Spectroscopic Studies of Quaternary Aldoximes and 411. Ketoximes.

By P. W. SADLER.

2,2'-Pyridil monoxime has the β -configuration and forms intramolecular $N \cdot OH \cdots O \cdot C$ bonds. Structures are tentatively assigned to the isomeric 2,2'-pyridil dioximes on the basis of their N-O stretching frequencies. The intensity of the C=N absorption is very variable in heterocyclic aldoximes and is particularly affected by quaternization which in general raises this frequency. Changes in frequency and intensity of this absorption are related to the reactivating properties of pyridine-2- and -4-aldehyde oxime derivatives for di-O-ethylphosphorylacetocholinesterase.

2,2-PYRIDIL MONOXIME (I) in the solid state has bonded O-H stretching frequencies at 3200 and 2800 cm.⁻¹ and a carbonyl stretching frequency at 1700 cm.⁻¹. These frequencies remain unchanged in dilute chloroform solution, indicating that bonding is intramolecular. Similar data are obtained for β -benzil monoxime in which the C=O mode occurs at the same frequency (1675 cm.⁻¹) in both solid and solution spectra. In the α -isomer this vibration shifts from 1645 cm.⁻¹ for the solid to 1670 cm.⁻¹ for solutions. Hence the monoxime of 2,2'-pyridil has the β -configuration. Earlier work has shown correlation between O–H stretching frequencies and the α - and β -forms of substituted benzaldoximes.¹ These have bands at 3250 and 3115 cm.⁻¹, respectively, in the solid state. Isomeric 2,2'-pyridil dioximes do not clearly differ in the 3 μ region (Table 1), but do in the N-O

TABLE 1. Frequencies (cm.⁻¹) of isomeric 2,2'-pyridil and benzil oximes in potassium bromide discs.

2,2'-Pyridil a-dioxime 355	0 3250 3100	2900	1630 1590	1480 1435	1225 1095	1005	
2,2'-Pyridil β -dioxime	3200 3050	2900	1630 1590	1480 1440	1235 1095	1005- 970 9	45
•						1095	
2,2'-Pyridil β-mon-	3200	2800 1700	1630 1580	1470 1435	$1225 \ 1090$	1000- 965 9	35
oxime						1094	
Benzil a-dioxime 340	0 3050)		1490 1440	1220 1095	990	
Benzil β-dioxime 345	0 3050)	1600	1500 1440	1225 1075	985 960 9	940

stretching mode. Assignments² for this band have ranged from 800 to 1075 cm.⁻¹ (800-850, 900, 1020, and 975–1075). For benzil α -dioxime a single strong peak occurs in the N-O stretching region at 990 cm.⁻¹, whereas the β -dioxime shows more complex absorption with maxima at 940, 960, and 985 cm.⁻¹. As 2,2'-pyridil dioxime (m. p. 237°) has a single strong band at 1005 cm.⁻¹ and its isomer (m. p. 247°) has maxima at 970, 985, and 995—1005 cm.⁻¹, they are tentatively assigned the α - and the β -configuration respectively.

Two series of stereoisomers may be obtained for the quaternary pyridinium oxime derivatives.³ Only those belonging to the more stable group are listed in Table 2. Attempts to assign configuration to the two series by chemical methods failed,³ because quaternization need not occur with retention of configuration-quaternary ions may

¹ Palm and Werbin, Canad. J. Chem., 1953, **31**, 1004. ² Haszeldine and Jandes, J., 1954, 691; Tarte, Bull. Soc. chim. belges, 1953, **62**, 401; Giguère and Liu, Canad. J. Chem., 1952, **30**, 948; Goubeau and Fromme, Z. anorg. Chem., 1949, **258**, 18; O'Sullivan and Sadler, J. Org. Chem., 1957, **22**, 283; Hadži, J., 1956, 2725. ³ Ginsberg and Wilson, J. Amer. Chem. Soc., 1957. **79**, 481.

[1961]

catalyse the isomerisation of oximes.⁴ It is impossible to assign configurations to the oximes on the basis of their O-H stretching frequencies,¹ for these are complex owing to the formation of intermolecular bonds. Only tertiary aldehydes give oximes sufficiently soluble in non-polar solvents to provide records in the 3μ region, and it has been suggested ⁵ that the presence of a non-bonded O-H absorption in pyridine-2-aldehyde oxime in carbon tetrachloride solution indicates the α -form (II) for the compound, as the β -form should show an intramolecular $O-H \cdots N$ bond. Further structural information is afforded by

TABLE 2. Frequencies $(cm.^{-1})$ of oximes of tertiary and quaternary aldehydes in potassium bromide discs.

No				-									
1	HON·HC·[CH.].·NMe.Cl	3400	3200	3100		1640m			1480	1405	1295	1025	900
$\overline{2}$	2-2'-Oxoethylpyridinium	3500		3050		1630m			1480	1420	1295	1060—	915
	oxime chloride											1040	
3	NN-Dimethyl-p-2'-oxo-	3450	3150	3050	2850	1625w	1590		1490—	1410	1295	1030	985
	ethylanilinium oxime								1480				
	chloride												
4	<i>p</i> -Dimethylaminobenz-	3300	3150		2950	1610		1530			1300		960
	aldoxime					1005			1 400		1000		
Ð	p-Dimethylaminobenz-		3250	3050		1605vw			1480	1405	1280		970
	aldoxime metho-												
a	Puridino 9 aldobado		2250		9800	1690	1505	1560	1510	1490	1990		000
U	ovime		3200		2000	10200	1090	1000	1510	1430	1520		990
7	Pyridine-2-aldehyde			3050	2950	1620m		1570	1500	1420	1300		1000
•	oxime methiodide			0000	2000	102011		1910	1000	1120	1000		1000
8	Pvridine-2-aldehvde		3200			1630m	1600	1570	1500	1450	1300		995
	oxime isopropylo-												
	iodide												
9	Pyridine-3-aldehyde		3150		2800	1620w		1570	1510	1410	1305		990
	oxime												
10	Pyridine-4-aldehyde		3150		2900	1640w	1600		1500	1420	1305		990
	oxime												
11	Pyridine-4-aldehyde		3150		2750	1640m	1610	1590	1490	1425	1295		990
	oxime butylo-												
19	10010e	9450		2050	9950	1640	1610		1400		1900		1005
14	Crime 3' bromo	3400		3050	2000	1040	1010		1480		1298		1005
	propylobromide										1290		
13	Pyridine-4-aldehyde	3450		3050	2900	1650	1610		1480		1298-		1010
	oxime 5'-bromo-	0100		0000		1000	1010		1100		1290		1010
	pentvlobromide												
14	NN'-Trimethylene-	3450	3150	3050	2900	1645	1610		1480		1295		1015
	bis-(4-hydroxy-												
	iminomethylpyr-												
	idinium bromide)												
15	NN'-Tetramethylene-	3500	3150	3050	2900	1640	1610		1485		1295		1000
	bis-(4-hydroxy-												
	iminomethylpyr-												
10	4 4' Dimethyl 9 9'				9000		1500	1540		1450			
10	hipyridyl				2900		1590	1040		1400			
17	4 4'-Dimethyl-2 2'-bi-				2950	1620		1575		1450			
	pyridyl dimethiodide				-000			1010		- 100			

Bands quoted are strong unless otherwise marked.

the O-H deformation mode. This has been examined for several groups of compounds ⁶ and identified between 1020 and 1420 cm.⁻¹. In particular, it has been demonstrated at 1300 and 1350 cm.⁻¹, respectively, in the Nujol spectra of the α - and the β -forms of substituted benzaldoximes.⁷ The strong band at 1300 cm.⁻¹ for p-dimethylaminobenzaldoxime is lowered to 1280 cm.⁻¹ on quaternization. A similar shift (1320 to 1300 cm.⁻¹)

⁴ Sidgwick, "The Organic Chemistry of Nitrogen," Clarendon Press, Oxford, 1942, p. 192.

⁵ Hanania and Irvine, Nature, 1959, 183, 40.

⁶ Barchewitz, Compt. rend., 1953, 237, 237; Hadži and Sheppard, Proc. Roy. Soc., 1953, A, 216, 247; Quinan and Wiberley, J. Chem. Phys., 1953, 21, 1896.
 ⁷ Palm and Werbin, Canad. J. Chem., 1954, 32, 858.

occurs in the spectra of the tertiary and the quaternary form of pyridine-2-aldehyde oxime, and a slightly smaller one for the 4-isomer. All the quaternary derivatives of these two oximes examined show this strong absorption near 1300 cm.⁻¹, which suggests the α -configuration.

The C=N stretching frequency in spectra of aliphatic ketoximes⁸ is fairly well defined at 1650—1675 cm.⁻¹, but aromatic ketoximes have been little studied. Acetophenone

oxime shows feeble absorption at 1630 cm.⁻¹ and the dioximes ⁹ of cyclohexane-1,2-dione and cycloheptane-1,2-dione have two weak bands at 1506 and 1524 cm.⁻¹. The C=N band was not found in the spectra of benzoin α -oxime, which casts doubt on the structure of this compound.¹⁰ It is also absent from that of benzil α -dioxime, but is present as a weak-tomedium band at 1630 cm.⁻¹ for benzil β -dioxime and the oximes of 2,2'-pyridil (Table 1).

Aliphatic aldoximes have C=N bands between 1650 and 1670 cm.⁻¹; for aromatic compounds the range is 1614-1650 cm.⁻¹. Increased bond polarization which results from the formation of oxime dimers raises this frequency,¹¹ and quaternization of heterocyclic compounds produces a similar effect.¹² For most of the compounds listed in Table 2 both effects are possible, with the result that, in addition to frequency shifts, the relative intensities of the two C=N frequencies vary considerably. The C=N absorption occurs near 1595 cm.⁻¹ for pyridine derivatives and is raised to 1610 cm.⁻¹ on quaternization; in the case of 4,4'-dimethyl-2,2'-bipyridyl the increase is from 1590 to 1620 cm.⁻¹. Pyridine-2-aldehyde oxime shows two C=N frequencies, at 1595 and 1620 cm.⁻¹. The latter absorption, which results from the oxime group, is very weak, but is considerably increased in intensity on quaternization, and for the isopropyloiodide is also raised ten wave-numbers. Similar results are obtained for the tertiary and quaternary derivatives of pyridine-4aldehyde oxime, the increase in intensity of the 1640 cm.⁻¹ band being even more marked. Ouite different results are obtained with p-dimethylaminobenzaldoxime in which strong \tilde{C} =N absorption at 1610 cm.⁻¹ almost disappears on quaternization, while the N- \tilde{O} stretching frequency at 960 cm.⁻¹ is raised to 970 cm.⁻¹. The reactivating properties of the quaternary oximes for di-O-ethylphosphorylacetocholinesterase 13,14 are not directly related to the strong N–O stretching frequency which occurs in the region 960-1050 cm.⁻¹, but they are paralleled by the increase in frequency and intensity of the C=N absorption which ranges from 1620 to 1650 cm.⁻¹ for the active compounds.

In the isomeric pyridineal dehyde oxime methiodides the order of activity 14 is $2 \rightarrow 4 \rightarrow 3$, as indicated by their spectra (ultraviolet spectra of the methochlorides are similar ¹⁵). If pyridine-2-aldehyde oxime derivatives have the α -configuration the hydroxy-imino-group is suitably projected to effect reactivation of the phosphorylated esteratic site. The length of the alkyl chain has little effect on either the ultraviolet

- Voter, Banks, Fassel, and Kehres, Analyt. Chem., 1951, 23, 1730.
 ¹⁰ Duckaerts, Bull. Soc. roy. Sci. Liége, 1952, 83, 614.

¹¹ Califano and Lüttke, Z. phys. Chem., 1956, 6, 83.
 ¹² Edwards and Singh, Canad. J. Chem., 1956, 6, 83.
 ¹³ Hobbiger, O'Sullivan, and Sadler, Nature, 1958, 182, 1498; Hobbiger and Sadler, *ibid.*, p. 1672; Hobbiger and Sadler, Brit. J. Pharmacol., 1959, 14, 192.
 ¹⁴ Hobbiger, Pitman, and Sadler, Biochem. J., 1960, 75, 363.

¹⁵ Mason, J., 1960, 22.

⁸ Schecter and Conrad, J. Amer. Chem. Soc., 1954, 76, 2716; Cross and Rolfe, Trans. Faraday Soc., 1951, 47, 354; Brown, J. Amer. Chem. Soc., 1955, 77, 6341.

spectra or the reactivities in this group (Table 3), but in the polymethylenebispyridinium dioximes (III; $R = CH:N\cdot OH$) and the corresponding monoximes (III; R = H) bathochromic shifts occur in λ_1 , and the hydrolytic power of the oximes is increased as the length of the alkyl chain diminishes.

TABLE 3. Ultraviolet absorption spectra (λ in m μ) and reactivating properties of monoand bis-quaternary formylpyridinium oximes.

			Hydrol. of	
	λ1	ε	$Et_4P_2O_7$	Activity †
Pyridine-2-aldehyde oxime methiodide	330	18,700	1	1
,, ,, ethiodide	335	18,490	1	0.54
,, ,, propyloiodide	335	16,590	0.94	0.63
j, j, butyloiodide	335	16,500	1.1	0.87
Pyridine-4-aldehyde oxime methiodide	335	22,200	0.36	0.06
NN'-Trimethylene-1-(4-hydroxyiminomethylpyridium)-3-				
pyridinium dibromide	345	25,680	0.56	8.0
$N\hat{N}'$ -Tetramethylene homologue	337.5	24,530	0.53	6.7
NN'-Pentamethylene homologue	337.5	25,240	0.47	7.5
<i>NN'</i> -Ethylenebis-(4-hydroxyiminomethylpyridinium bromide)	$352 \cdot 5$	44,460	1.5	17
NN'-Trimethylene homologue	347.5	44,000	1.1	22
NN'-Tetramethylene homologue	34 0	43,450	0.99	18
NN'-Pentamethylene homologue	34 0	43,400	0.91	16

† Potency as reactivator of diethylphosphorylacetocholinesterase.

Experimental.—Compounds in chloroform and potassium bromide discs were examined with a Perkin–Elmer 21 double-beam recording spectrophotometer. Ultraviolet absorption curves were determined for 0.1N-NaOH solutions, with matched quartz cells in a Hilger-Uvispek spectrophotometer. Preparative details have already been given.^{13,14,16}

The author thanks the Department of Scientific and Industrial Research for a special grant which helped to defray the cost of this research.

MIDDLESEX HOSPITAL MEDICAL SCHOOL, LONDON, W.1. [Received, November 14th, 1960.] ¹⁶ Pitman and Sadler, J., 1961, 759.