . . .  (21) 

@) Classification. alzd Correlation of Energy Levels of the Three Models of AcetyZene.- 
It is necessary first to factorise I and P,, each into two operators, the first of which acts on 
t,!tf only, while the second acts on & only. The factors differ according to the molecular 
model. For the C u  model the operational equations are as follows : 

I(#) = C , C ( $ T ) .  Oab(#ez) . . . . . . .  (22) 
P,(gL) = C,C($f) C,C($,) - * - * - * (23) 

The first factor in (22) turns the molecule by x around c. In a general case everything thus 
turned would have to be reflected across the plane ab, in order to complete the operation I .  
The second factor in (22) thus reflects the electron positions, and the nuclear displacements. 
The nuclear positions remain unreflected, but as they lie in the plane ab, no reflexion of 
them is needed for the completion of I .  In  equation (23), the first factor rotates the 
electron positions, the nuclear equilibrium positions, and the nuclear displacements, while 
the second restores the electron positions, and nuclear displacements, but not the nuclear 
positions. Thus the two operations together amount to the nuclear permutation P,. 

For the Cz0 model the corresponding operational equations are as follows : 

. . . . . . . .  I(+) = C,C(+J .“($ha) ( 2 4  
&(+) = c;(#f) C%b(+etr) - * - * * - * (25) 

The justifying arguments are similar to those in the preceding paragraph. For the D m h  

model either pair of equations can be used, since the axes b and c have in this model become 
equivalent symmetry axes. 

For any of the rotational species of the Dooh model, as listed in Table 10, and for some 
particular J and K ,  we note the correlated rotational species of the C% and CzV models in 
Table 14 (p. 2720), and then find the effects of C; and of C,b on such species of t,bf in Table 12 
(p. 2719). The effects of @ and of CZc on 
&, for each of the four vibronic species of the Czh model are then found from Table 3 
(p. 2711) ; and likewise the effects of fib and of C,b on +ev for each of the four vibronic species 
of the CzV model are found from Table 5 (p. 2711). These effects are always to multiply #a, 
by either +1 or -1. By multiplying the results obtained in these ways, we can find what 
the operators I and P, will do to #, thus determining the overall species of the energy levels, 
as recorded in Figs. 5 and 6. 

Correlation of the gyrovibronic states of either bent model, as shown below the energy 
levels of Figs. 5 and 6, with those of the linear model, as indicated above the columns of 
levels, has been discussed; but it remains to be considered how, when K > 0, groups of 
individual levels of a bent model coalesce to  give degenerate levels as the molecule is 
straightened. It will suffice to take, as an example, the trans-bent model (Fig. 5), and, 
in particular, its gyrovibronic states A ,  and B,, and their energy levels which have the 
quantum numbers J = 1 and K = 1. There are four such levels, each gyrovibronic state 
containing a doublet, whose separation depends on the degree of asymmetry. As the 
molecule straightens, so that the distinction between b and c, I b  and Ic,  B and C, and 
therefore between B b  and Be, becomes lost, the wave functions of the two +s levels mix, 
either with the other, to eventual equality, as  also do those of the two -a levels, while 
a t  the same time the energy separation of the equally mixed +s level and the equally 
mixed -a level becomes zero, so that we now have a doubly degenerate level of the 
gyrovibronic state II,. Such mixings and convergencies occur in sets of four ‘‘ bent ” 

These we to multiply #f by either +1 or -1. 
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levels, each set to give one degenerate “ straight ” level, over the whole manifold of levels 
for which K > 0. 

In practice the convergencies may not be completed to coincidence, if the factors 
and #r cannot accurately be separated, so that angular momentum is not sharply 
partitioned between rotations and degenerate vibrations (1-type doubling), or between 
rotations and electronic orbital motion (A-type doubling). This being taken into account, 
each set of four “ bent ” levels will yield two “ straight ” levels, one s and one a, which will 
not be degenerate but will form a definite doublet. We may summarise such phenomena 
under the collective term “ K-type doubling.” It is expected to be a small effect, except 
where perturbations spoil the factorisation of #. 

(c) Intensities of Rotational Lines : Efects of Nwlear Spin. in Acetylene and Dideutero- 
acetylene.-The way in which, in any P, Q, or R branch of a band, the intensities of 
successive rotational lines in general rise a t  first with the J-degeneracy as J increases, later 
to fall with the eventually dominating Boltzmann factor, presents no special features in 
our problem. However, the effect of nuclear spin in giving different statistical weights to  
the s and a levels, and thus leading to a superposed alternation, or other periodicity, of 
intensity, is deserving of comment. 

In  1H*12Ci12C*1H, the carbon nuclei have no spin, while each proton has the spin 
quantum number & with 2-fold space-degeneracy, so that there are 4 nuclear-spin functions, 
of which 3 are symmetric and 1 antisymmetric to  P, (Fowler and Guggenheim, “ Statistical 
Thermodynamics,” Cambridge Univ. Press, 1939, p. 84). The former spin functions must 
multiply the # of a levels, and the latter the # of s levels, in order to  make the complete 
molecular wave function antisymmetric in (odd mas-numbered) protons. Thus the 
a levels of C,H, have three times the statistical weight of s levels. In 2D*12Ci12C*2D, each 
deuteron has spin quantum number 1 with 3-fold space-degeneracy, and hence there are 
9 nuclear-spin functions, 6 symmetric and 3 antisymmetric, with which to make the 
complete wave function symmetric in (even mass-numbered) deuterons. Thus the s levels 
of C,D, have twice the statistical weight of the u levels. 

In  transitions between two gyrovibronic states of the linear acetylene model, provided 
that at least one of the states has K = 0, the rotational lines of a branch of a band will 
alternate in intensity, in opposite ways for C,H, and C,D,, as can be followed in detail 
from Fig. 5 or 6. If neither gyrovibronic state has K = 0, then, in the absence of I-type 
doubling, no such alternation will occur, since both combining levels will be degenerate, 
each having an s and an a component. When I-type doubling can be observed, there will 
be alternation over all lines, each doublet having a weak and a strong component. 

In transitions between a gyrovibronic state of the linear model and one of either bent 
model, provided that in one of the states K = 0, similar alternations will appear; for the 
overall selection rules (20, 21, pp. 2722, 2723) will always exclude from combination one 
member of each doublet for which in the other state K = 1. If neither gyrovibronic state has 
K = 0, a slightly more complicated periodicity of intensities should be found. The successive 
J values along a branch of a band will each be represented by a doublet with a stronger and 
a weaker component ; and these components will change sides on passing from any doublet 
to  the next. These expected relationships can easily be followed from Figs. 5 and 6 ;  
and they have diagnostic value in our analytical problem. 
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