## Vibrational Frequency Correlations in Heterocyclic Molecules. 657. Part VI.<sup>1</sup> Spectral Features of a Range of Compounds Possessing a Benzene Ring Fused to a Five-membered Ring.

## By D. G. O'Sullivan.

Infrared spectra are recorded for a group of compounds possessing benzene rings fused to five-membered rings. Change of simple substituents on a constant ring system produces little change in the spectrum. Occasionally, bands characteristic of the substituent are introduced and slight changes may be produced at low frequencies by the pattern of substitution, but otherwise substituents produce only minor frequency shifts. Surprisingly little change in the spectral panorama follows replacement of an atom in the five-membered ring. More notable alterations are produced by replacements such as NH or S for CH<sub>2</sub>, but these differences arise mainly from H-vibration modes and many of the spectral features remain. Bands related to these cyclic systems are present near the following frequencies: 1600, 1460, 1390, 1310, 1270, 1250, 1200, 1160, 1100, 1060, 1020, 950, 890, 850, 800, and 750 cm.<sup>-1</sup>. In addition, compounds possessing a methylene or methyl group show a strong band at 1470-1420 cm.<sup>-1</sup>, and some compounds with cyclic C=N bonds show bands between 1700 and 1620 cm.<sup>-1</sup>.

Keto-enol and lactam-lactim tautomerism and hydrogen bonding, present in some compounds, are discussed.

INFRARED spectra of compounds of type (I) where R<sup>1</sup>, R<sup>2</sup>, and R<sup>3</sup> are from among CH<sub>2</sub>, NH, O, CO, and SO<sub>2</sub>, and of type (II) where  $R^1$  may be  $CH_2$ , NH, S, O, and Se, or  $R^2$  and R<sup>3</sup> are from among CH, CMe, N, and C·CO<sub>2</sub>H, are given in Tables 1 and 2. Spectra have

(I) 
$$\begin{array}{c} & R^3 \\ R^{*} \\ R^{$$

been determined in carbon tetrachloride when the compound is an oil or a solid of low m. p. Most of the higher-melting solids, being less soluble in this solvent, were studied in potassium bromide discs and in chloroform. Little of the "fingerprint region" appears in chloroform, and generally, other frequencies are identical with those for disc frequencies, so that chloroform frequencies are not included in Tables 1 and 2 but are referred to in the text when appropriate.

## **Results and Discussion**

General Features of the Spectra .--- Previously recorded spectra 2,3 show that variation of substituents in a benzene ring, which forms part of a heterocyclic ring system, produces little change in the frequencies. The spectra of ten substituted indoxyl acetates<sup>2</sup> differ only in minor frequency shifts (corresponding peaks in the different compounds being immediately recognisable) and in the introduction of a few special bands characteristic of the substituent. These features also appear in the spectra of ten isatin oximes, but here minor differences below 1000 cm.<sup>-1</sup> could be correlated with the pattern of substitution in the benzene ring.<sup>3</sup> Present results (Tables 1 and 2) agree with these observations.

Reference to Table 1 shows that replacement of O by S or Se in the five-membered ring produces very little change in the spectrum. Greater change results from the replacement of CH<sub>2</sub> by NH or by S, but a large proportion of the spectral features remain. Consequently, most of the peaks arise from the vibrational modes of the ring system and little can be done to assign individual frequencies to particular vibrational modes. Bands

- Part V. O'Sullivan and Sadler, J., 1959, 876.
   Holt, Kellie, O'Sullivan, and Sadler, J., 1958, 1217.
   O'Sullivan and Sadler, J. Org. Chem., 1957, 22, 283.

are generally present near 1600, 1460, 1390, 1310, 1270, 1250, 1200, 1160, 1100, 1060, 1020, 950, 890, 850, 800, and 750 cm.<sup>-1</sup> and these appear to be characteristic of this type of ring system. Below 1000 cm.<sup>-1</sup> the spectra differ more from compound to compound, and some possess many strong peaks that are absent in others. Many of these bands are out-of-plane CH bending modes.

TABLE 1. Frequencies (1725-800 cm.<sup>-1</sup> region) of compounds in carbon tetrachloride.

|      |                                                                                | $\nu(CN)$ | $\nu(CC)$ |       |
|------|--------------------------------------------------------------------------------|-----------|-----------|-------|
| (1)  | Indoline (I; $R^1 = NH$ , $R^2 = R^3 = CH_2$ )                                 | · /       | 1611s     |       |
| (2)  | Indane (I; $R^1 = R^2 = R^3 = CH_2$ )                                          |           | 1603m     |       |
| (3)  | Indanone (I; $R^1 = CO$ ; $R^2 = R^3 = CH_2$ ) *                               |           | 1611s     |       |
| (4)  | Indene (II; $R^1 = CH_2$ , $R^2 = R^3 = CH$ , $R^4 = R^5 = H$ )                |           | 1611s     |       |
| (5)  | Benzothiophen (II; $\overline{R^1} = S$ , $R^2 = R^3 = CH$ , $R^4 = R^5 = H$ ) |           | 1642w     | 1572m |
|      |                                                                                |           | 1612w     |       |
| (6)  | Benzoxazole (II; $R^1 = O, R^2 = CH, R^3 = N, R^4 = R^5 = H$ )                 | 1722m     | 1605m     | 1521s |
|      |                                                                                | 1706m     |           |       |
| (7)  | 2-Methylbenzoxazole                                                            |           | 1620s     | 1581s |
|      | (II; $R^1 = O$ , $R^2 = CMe$ , $R^3 = N$ , $R^4 = R^5 = H$ )                   |           |           |       |
| (8)  | 2-Methylbenzothiazole                                                          |           | 1600w     | 1532s |
|      | (II; $R^1 = S$ , $R^2 = CMe$ , $R^3 = N$ , $R^4 = R^5 = H$ )                   |           |           |       |
| (9)  | 2-Methylbenzoselenazole                                                        |           | 1596s     | 1540s |
|      | (II; $R^1 = Se, R^2 = CMe, R^3 = N, R^4 = R^5 = H$ )                           |           |           |       |
| (10) | 5-Methoxy-2-methylbenzoselenazole                                              |           | 1601s     | 1560s |
|      | (II; $R^1 = Se, R^2 = CMe, R^3 = N, R^4 = MeO, R^5 = H$ )                      |           |           | 1534s |

Other nuclear stretching vibrations, nuclear deformation and CH deformation modes

| (1)  | 1493s | 1469s | 1442m | 1407s          |               | 1329s          | 1318s          | 1288m | 1246s          | 1198w          |
|------|-------|-------|-------|----------------|---------------|----------------|----------------|-------|----------------|----------------|
| (2)  | 1488s | 1462s | 1442s | 1392w          |               | 1 <b>32</b> 0m | 1 <b>313</b> s | 1267m | 1223w          |                |
| (3)  |       | 1468s | 1446s | 1411m          | <b>1344</b> m | 1328s          |                | 1280s | 1246s          | 1205s          |
| (4)  |       | 1461s |       | 1 <b>3</b> 99s | <b>1363</b> m | 1332w          | <b>1314</b> m  | 1289w | 1252w<br>1229m | 1209m          |
| (5)  | 1501w | 1461s |       | 1428s<br>1386w | 1348s         | <b>132</b> 8m  | <b>1318</b> m  | 1261s |                | 1211s          |
| (6)  | 1480s | 1457s |       | 1425w          | 1358w         | 1342w          | 1302s          | 1284w | 1240s          | 1196w<br>1184w |
| (7)  | 1475m | 1461s | 1444s | 1389s          | 1363w         | 1343w          | 1312w          | 1271s | 1248s          | 1192m          |
| (8)  |       | 1451m | 1440s | <b>137</b> 8m  |               |                | 1314s          | 1282m | 1248s          | 1186s          |
| (9)  |       | 1455s | 1442s | 1375m          |               |                | 1304s          | 1275w | 1240s          |                |
| (10) |       | 1468s | 1440s | 1375w          |               |                | 1318s          | 1280s | 1250m<br>1230w | 1204s          |

Other nuclear stretching vibrations, nuclear deformation and CH deformation modes

| (1)  | 1172m | 1155m          | 1095m | 1060m          | 1028s          |      | 941w<br>920w | 871m | 848w          |      |
|------|-------|----------------|-------|----------------|----------------|------|--------------|------|---------------|------|
| (2)  | 1160w | 1130w          | 1085m | 1050m          | 1028s          | 996w | 935m         | 908w | 856w          |      |
| (3)  | 1178s | 1152s          | 1098m | 1033s          | 1016m          | 980m | 950w         | 878w |               | 828m |
| (4)  | 1169m | 1126m          | 1070m | 10 <b>34</b> w | 1020s          |      | 949s<br>926m | 915s | 861s          |      |
| (5)  | 1162s | 1135m          | 1094s | 1060s<br>1050s | 1019s          |      | 940s         | 886s | 870s<br>853m  |      |
| (6)  | 1161m | 1145m          | 1110s | 1070s          | 1003m          |      | 933m<br>921s | 882w | 869s<br>848w  |      |
| (7)  | 1172s | 1150m          | 1110m | 1046w          | 1005m          |      | 928s         | 886s | 861w          | 832s |
| (8)  | 1176s | 1162s          | 1131m | 1071m          | 1019m<br>995m  |      | 939w         | 870m | 855w          |      |
| (9)  | 1165s | 115 <b>3</b> s | 1124s | 1047s          | 1022s<br>992m  |      | 939w         | 861s | 85 <b>3</b> w |      |
| (10) | 1170s | 1160s          | 1135s | 1059s          | 1030s<br>1000w |      | 935m         | 870m | 849s          |      |

\* Carbonyl stretching frequency is given in Table 3.

In substituted indoxyl acetates,<sup>2</sup> bands are present near 1615, 1475, 1380, 1330, 1220, 1060, 900, and 800 cm.<sup>-1</sup> which can be identified with bands quoted above. These peaks are also present in the spectra of substituted isatins <sup>4</sup> and isatin oximes,<sup>3</sup> although strong bands produced by the oxime group obscure some features with the latter compounds. Consequently, this set of bands can be considered characteristic of a benzene ring fused

<sup>4</sup> O'Sullivan and Sadler, J., 1956, 2202.

to a five-membered ring. Indoxyl acetates, in addition, show a band between 1580 and 1545 cm.<sup>-1</sup> which is present in several compounds listed in Tables 1 and 2, and a band near 1440 cm.<sup>-1</sup> which owes its origin to the methyl group.

Stretching frequencies of C=N bonds occur in the 1660-1620 cm.<sup>-1</sup> region in some of

 TABLE 2. Frequencies (1700—600 cm.<sup>-1</sup> region) of compounds in potassium bromide discs.

| (1)        | 2-Methylbenzimidazole<br>(II; $R^1 = NH$ , $R^2 = CMe$ , $R^3 = N$ , $R^4 = R^5 = H$ ) |                                        |                          |                                  |                      |                            |                | 1652w<br>1622m                                                    | 1592m            | $1560 \mathrm{m}$<br>$1512 \mathrm{w}$ | 1492m                   |
|------------|----------------------------------------------------------------------------------------|----------------------------------------|--------------------------|----------------------------------|----------------------|----------------------------|----------------|-------------------------------------------------------------------|------------------|----------------------------------------|-------------------------|
| (2)        | 5-Methy                                                                                | lbenzimio                              | lazole (VI               | [)                               |                      |                            |                | 1626w                                                             | 1590w            | 1562w<br>1547w                         | 1483s                   |
| (3)        | 5-Nitrob<br>(II: H                                                                     | enzimida<br>R <sup>1</sup> = NH        | zole<br>, $R^2 = Cl$     | H. $R^3 = 1$                     | N. $R^4 = 1$         | NO₀. R⁵ =                  | = H)           | 1622w                                                             | 1592s            | 1560w<br>1514s *                       | 1490s                   |
| (4)        | Indazole                                                                               | (IX)                                   |                          |                                  | ,                    | 2)                         | ,              | 1621m                                                             |                  | 1562w<br>1547w                         | 1507s                   |
| (5)        | 5-Nitroin<br>(II; H                                                                    | $dazole$ $R^1 = NH$                    | , $R^2 = N$              | 1652w<br>1624m                   | 1592m                | 1539m *                    | 1498s          |                                                                   |                  |                                        |                         |
| (6)        | 6-Nitroin<br>(II: F                                                                    | dazole<br>$R^1 = NH$                   | $R^2 = N$                | $R^3 = CI$                       | H. $R^4 = F$         | -<br>I. R <sup>5</sup> = 1 | , OV           |                                                                   | 1600m            | 1562w<br>1529s *                       | 1503m                   |
| (7)        | Indazol-                                                                               | $3$ -one $\dagger$                     | NH R3                    | - $(0)$                          | ,                    | -, -                       | - 21           |                                                                   | 1590s            |                                        | 1494s                   |
| (8)        | Dihydro<br>(I · R                                                                      | benzo[d]is<br>$l = SO_{2}$             | sothiazole<br>$R^2 = NH$ | 1,1-diox<br>$R^3 = C0$           | ide †                |                            |                |                                                                   | 1653m<br>1596s   | 1562w                                  | 1495w                   |
| (9)        | Coumari<br>(II: F                                                                      | $\frac{1}{1} = 0.16$                   | $R^2 = C \cdot C C$      | ).H. R <sup>3</sup> =            | = CH. R4             | = R⁵ =F                    | -T)            |                                                                   | 1614s<br>1580s   | 1568s<br>1546m                         | 1482m                   |
| (10)       | Benzoxa                                                                                | zolone †                               | $(I; R^1 =$              | NH, R <sup>2</sup>               | = CO, R <sup>3</sup> | = 0)                       | -,             |                                                                   | 1622m            | 1563w                                  | 1484s                   |
| (1)        | 1457s                                                                                  | 1448s                                  | 1422s<br>1392s           | 1 <b>3</b> 66m                   |                      |                            | 1278s          | 122 <b>3</b> s                                                    | 1200w            |                                        | 1150w                   |
| (2)<br>(3) | 1461s<br>1465s                                                                         | 1451s                                  | 1424s<br>1412s           | 1345m<br>1378s<br>1245s <b>*</b> | 1320s                | 1302s<br>1308s             | 1287s<br>1268s | $\begin{array}{c} 1255 \mathrm{s} \\ 1246 \mathrm{s} \end{array}$ | 1212w<br>1200m   | 1168m                                  | 1127m<br>11 <b>3</b> 5w |
| (4)        | 1480w<br>1464w                                                                         | 1450m                                  | 1386m                    | 1340s                            |                      |                            | 1288w          | 125 <b>3</b> m                                                    | 1208m            | 115 <b>4</b> m                         | <b>114</b> 8m           |
| (5)        | 11010                                                                                  | $1450 \mathrm{w}$<br>$1425 \mathrm{w}$ | 1400w                    | 1345s *                          |                      | 1308m                      | 1286m          | 1244m                                                             | 1206m            |                                        | <b>1</b> 141m           |
| (6)        | 1480w<br>1462w                                                                         | 1450m                                  | 1425w<br>1392m           | 1352s *                          | 1 <b>32</b> 0m       | <b>1303</b> m              |                | 1240w                                                             | 1204m            |                                        | 11 <b>3</b> 2w          |
| (7)        | 1465s                                                                                  |                                        | 1414m                    | 1365m<br>1350m                   | 1332s                |                            |                | 12 <b>3</b> 5w                                                    |                  | 1166m                                  | 1108m                   |
| (8)        | 1467s                                                                                  | 1425w                                  |                          |                                  | 1335s ‡              | 1300s                      | 1261s          |                                                                   | 118 <b>3</b> s : | ; 1166s<br>1142s                       | 112 <b>3</b> s          |
| (9)        |                                                                                        | 1452w                                  | 1 <b>433</b> s           | <b>134</b> 5m                    | 1336m                | 1303s                      | 1262m          | 1241s<br>1228s                                                    | 1196s            | 1148s                                  | 1118m                   |
| (10)       |                                                                                        | 1426w                                  | 1402s                    |                                  | 1333w                | 1312s                      | 1260s          |                                                                   |                  | 115 <b>2</b> s                         | 1102m                   |
| (1)        |                                                                                        | 1048m<br>1032s                         | 1028s<br>1010m           | 968w                             | 928w                 | 900m                       | 852m           | 838m                                                              | 770w             | 735s                                   | 678m                    |
| (2)        |                                                                                        | 1040w                                  | 1005w                    | 958s                             | <b>932</b> m         | 884m<br>870s               | 858m           | 812s<br>800s                                                      | 762w             | 747w                                   | 668w<br>630s            |
| (3)        | 1110m                                                                                  | 1071s                                  |                          | 957s                             |                      | 900s                       | 841m<br>830s   | 820s                                                              | 762m             | 745s                                   | 688w<br>615s            |
| (4)        | 1126m                                                                                  | 1080s                                  | 1006m                    | 95 <b>3</b> s                    | 946s                 | 897m<br>872m               | 852s           | 1005                                                              | 784w<br>770s     | 752s                                   | 657m                    |
| (5)        |                                                                                        | 107 <b>3</b> s                         |                          | 961m                             | 952s                 | 901s                       | 851w           | 826s                                                              |                  | 751s                                   | 688m                    |
| (6)        | 1092m                                                                                  | 1075s                                  |                          | 958s                             | 952s                 | 888w                       | 860s           | 816w                                                              |                  | 750m                                   | 686s                    |
| (7)        | 1095m                                                                                  |                                        | 1010w                    | 968w                             | 940w                 | 878s<br>900s               | 840s<br>856m   | 794s<br>792s                                                      |                  | 734s<br>746s                           | 700s                    |
| (1)        | 1055111                                                                                |                                        | 10100                    |                                  | 0101                 | 0005                       | ooom           | 1025                                                              |                  |                                        | 680s                    |
| (8)        |                                                                                        | 1060m                                  | 1018m<br>1010w           | 978m                             |                      | 902s                       |                | 796m                                                              | 77 <b>4</b> s    | 760s                                   | 702s<br>630m            |
| (9)        |                                                                                        |                                        | 1009w                    |                                  | 948s                 | 888m                       | 865m           | 818s                                                              | 770m             | 754s                                   |                         |
| (10)       |                                                                                        |                                        | 1011m                    |                                  | 942s<br>921m         | 898m<br>870w               | 847w<br>852w   |                                                                   | 764s             | 750s<br>751s<br>741s                   | 720s<br>701s            |

\* Antisymmetric and symmetric NO<sub>2</sub> stretching frequencies. † Carbonyl stretching frequencies are given in Table 3. ‡ Antisymmetric and symmetric SO<sub>2</sub> stretching frequencies.

the compounds in Tables 1 and 2. Benzoxazole possesses bands of reasonable intensity at 1722 and 1706 cm.<sup>-1</sup> which, if they are not overtones or combination bands, might be C=N frequencies. All the compounds show very weak overtone bands between 2000 and 1650 cm.<sup>-1</sup>. The maximum occasionally present near 1490 cm.<sup>-1</sup> is sometimes an NH bending frequency and sometimes a ring vibration. One or more strong bands appear in the 1470–1440 cm.<sup>-1</sup> region in compounds possessing methyl and methylene groups. These are produced by CH<sub>2</sub> scissoring vibrations. In some cases the number of frequencies equals the number of CH<sub>2</sub> groups (Table 3).

TABLE 3. Frequencies between 1600 and 1412 cm.<sup>-1</sup>, and the number of methylene groups per molecule.

| Compound | Number of CH <sub>2</sub> groups | Frequenc | ies (cm. <del>~1</del> ) |      |
|----------|----------------------------------|----------|--------------------------|------|
| Indene   | 1                                |          | 1461<br>1468             | 1446 |
| Indoline | $\frac{1}{2}$                    | 1493 *   | 1469                     | 1442 |
| Indane   | 3                                | 1488     | 1462                     | 1442 |
| *        | NH deformatio                    | n mode.  |                          |      |

NH and CO Stretching Frequencies .-- Isomeric structures are possible for a number of compounds in Table 4. Indanone, possessing a carbonyl frequency at 1721 cm.<sup>-1</sup> and no OH stretching frequency, exists exclusively in the ketonic form (I;  $R^1 = CO$ ,  $R^2 =$  $R^3 = CH_2$ ) in the solid state. Its carbonyl band in chloroform is broader and occurs at  $17.7 \text{ cm.}^{-1}$ . Association with a solvent molecule could account for this depression. The ultraviolet spectrum of the compound shows it to be ketonic in solution.<sup>5</sup>

TABLE 4. NH, CH, and CO Stretching frequencies (cm.<sup>-1</sup>).

|                                            | $\nu(\rm NH)$ | $\nu(CH)$           | ν(CO)        |
|--------------------------------------------|---------------|---------------------|--------------|
| Indoline <sup>a</sup>                      | <b>3400</b> m | 3018m, 2920s, 2840s |              |
| Indan-1-one •                              |               | 2900m               | 1721s        |
| Indane-1.3-dione <sup>b</sup>              |               | đ                   | 1749m, 1712s |
| 2.2-Dimethylindane-1.3-dione <sup>c</sup>  |               | đ                   | 1745m, 1708s |
| 2.2-Dihydroxyindane-1.3-dione <sup>c</sup> |               | đ                   | 1753m, 1722s |
| 2-Methylbenzimidazole •                    |               | 3050 - 2650 sb      |              |
| 5-Methylbenzimidazole •                    |               | 3000 - 2500 sb      |              |
| 5-Nitrobenzimidazole •                     |               | 3050—2780sb         |              |
| Indazole •                                 | 3150s         | 2920s               |              |
| 5-Nitroindazole <sup>e</sup>               | <b>3</b> 090m | <b>2900</b> m       |              |
| 6-Nitroindazole <sup>e</sup>               | <b>3160</b> m | <b>2920</b> m       |              |
| Dibudrohenge [d]igothegele 1 1 dioride     | { 2670s °     | 3075s °, 2930s °    | 1714s °      |
| Dinydrobenzo[a]isotnazole 1,1-dioxide      | 1             | 31002500sh b        | 171450       |

• Frequencies from carbon tetrachloride solutions. • Frequencies from chloroform solutions. <sup>o</sup> Frequencies from potassium bromide discs. <sup>d</sup> Frequency not measured. A broad band containing CH stretching frequencies submerged in an NH frequency is indicated by letter b.

Keto-enol tautomerism can occur with indane-1,3-dione (I;  $R^1 = R^3 = CO$ ,  $R^2 =$ CH<sub>2</sub>). Also, as this compound is a  $\beta$ -diketone, a further complication is possible. Aliphatic  $\beta$ -diketones possess a high-intensity broad band between 1640 and 1530 cm.<sup>-1</sup> in addition to a single CO stretching vibration.<sup>6</sup> Conjugate chelation, resulting in strong intramolecular hydrogen bonding, is responsible. With indane-1,3-dione such intramolecular bonding is not possible, but the spectra of other cyclic 1,3-diones, such as 5,5-dimethylcyclohexane-1,3-dione, show the presence of resonance-stabilised hydrogen bonding.<sup>6</sup> As indane-1,3-dione does not show an OH stretching frequency but shows sharp carbonyl peaks at 1749 and 1712 cm.<sup>-1</sup> (Table 4), enolic forms and strong intermolecular association can be discounted. Thus the compound exists in the monomeric ketonic form in chloroform. This is confirmed by the presence of two similar carbonyl frequencies in the spectra

<sup>5</sup> Ramart-Lucas, Hoch, and Vial, Bull. Soc. chim. France, 1952, 220; Heddon and Brown, J. Amer. Chem. Soc., 1953, 75, 3744; Braude and Sondheimer, J., 1955, 3763. <sup>6</sup> Rasmussen, Tunnicliff, and Brattain, J. Amer. Chem. Soc., 1949, 71, 1068.

3281

of 2,2-dimethylindane-1,3-dione (I;  $R^1 = R^3 = CO$ ,  $R^2 = CMe_2$ ) and ninhydrin [I;  $R^1 = R^3 = CO$ ,  $R^2 = C(OH)_2$ ].

Indazol-3-one (I;  $R^1 = R^2 = NH$ ,  $R^3 = CO$ ) is analogous to isatin (I;  $R^1 = NH$ ,  $R^2 = R^3 = CO$ ) and indigo (III). It shows a strong band from 3100 to 2700 cm.<sup>-1</sup> and a

 

 TABLE 5.
 NH and CO Stretching frequencies (cm.<sup>-1</sup>) of isatin, indazolone, and indigos in potassium bromide discs.

|               | Compd.                   | Isatin <sup>4</sup> | Indazol-3-one             | Indigo       | Thioindigo    |               |
|---------------|--------------------------|---------------------|---------------------------|--------------|---------------|---------------|
| $\nu(\rm NH)$ |                          | 3445 3215           | 3100—2700b                | 3270         |               |               |
| v(CO)         | •••••                    | 1730                | 1626                      | 1631         | 1658          |               |
| Substitu      | ted indigos <sup>6</sup> |                     |                           |              |               |               |
|               | Subst.                   | 5,5'-Dichloro-      | 6,6'-Dichloro-            | 4,4′-Di-odo- | 7,7′-Dibromo- | 1,1-Dimethyl- |
| $\nu(\rm NH)$ |                          | 3220                | 3260                      | 3400         | 3370          |               |
| v(CO)         |                          | 1625                | 1630                      | 1637         | 1642          | 1635          |
|               |                          |                     |                           |              |               |               |
|               |                          | й н                 | _                         | o-           | 0-            |               |
|               |                          | ᡎᠺᢩᢆ᠕᠊᠇             | $\land$ $\land$           | ∠Ċ           | <u>λ</u> έ    |               |
|               | L                        | l _c=c              |                           | ў́м≛н        | I I NH        |               |
|               |                          | <u>^N Ç</u> ^       | $\checkmark$ $\checkmark$ | `N΄          | N N           |               |
|               | (III)                    | п о                 |                           | H (IV)       | ЙН (V         | )             |
|               | (/                       |                     |                           |              |               |               |

very intense broad band at  $1626 \text{ cm}^{-1}$  (Table 5). The latter band is too intense to be a C=C stretching frequency and is probably a carbonyl group involved in both conjugation and hydrogen bonding. The band between 3100 and 2700 cm.<sup>-1</sup> would then be produced by one or more N-H bonds also involved in very strong hydrogen bonding. The comparatively high values for the NH frequencies of isatins (Table 5), which possess CO...HN bonds of reasonable strength,<sup>4</sup> show that much stronger bonding is present in indazol-3-one. Carbonyl frequencies of indigo and 5,5'- and 6,6'-disubstituted indigos are close to 1626 cm.<sup>-1</sup>, the value for indazol-3-one (Table 5). Extensive conjugation involving the carbonyl groups and intermolecular CO····HN linkages are both present in these compounds.<sup>7</sup> Where large substituents are present in 4,4'- or 7,7'-positions such intermolecular hydrogen bonding is not possible and the carbonyl frequencies rise to about 1640 cm.<sup>-1</sup>. Both the carbonyl frequencies of thioindigo and 1,1'-dimethylindigo (Table 5), neither of which can possess hydrogen bonds, and the NH frequencies of indigos conform with the above interpretation. The latter frequencies are much higher than the NH frequency of indazol-3-one. As no frequency associated with free or feebly hydrogen-bonded NH exists, both NH groups must be modified, presumably as a result of conjugation in the molecule. This is accounted for if structures (IV) and (V) make important contributions to the resonance hybrid. In the solid the molecules are held together by very strong hydrogen bonds, probably involving both NH groups.

In addition to CH stretching frequencies at 3075 and 2930 cm.<sup>-1</sup>, the sulphone (I;  $R^1 = SO_2$ ,  $R^2 = NH$ ,  $R^3 = CO$ ) possesses a strong band at 2670 cm.<sup>-1</sup> and a carbonyl stretching frequency at 1714 cm.<sup>-1</sup>. Broad and very strong antisymmetric and symmetric S=O stretching frequencies <sup>8</sup> are present at 1335 and 1183 cm.<sup>-1</sup>, respectively. Thus this compound is correctly represented by structure (I;  $R^1 = SO_2$ ,  $R^2 = NH$ ,  $R^3 = CO$ ), and the band at 2670 cm.<sup>-1</sup> cannot be a hydrogen-bonded OH frequency, but must arise from stretching vibrations of NH groups involved in unusually strong hydrogen bonding. As the carbonyl peak is sharp and above 1700 cm.<sup>-1</sup>, it cannot participate in such strong hydrogen bonding which consequently must form intermolecular links between SO<sub>2</sub> and NH groups.

Benzoxazolone (I;  $R^1 = NH$ ,  $R^2 = CO$ ,  $R^3 = O$ ) possesses a fairly sharp maximum at 3225 cm.<sup>-1</sup> and strong bands at 1767 and 1726 cm.<sup>-1</sup> in potassium bromide discs. The

<sup>7</sup> Holt and Sadler, Proc. Roy. Soc., 1958, B, 148, 495.

<sup>&</sup>lt;sup>8</sup> Baxter, Cymerman-Craig, and Willis, J., 1955, 669.

latter bands must be related to a carbonyl group, and consequently benzoxazole possesses a lactam structure with the band at 3225 cm.<sup>-1</sup> arising from NH groups involved in hydrogen bonding. Thus, in the solid the anhydrous compound exists as a dimer linked by two  $CO \cdots HN$  bonds and is therefore analogous to oxindole.<sup>9</sup> Two bands also appear in the carbonyl region of the spectra of oxindole (I;  $R^1 = NH$ ,  $R^2 = CO$ ,  $R^3 = CH_2$ ) and some substituted oxindoles.<sup>9</sup> As the relative intensity of these bands is the same whether the compounds are in the solid state or in solution they are unlikely to arise from the simultaneous presence of carbonyl groups participating in hydrogen bonding and others existing in the free state. Monocyclic amides, without extensive conjugation, possess just one carbonyl frequency,<sup>10</sup> but where conjugation is extensive in one or two rings, more than one band frequently appears.<sup>11</sup> However, the position is often confused because conjugation involving the carbonyl groups may shift the carbonyl absorption into regions where it is difficult to distinguish between C=O, C=N, and C=C stretching frequencies.

Coumarilic acid (II;  $R^1 = O$ ,  $R^2 = C \cdot CO_2 H$ ,  $R^3 = CH$ ,  $R^4 = R^5 = H$ ) exhibits the broad associated OH band between 3100 and 2500 cm.<sup>-1</sup> in chloroform and in the solid, and a carbonyl band at 1714 cm.<sup>-1</sup> in chloroform and at 1684 cm.<sup>-1</sup> in the solid. Normal carboxylic acid dimerisation <sup>12</sup> occurs in the solid and in chloroform, but the carbonyl group is less influenced by hydrogen bonding in solution. Bands at 1433, 1241, and 948 cm.<sup>-1</sup> (Table 2) could also be related to the carboxyl group.<sup>12</sup>

Tautomerism is most improbable with 2-methylbenzimidazole (II;  $R^1 = NH$ ,  $R^2 =$ CMe,  $\mathbb{R}^3 = \mathbb{N}$ ,  $\mathbb{R}^4 = \mathbb{R}^5 = \mathbb{H}$ ) which possesses a broad strong band between 3050 and 2650 cm.<sup>-1</sup> (Table 3). Thus, unusually strong intermolecular N-H···N bonds are present giving rise, in the solid, to a resonance-stabilised linear polymer. The broad band at 3180 cm.<sup>-1</sup> in chloroform shows that the hydrogen bonding is much weaker in this solvent. With the 5(or 6)-methyl compound, no evidence has strongly favoured one of structures (VI) and (VII). The strong broad band between 3000 and 2500 cm.<sup>-1</sup> in the solid (Table 2) shows the presence of a hydrogen-bonded NH group, thus eliminating the unlikely structure



(VIII), but no further conclusion is possible from the spectrum. The hydrogen bonding is, however, so strong that the hydrogen atoms will be almost equally shared between adjacent molecules, which removes the distinction between the two possibilities. The position of the NH band in the 5(or 6)-nitro-compound (Table 2) shows that this is similar to the methyl derivative. It is not likely that the nitro-group participates in the hydrogen bonding, as the antisymmetric and symmetric N=O stretching frequencies occupy their normal positions (Table 2).

Structure (IX) is the most probable of the various possible tautomeric forms of indazole. This compound possesses a fairly sharp maximum at 3150 cm.<sup>-1</sup> in the solid, showing the presence of a hydrogen-bonded NH group, and a maximum at 3250 with a shoulder at 3450 cm.<sup>-1</sup> in chloroform, showing that a proportion of the NH groups are not involved in hydrogen bonding in this solvent. Similar tautomeric possibilities exist for the 5- and 6-nitro-compounds. The solubilities of these compounds were too low for their spectra to be determined in solution. Spectra from potassium bromide discs do not even permit certain recognition of NH groups, as the frequencies at 3090 and 3160 cm.<sup>-1</sup> (Table 4) in the two compounds could be CH stretching frequencies. The NO<sub>2</sub> frequencies (Table 2)

- <sup>9</sup> Kellie, O'Sullivan, and Sadler, J., 1956, 3809.
  <sup>10</sup> Edwards and Singh, *Canad. J. Chem.*, 1954, 32, 683.
  <sup>11</sup> Short and Thomson, J., 1952, 168; Gibson, Kynaston, and Lindsey, J., 1955, 4340.
- <sup>12</sup> Flett, J., 1951, 962.

are in their normal positions. The chemistry of these compounds suggests that one hydrogen atom is very labile.

*Experimental.*—Spectra were determined with a Perkin-Elmer 21 double-beam spectrometer fitted with a rock-salt prism. Potassium bromide discs, chloroform solutions in 1 mm. cells, and, where solubility permitted, carbon tetrachloride solutions in 0.37 mm. cells were employed.

The author thanks the Department of Scientific and industrial Research for a special grant towards the cost of this research.

COURTAULD INSTITUTE OF BIOCHEMISTRY, MIDDLESEX HOSPITAL MEDICAL SCHOOL, LONDON, W.1. [Received, February 2nd, 1960].

3284