Dielectric Relaxation Times for Normal Alcohols at Infinite Dilution in Carbon Tetrachloride or Benzene. By R. J. W. LE Fèvre and A. J. WILLIAMS. Relaxation times are reported, ranging from ca. 2×10^{-12} sec. for methyl alcohol to ca. 8×10^{-12} sec. for hexadecyl alcohol. Such values are much smaller than others known for the pure liquids but are of the orders forecast in 1957 by an equation of Chau, Le Fèvre, and Tardif. The loss tangents of the solutions if plotted against concentrations show discontinuities, attributable to the onset of association, at roughly the same points as do graphs of the apparent partial dielectric polarisation versus weight fractions. This paper reports measurements of the apparent dielectric relaxation times (τ) of a number of normal alcohols at infinite dilution in carbon tetrachloride or benzene. The literature 1-5 shows that previously attention has been given often to the pure alcohols and seldom to their solutions, although sufficient evidence exists to suggest that \(\tau \) determined for a given alcohol in the liquid or the dissolved state may, one from the other, be very different. Examples will be quoted later when discussing the new observations listed in Tables 1 and 2. - Whiffen, Quart. Rev., 1950, 4, 131. Böttcher, "Theory of Electric Polarisation," Elsevier, Amsterdam, Houston, London, New York, 1952, Chap. X. - Davies, Quart. Rev., 1954, 8, 250. Smythe, "Dielectric Behaviour and Structure," McGraw-Hill, New York, Toronto, London, 1955, Chap. IV. 5 Dryden and Meakins, Rev. Pure Appl. Chem., 1957, 7, 1. Table 1. Dependence of ψ on w_2 . A. Solutions in carbon tetrachloride. | | | | Solute: | Methyl | alcohol | | | | | | |--|--|--|--|--|---|---|---|--|--|--| | $10^5 w_2 \dots 205$ | 215 | 268 | 297 | 467 | 527 | 548 | 915 | 1182 | 1222 | 1298 | | $10^2 \psi$ 28 | 33 | 32 | 29 | 44 | 53 | 52 | 73 | 91 | 91 | 101 | | , | | | Solarta : | Ethail . | alcohol | | | | | | | 105 170 | 280 | 316 | 379 | : Ethyl a
404 | 450 | 4 | 68 | 480 | 522 | 532 | | $\begin{array}{cccc} 10^5 w_{2} & \dots & 170 \\ 10^2 \psi & \dots & 27 \end{array}$ | 33 | 29 | 28 | 32 | 25 | | $\frac{00}{25}$ | 27 | 36 | 30 | | $10^{5}w_{2}$ 551 | 615 | 690 | 783 | 796 | 820 | | 11 | 973 | 979 | 980 | | $10^2 \psi \dots 30$ | 25 | 32 | 36 | 31 | 33 | | 36 | 35 | 40 | 43 | | $10^5 w_2 \dots 1004$ | 1136 | 1150 | $\begin{array}{c} 1155 \\ 41 \end{array}$ | $\begin{array}{c} 1190 \\ 44 \end{array}$ | $\begin{array}{c} 1621 \\ 55 \end{array}$ | 17 | $721 \\ 55$ | 1874
58 | $\begin{array}{c} 1944 \\ 58 \end{array}$ | $\begin{array}{c} 2518 \\ 60 \end{array}$ | | $10^2 \psi \dots 34$ | 39 | 38 | 41 | 44 | 99 | | 00 | J O | 30 | 00 | | | | | | Propyl | | | | | | | | $10^5 w_2$ | | | 689 | 834 | 83 | | 1140 | 116 | | 1204 | | $10^2 \psi$ $10^5 w_2$ | $\begin{array}{c} 23 \\ 1328 \end{array}$ | 1 | $\frac{21}{608}$ | $\begin{array}{c} 24 \\ 1637 \end{array}$ | $\frac{2}{224}$ | | $\begin{array}{c} 26 \\ 2572 \end{array}$ | 269 | 29
97 | $\begin{array}{c} 27 \\ 3457 \end{array}$ | | $10^{2}\psi^{2}$ | | | 33 | 34 | 3 | | 42 | | 12 | 47 | | • | | | Solute: | Butyl d | alcohol | | | | | | | 10 ⁵ w ₂ | 343 | 567 | 610 | 630 | 715 | 825 | 869 | 1360 | 1384 | 1389 | | $10^2 \psi$ | | 21 | 20 | 20 | 19 | 21 | 23 | 23 | 26 | 23 | | $10^{5}w_{2}$ | | 1487 | 1677 | 1818 | 1943 | 2055 | 2143 | 2323 | 2514 | | | $10^2 \psi$ | 24 | 23 | 24 | 25 | 29 | 30 | 28 | 30 | 31 | | | | | | Solute: | Pentyl | alcohol | | | | | | | $10^5 w_2$ | | | 493 | 578 | 68 | | 944 | | 52 | 1286 | | $10^2 \psi$ | | 1 | $egin{array}{c} 22 \ 462 \end{array}$ | $\frac{22}{1787}$ | $21 \\ 240$ | | $\begin{array}{c} 22 \\ 2433 \end{array}$ | 357 | 23
75 | $\begin{array}{c} 23 \\ 4489 \end{array}$ | | $10^5 w_2 \dots \dots$ | | , | 22 | 25 | 2.40 | | 2433 | | 31 | 21 | | - · · · · · · · · · · · · · · · · · · · | | | | Hexyl o | | | | | | | | 105w2 | 366 | | 884 | 95 | | 1144 | Ĺ | 1482 | | 1627 | | $10^2\psi$ | 20 | | 20 | | 21 | 2 | | 23 | | 22 | | $10^{5}w_{2}$ | 1800 | | 2388 | 283 | 21 | 3443 | 2 | 4513 | | | | | | | | | | | | | | | | $10^2 \psi$ | 23 | | 24 | | 26 | 27 | | 28 | | | | | | | 24 | | 26 | | | | | | | | | 886 | 24 | 2
Heptyl | 26 | | | 28 | 3 57 | 4644 | | $10^2 \psi$ | 23 | 886
21 | 24
Solute:
119 | 2
Heptyl | 26
alcohol | 27 | 21 | 28 | 357
23 | 4644
25 | | $10^2 \psi^{-}$ | 23
607 | | 24 Solute: 119 2 | Heptyl
4 1 | 26
alcohol
809
23 | 25
1853 | 21 | 28
75 3 | | | | $10^2 \psi^{-}$ | 23
607
22 | | 24 Solute: 119 2 | Heptyl 4 1 | 26
alcohol
809
23 | 27
1853
23 | 21 | 28
75 3 | 23 | | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18 | 21 | 24 Solute: 119 2 Solute: 868 18 | Heptyl 4 1 1 : Octyl o 1079 18 | 26
alcohol
809
23
alcohol
168 | 25
1853
23
9 | 21
1817
19 | 28
75 3
24 | 23
69
20 | 25 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18
2502 | 21 | 24 Solute: 119 2 Solute 868 18 2992 | Heptyl 4 1 1 1 1 : Octyl 6 18 3091 | 26
alcohol
809
23
alcohol
168
1
327 | 25
1853
23
9
9 | 21
1817
19
3599 | 28 75 3 24 186 | 23
69
20
42 | 25
2449 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18
2502 | 21 | 24 Solute: 119 2 Solute: 868 18 | Heptyl 4 1 1 : Octyl o 1079 18 | 26
alcohol
809
23
alcohol
168 | 25
1853
23
9
9 | 21
1817
19 | 28 75 3 24 186 | 23
69
20 | 25
2449 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18
2502
20 | 21 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: | Heptyl 4 1 1 1 1 : Octyl a 1079 18 3091 21 Nonyl | 26
alcohol
809
23
alcohol
168
1
327
2
alcohol | 27
1853
23
9
9
9
3 | 21
1817
19
3599
21 | 28 75 3 24 186 | 23
69
20
42
24·5 | 25
2449
20 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18
2502
20
623 | 21 | 24 Solute: 119 2 Solute 868 18 2992 21 Solute: 1611 | Heptyl 4 1 1 1 : Octyl a 1079 18 3091 21 Nonyl 2244 | 266 alcohol 809 23 alcohol 168 1 327 2 alcohol 2999 | 27
1853
23
9
9
9
3
1 | 21
1817
19
3599
21 | 28 75 3 24 186 632 | 23
69
20
42
24·5 | 25
2449
20
6266 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18
2502
20 | 21 | 24 Solute: 119 2 Solute 868 18 1992 21 Solute: 1611 17 | Heptyl 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26
alcohol
809
23
alcohol
168
1
327
2
alcohol
2999 | 27
1853
23
9
9
9
3
1 | 21
1817
19
3599
21 | 28 75 3 24 186 | 23
69
20
42
24·5 | 25
2449
20 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18
2502
20
623
17 | 21
2
1430
17 | 24 Solute: 119 2 Solute: 868 18 1992 21 Solute: 1611 17 Solute: | Heptyl 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26
alcohol
23
alcohol
168
327
2
alcohol
2999
19 | 27
1853
23
9
9
9
3
1 | 21
1817
19
3599
21 | 28 75 3 24 18 63 4024 19-4 | 23
69
20
42
24·5
5860
20 | 25
2449
20
6266
21·3 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18
2502
20
623
17 | 21
2
1430
17
587 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 | Heptyll 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26
alcohol
809
23
alcohol
168
1
327
2
alcohol
2999
19
alcohol
1058 | 27
1853
23
9
9
9
3
1 | 21
1817
19
3599
21
124
18 | 28 75 3 24 186 634 4024 19-4 | 23
69
20
42
24·5
5860
20 | 25
2449
20
6266
21·3 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23
607
22
565
18
2502
20
623
17 | 21
1430
17
587
14 | 24 Solute: 119 2 Solute 868 18 2992 21 Solute: 1611 17 Solute: 623 15 | ## Property of the content co | 26 alcohol
809
23 alcohol
168 1
327
2 alcohol
2999
19 alcohol
1058 | 27
1853
23
9
9
9
3
1
1
33 | 21
1817
19
3599
21
124
18 | 28 75 3 24 186 634 4024 19.4 1484 16 | 23
69
20
42
24·5
5860
20
1646
16 | 25
2449
20
6266
21·3 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 | 21
2
1430
17
587 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 | Heptyll 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26
alcohol
809
23
alcohol
168
1
327
2
alcohol
2999
19
alcohol
1058 | 27
1853
23
9
9
9
3
1 | 21
1817
19
3599
21
124
18 | 28 75 3 24 186 632 4024 19.4 1484 16 5523 | 23
69
20
42
24·5
5860
20 | 25
2449
20
6266
21·3
1844
18 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 | 21
1430
17
587
14
2101 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 | Heptyl 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | alcohol
809
23
alcohol
168
1
327
2
alcohol
2999
19
alcohol
1058
15
2793
15 | 1853
23
9
9
9
3
1
1439
17
2987 | 21 1817 19 3599 21 124 18 1480 17 4088 | 28 75 3 24 186 634 4024 19.4 1484 16 5523 | 23
69
20
42
24·5
5860
20
1646
16
5747 | 25
2449
20
6266
21·3
1844
18
9145 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 16 | 21
1430
17
587
14
2101
17 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 Solute: | Heptyl 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 266 alcohol 809 23 alcohol 168 1 327 2 alcohol 2999 19 alcohol 1058 15 2793 15 | 27
1853
23
9
9
9
3
1
1
3:
1439
17
2987
18 | 1817
19
3599
21
124
18
1480
17
4088
19 | 28 75 3 24 186 634 4024 19-4 1484 16 5523 20 | 23
69
20
42
24·5
5860
20
1646
16
5747
19 | 25
2449
20
6266
21·3
1844
18
9145
21 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 | 21
1430
17
587
14
2101 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 | Heptyl 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | alcohol
809
23
alcohol
168
1
327
2
alcohol
2999
19
alcohol
1058
15
2793
15 | 1853
23
9
9
9
3
1
1439
17
2987 | 21 1817 19 3599 21 124 18 1480 17 4088 | 28 75 3 24 186 634 4024 19.4 1484 16 5523 20 2959 | 23
69
20
42
24·5
5860
20
1646
16
5747 | 25
2449
20
6266
21·3
1844
18
9145 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 16 510 | 21
1430
17
587
14
2101
17 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 Solute: 1168 13 | Heptyll 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26 alcohol 809 23 alcohol 168 1 327 2 alcohol 2999 19 alcohol 1058 15 2793 15 alcohol 1701 14 | 27
1853
23
9
9
9
3
1
1
3:
1439
17
2987
18 | 1817
19
3599
21
124
18
1480
17
4088
19 | 28 75 3 24 186 634 4024 19.4 1484 16 5523 20 2959 | 23
69
20
42
24·5
5860
20
1646
16
5747
19
3951 | 25
2449
20
6266
21·3
1844
18
9145
21 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 16 510 14 | 21
1430
17
587
14
2101
17 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 Solute: 1168 13 Solute: 13 | Heptyll Heptyll Heptyll Cottyl c 1079 18 3091 21 Nonyl 2244 17 Decyl 16 2515 17 Dodecyl 1644 14 Hexadecy | 26 alcohol 809 23 alcohol 168 1 327 2 alcohol 2999 19 alcohol 1058 15 2793 15 alcohol 1701 14 vl alcohol | 27
1853
23
9
9
9
3
1
1439
17
2987
18
2133
14 | 1817
19
3599
21
124
18
1480
17
4088
19
2754
13 | 28 75 3 24 186 634 4024 19-4 1484 16 5523 20 2959 15 | 23
69
20
42
24·5
5860
20
1646
16
5747
19
3951
14 | 25 2449 20 6266 21·3 1844 18 9145 21 4907 15 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 16 510 14 | 21
1430
17
587
14
2101
17 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 Solute: 1168 13 Solute: 683 | Heptyll 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 26 alcohol 809 23 alcohol 168 1 327 2 alcohol 2999 19 alcohol 1058 15 2793 15 alcohol 1701 14 | 27
1853
23
9
9
9
3
1
1439
17
2987
18
2133
14 | 1817
19
3599
21
124
18
1480
17
4088
19 | 28 75 3 24 186 634 4024 19.4 1484 16 5523 20 2959 15 | 23
69
20
42
24·5
5860
20
1646
16
5747
19
3951
14 | 25
2449
20
6266
21·3
1844
18
9145
21
4907
15 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 16 510 14 | 21
1430
17
587
14
2101
17 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 Solute: 1168 13 Solute: 1683 11 | Heptyll 4 1 1 1 2 Octyl a 1079 18 3091 21 Nonyl 2244 17 2 Decyl 16 2515 17 Dodecyl 1644 14 Hexadecy 1067 | 266 alcohol 809 23 alcohol 168 1 327 2 alcohol 2999 19 alcohol 1058 15 2793 15 4 alcohol 1701 14 yl alcohol 143 | 27
1853
23
9
9
9
3
1
1439
17
2987
18
2133
14 | 1817
19
3599
21
124
18
1480
17
4088
19
2754
13 | 28 75 3 24 186 634 4024 19.4 1484 16 5523 20 2959 15 | 23
69
20
42
24·5
5860
20
1646
5747
19
3951
14 | 25 2449 20 6266 21·3 1844 18 9145 21 4907 15 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 16 510 14 338 17 | 21
1430
17
587
14
2101
17
869
12 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 Solute: 1168 13 Solute: 683 11 Solute: 683 11 Solute: 663 | Heptyll 4 1 1 1 1 1 1 2 Octyl c 1079 18 3091 21 Nonyl 2244 17 2 Decyl 16 2515 17 Dodecyl 1644 14 Hexadecy 1067 12 Cyclohex | 26 alcohol 809 23 alcohol 168 1 327 2 alcohol 2999 19 alcohol 1058 15 2793 15 d alcohol 1701 14 vl alcohol 143 yl alcohol | 27
1853
23
9
9
9
3
1
17
2987
18
2133
14 | 1817
19
3599
21
124
18
1480
17
4088
19
2754
13 | 28 75 3 24 186 634 4024 19-4 1484 16 5523 20 2959 15 | 23
69
20
42
24·5
5860
20
1646
16
5747
19
3951
14 | 25 2449 20 6266 21·3 1844 18 9145 21 4907 15 | | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 23 607 22 565 18 2502 20 623 17 241 15 1964 16 510 14 338 17 | 21
1430
17
587
14
2101
17 | 24 Solute: 119 2 Solute: 868 18 2992 21 Solute: 1611 17 Solute: 623 15 2108 18 Solute: 1168 13 Solute: 1683 11 | Heptyll 4 1 1 1 2 Octyl a 1079 18 3091 21 Nonyl 2244 17 2 Decyl 16 2515 17 Dodecyl 1644 14 Hexadecy 1067 | 266 alcohol 809 23 alcohol 168 1 327 2 alcohol 2999 19 alcohol 1058 15 2793 15 4 alcohol 1701 14 yl alcohol 143 | 27
1853
23
9
9
9
3
1
1439
17
2987
18
2133
14 | 1817
19
3599
21
124
18
1480
17
4088
19
2754
13 | 28 75 3 24 186 634 4024 19-4 1484 16 5523 20 2959 15 | 23
69
20
42
24·5
5860
20
1646
5747
19
3951
14 | 25
2449
20
6266
21·3
1844
18
9145
21
4907
15 | | Table 1. (Continued.) | | | | | | | | | |--|--------|--------------------|--|--|--------------|---|---|------------------| | | | Sa | lute: Cyc | clopentyl alc | oho l | | | | | $10^5 w_2 \dots 10^2 \psi \dots$ | | $716 857 \\ 18 20$ | $\begin{array}{c} 942 \\ 20 \end{array}$ | $ \begin{array}{cccc} 1417 & 1490 \\ 16 & 20 \end{array} $ | | $ \begin{array}{cccc} 1829 & 215 \\ 21 & 2 \\ \end{array} $ | $\begin{bmatrix} 1 & 2557 & 31 \\ 2 & 22 \end{bmatrix}$ | 06 5643
23 28 | | 2ο φ | • | | -0 | | | | | -0 -0 | | B. Solutions in | Benzen | e. | | | | | | | | | | | Solute: A | Methyl alcoh | ol | | | | | $10^5 w_2$ | 233 | 464 | 477 | 529 | 620 | 627 | 738 | 775 | | $10^2 \psi$ | 17 | 20 | 22 | 20 | 22 | 21 | 23 | 23 | | $10^5 w_2$ | 875 | 890 | 1047 | 1256 | 1277 | 1356 | 1689 | | | $10^2 \psi$ | 24 | 24 | 29 | 33 | 33 | 37 | 46 | | | | | | Solute: | Ethyl alcoho | ol | | | | | $10^5 w_2$ | 371 | 487 | 578 | 647 | 734 | 754 | 838 | 862 | | 10 ² ψ | 13 | 12 | 12 | 13 | 13 | 12 | 12 | 14 | | $10^{5}w_{2}$ | 1241 | 1241 | 1278 | 1787 | 2051 | 2606 | 2626 | | | $10^2 \psi$ | 18 | 18 | 20. | 6 24 | 28 | 33 | 34 | | | | | | Solute: 1 | Propyl alcoh | ol | | | | | $10^5 w_0 \dots 414 56$ | 4 596 | | | | | 888 206 | 0 2375 314 | 15 3343 | | $10^2 \psi^2 \dots 14$ | | 14.5 | | 15 16 | | 17.5 | | 5.5 26 | | • | | | Solute | Butyl alcoho | n.I | | | | | $10^5 w_s$ 438 882 | 975 | 1254 | | 671 170 | | 2294 | 2372 283 | 4 3638 | | $10^{4}w_{2}$ 438 882 $10^{2}\psi$ 12 12 | 12.7 | 1234 | 1371 | 13.5 170 | | | 2372 203
17 1 | | | 10 φ 12 12 | | 10 | | | | 100 | | | | | | | Solute: 1 | Pentyl alcoh | ol | | | | | $10^5 w_2$ 723 1036 | | 1375 | | $1706 ext{176}$ | | | 2963 341 | | | $10^2 \psi \dots 12$ 11 | . 12 | 12.5 | 12 | 12 1 | 3 15 | 15 | 16 1 | 8 18 | | | | | Solute: | Hexyl alcoh | ol | | | | | $10^5 w_2$ | 585 | 870 12 | 281 208 | 82 2237 | 2254 | 2385 29 | 909 3376 | 3931 | | $10^2 \psi$ | 11 | 11 | 12 | 12 11 | 12 | 12 | 14.5 15 | 16.7 | | | | | Solute: | Nonyl alcoh | ol | | | | | $10^5 w_2$ | 870 | 1261 | 1824 | 2586 | 2727 | 3168 | 3653 | 5159 | | $10^2 \psi^2$ | 9.7 | 9.5 | 10.8 | | 10 | | | 13 | | • | | | | | | | | | Table 2. Relaxation times of n-alcohols at infinite dilution in carbon tetrachloride or benzene. | Solute
alcohol | $(\psi)_{w_2} = 0$ | $\operatorname{Temp}_{(^{\circ}\mathrm{K})}$ | μ (D) | $10^{12} au$ (sec.) | Solute
alcohol | $(\psi)_{w_2} = 0$ | $_{(^{\circ}\mathrm{K})}^{\mathrm{Temp.}}$ | μ (D) | $10^{12} au$ (sec.) | |---|--|---|---|---|--|--|---|--|---| | A. In ca | arbon tetrac | hloride. | | | | | | | | | Methyl Ethyl Propyl Butyl Pentyl Hexyl Heptyl | 0.30 * $0.29 †$ 0.22 0.20 0.22 0.20 0.21 | 301—303
300—303
301—304
301—303
298
296
295 | 1.7_{8} 1.8_{0} 1.7_{5} 1.7_{7} 1.7_{4} 1.7_{9} 1.8_{0} | 1·8
2·5
2·6
2·9
3·6
3·8
4·4 | Octyl Nonyl Decyl Dodecyl Hexadecyl Cyclopentyl Cyclohexyl | 0·18
0·17
0·16
0·14
0·11
0·18
0·17 | 295—296
295
300—303
294
288
288
290 | 1.7_{9} 1.7_{9} 1.8_{2} 1.7_{9} 1.7_{3} 1.7_{4} 1.8_{8} | 4·6
4·3
4·7
4·8
7·9
2·9
3·0 | | B. In be | enzene. | | | | | | | | | | Methyl
Ethyl
Propyl | $0.20 \\ 0.12 \\ 0.14$ | 296—297 | $1.7_{6} \\ 1.7_{5} \\ 1.7_{5}$ | 2·2
1·9
2·9 | Butyl Pentyl Hexyl Nonyl | 0.13 0.12 0.11 0.10 | 295-297 $296-297$ 298 $297-298$ | $ \begin{array}{c} 1 \cdot 7_{5} \\ 1 \cdot 6_{6} \\ 1 \cdot 6_{8} \\ (1 \cdot 7 - 1 \cdot 8) \\ 1 \cdot 8 \end{array} $ | 3·2
4·1
4·3
ca. 5 | ^{*} Mean for first four solutions. † Mean for first twelve solutions. ‡ Assumed in benzene. ## EXPERIMENTAL Solutes and solvents were those used for the work of the preceding paper. Apparatus, methods, and calculation procedures were as described by Le Fèvre and Sullivan ⁶ and Chau, $^{^{6}}$ Le Fèvre and Sullivan, J., 1954, 2873. Le Fèvre, and Tardif.7 Essential measurements are recorded in Table 1; these lead to the relaxation times τ in Table 2. Headings and other symbols are as in ref. 7, concentrations being expressed as weight fractions, w_2 . The frequency f_r is 3109 Mc/sec. The quantity ψ for a given solution is the quotient (incremental loss tangent) $\div w_2$; it is concentrationdependent. To save space, only ψ and w_2 values are listed in Table 1. When, as for weak solutions, both Δ tan δ and w_2 are small, the individual quotients ψ exaggerate the errors in the incremental loss tangents, which for all solutes have been determined at different times and with different batches of solvent, 3-6 solutions being compared with the solvent on each occasion. In Table 1, however, the ψ 's are reassembled in order of increase of w_2 . For the calculations of r in Table 2, magnitudes of ψ at infinite dilution were either extrapolated from graphs of ψ versus w_2 or averaged (see notes below Table 2). ## Discussion Variation of ψ with w_2 .—Graphs showing the quotient ψ versus concentration exhibit forms as follow: for methyl alcohol, a very steep rise in ψ starts from w_2 ca. 0.005; for the alcohols ethyl to nonyl, analogous but less sudden breaks occur, which, as the carbon chain is lengthened, appear at higher concentrations and become progressively less pronounced; for the alcohols beyond decyl, the plots are rectilinear and parallel to the w_2 axis; for cyclopentyl alcohol and cyclohexyl alcohol, the graphs are straight lines inclined to the w, axis. These discontinuities may be attributed to onsets of association: they correspond approximately (in their w_2 values) to the changes of curvature when the P_2 's listed in the preceding paper, are similarly plotted against concentrations. Relaxation Times at Infinite Dilution.—The smallness of τ (Table 2) is of interest. Fairly numerous studies 1-5 have already shown that the apparent relaxation times of pure alcohols are many times greater than those now obtained at infinite dilution, e.g., $10^{12}\tau$ for the five alcohols CH₃·OH, C₂H₅·OH, n-C₃H₇·OH, n-C₄H₉·OH, and n-C₈H₁₇·OH are given as 69, 144, 532, 665, and 1760 respectively from measurements on the 100% phase (cf. pp. 383, 384 of ref. 2) against 2, 2-3, 2-3, 2-3, and 4-5 now recorded for $\overline{w_2} = 0$ in carbon tetrachloride. Certain estimates by Fischer, made on dilute solutions of alcohols in benzene at 23°, although not extrapolated to infinite dilution, are obviously comparable with those by us: | Alcohol | Methyl | Ethyl | Propyl | Hexyl | Octyl | Hexadecyl | |------------------------------|--------|-------|-------------|-------|-------|-----------| | $10^{12}\tau$ (Fischer) | 1.3 | 1.6 | $2 \cdot 0$ | 3.0 | 4.5 | 10.3 | | $10^{12}\tau$ (Le F. and W.) | 1.8 | 2.5 | $2 \cdot 6$ | 3.8 | 4.6 | 7.9 | Such small relaxation times can reasonably be assigned to the separated single molecules. Since τ 's between 1 and 3×10^{-12} sec. would correspond to wavelengths between 0·19 and 0.57 cm., the detection by Saxton 9 of resonance absorption at 0.25 cm. with methyl alcohol and at 0.5 cm. with ethyl alcohol is harmonious with present results and with the existence, in the undiluted alcohols, of equilibria involving the monomeric species. Finally, we note that if r^3 is estimated from the molar volume of a pure liquid alcohol as $0.296 \times 10^{-24}V$, and inserted in the simple equation $\tau = 4\pi \eta r^3/kT$, values of τ are predicted which are some 20 times those observed at infinite dilution; if, however, eqn. (2) of Chau, Le Fèvre, and Tardif be used, the forecasts achieved are much nearer the correct magnitudes: | Alcohol * | $10^{26} lpha_{ m mean}$ | $10^{12} au_{ m calc.}$ (sec.) | $10^{12} au_{ m obs.} \ ({ m sec.})$ | Alcohol * | $10^{26}\alpha_{\mathrm{mean}}$ | $10^{12} au_{ m calc.}$ (sec.) | $10^{12} au_{ m obs.} \ ({ m sec.})$ | |-----------|--------------------------|---------------------------------|---------------------------------------|-----------|---------------------------------|---------------------------------|---------------------------------------| | Methyl | 319 | $2 \cdot 3$ | 1.8 | Butyl | 859 | 6.3 | 2· 9 | | Ethyl | 500 | 3.7 | 2.5 | Pentyl | 1041 | $7 \cdot 7$ | 3. 6 | | Propyl | 680 | 5.0 | $2 \cdot 6$ | Hexvl | 1218 | 9.0 | 3.8 | ^{*} exp h^2 taken as unity; for carbon tetrachloride $\eta=0.97\times10^{-2}$ poise, $\epsilon=2.238$, $\Delta_1=0.0346$. University of Sydney, N.S.W., Australia. [Received, May 1st, 1959.] Chau, Le Fèvre, and Tardif, J., 1957, 2293. Fischer, Physikal. Z., 1939, 40, 645; Z. Naturforsch., 1949, 4, a, 707. Saxton, Proc. Roy. Soc., 1952, 213, A, 473.