493. Magnetic Perturbation of Singlet-Triplet Transitions. Part VI.* Octa-1,3,5,7-tetraene.

By D. F. EVANS.

The singlet-triplet absorption spectrum (induced by oxygen under pressure) of octa-1,3,5,7-tetraene in chloroform solution, and the first singlet-singlet absorption of the pure vapour have been measured. A simple preparation of octa-1,3,5,7-tetraene is described.

THE induced singlet-triplet absorption spectra of ethylene, butadiene, and hexa-1,3,5triene in the presence of oxygen under pressure have been reported.¹ The present paper is concerned with the next member of the series, octa-1,3,5,7-tetraene. Although this

* Part V, J., 1961, 1987.

¹ Evans, J., 1960, 1735.

very unstable compound has previously been prepared by two different routes,^{2,3} a third, and in some ways more convenient, preparation was devised. The vapour-phase singletsinglet absorption spectrum of octa-1,3,5,7-tetraene was also measured.

EXPERIMENTAL

Octa-1,3,5,7-tetraene.-Octa-2,4,6-trien-1-ol was prepared in good yield by reduction of octa-2,4,6-trienal with sodium borohydride in methanol; this method seems more convenient than that given in ref. 4. It was slowly distilled under ca. 0.1 mm. of oxygen-free nitrogen through a tube packed with aluminium oxide (desiccating agent) which was heated at 290°. The products were condensed in a trap kept at -78° . After warming to room temperature, the crude solid octa-1,3,5,7-tetraene was dissolved in isopentane, and the solution was dried (Na_2SO_4) and cooled at -78° . The resulting, almost colourless crystals were filtered on a low-temperature filter, washed with cold isopentane, and quickly dried in a stream of nitrogen (yield ca. 40%). The product was characterised by its infrared spectrum in carbon disulphide solution, and its ultraviolet absorption spectrum in 2,2,4-trimethylpentane solution, which were in good agreement with those reported by Woods and Schwartzman² and Lippincott et al.³ According to the latter workers, octa-1,3,5,7-tetraene probably has an all-trans-structure. Since octa-1,3,5,7-tetraene polymerizes very rapidly in the solid state, solutions were prepared immediately the compound was dry, and physical measurements were made within 1-2 hr.

The vapour-phase singlet-singlet absorption spectrum was obtained by using evacuated 1-mm. or 1-cm. quartz cells attached by a graded seal to a bulb containing a few crystals of octa-1,3,5,7-tetraene.

Ultraviolet and visible spectra were measured on a Perkin-Elmer 4000 recording spectrophotometer.

RESULTS AND DISCUSSION

Singlet-Triplet Transitions.—The spectrum (Fig. 1) closely resembles those obtained ¹. for butadiene and hexa-1,3,5-triene. It is clear that two transitions are present and they can similarly be assigned as involving the first and the second triplet level of octa-1,3,5,7-tetraene. The positions of the 0.0 bands $(13,750, 21,550 \text{ cm}^{-1})$ and absorption maxima (ca. 17,000, ca. 23,000 cm.⁻¹) for the two transitions follow the trend found with butadiene and hexa-1,3,5-triene. The separation between the 0,0 bands of the first and the second transition shows a remarkable constancy in the series (7920 cm.⁻¹ butadiene; 7860 cm.⁻¹ hexa-1,3,5-triene; 7800 cm.⁻¹ octa-1,3,5,7-tetraene).

Singlet-Singlet Transition.—The first singlet-singlet transition (V1-N) of octa-1,3,5,7tetraene in the vapour phase is shown in Fig. 2. The bands are much sharper than those observed for gaseous butadiene⁵ or hexa-1,3,5-triene.⁶ All the main bands can be satisfactorily accounted for by two vibrational frequencies (1640 and 1240 cm.⁻¹; see Table), which may be tentatively assigned as symmetrical "double-" and "single-" bond stretching frequencies of the upper singlet state. The vapour-phase spectrum of hexa-1,3,5triene, measured photographically by Price and Walsh,⁶ also shows two vibrational intervals, at 1615 and 1230 cm.⁻¹. Although these authors considered the possibility that two vibrational frequencies of the V_1 state were involved, they thought it more likely that two geometrical isomers of hexa-1,3,5-triene were present (no bands involving multiple quanta of the 1230 cm.⁻¹ vibration could be detected). The present results for octa-1,3,5,7-tetraene suggest that the first alternative is, in fact, probably correct. The absence of multiple quanta of the 1230 cm.⁻¹ vibration is probably due largely to the breadth of the hexa-1,3,5-triene bands, together with the difficulty of detecting weak, diffuse bands photographically.

- ² Woods and Schwartzman, J. Amer. Chem. Soc., 1949, 71, 1396.
 ³ Lippincott, Feairheller, and White, J. Amer. Chem. Soc., 1959, 81, 1316.
 ⁴ Reichstein, Ammann, and Trivelli, Helv. Chim. Acta, 1932, 15, 261.
 ⁵ Price and Walsh, Proc. Roy. Soc., 1940, A, 174, 222.
 ⁶ Price and Walsh, Proc. Roy. Soc., 1946, A, 185, 182.

The absorption spectrum of octa-1,3,5,7-tetraene in 2,2,4-trimethylpentane (Fig. 2) or hexane solution ² shows no trace of the two vibrational intervals found in the gas phase.

 V_1 -N bands of octa-1,3,5,7-tetraene in the vapour phase. (The positive deviations at high frequencies may arise partly from the neglect of anharmonicity. There is evidence for a further vibrational frequency of ca. 350 cm.⁻¹.)

	-				
Frequency (cm. ⁻¹)	Analysis	Deviation (cm. (calc meas	⁻¹) Frequency .) (cm. ⁻¹)	Analysis	Deviation (cm1) (calc meas.)
35,520	0,0		39.660	$1640 + 2 \times 1240$	-20
\sim 35,860 (i)			40,030	$2 \times 1640 + 1240$	+10
36,770	1240	-10	40,460	3 imes 1640	+20
37,170	1640	-10	41,270	2 imes1640+2 imes1240	+10
~37,540 (i)			41,670	3 imes1640+1240	+10
38,010	2 imes 1240	-10	42,040	4 imes 1640	+40
38,410	1640 + 1240	-10	$\sim 42,410$ (i)		
38,820	2 imes 1640	-20	42,860	3 imes 1640 + 2 imes 1240	+60
~39,200 (i)			43,270	$4 \times 1640 + 1240$	+50
			43,670	5 imes 1640	+50
			$\sim 43,990$ (i)		
			(i) = Inflection.		

Owing to the effect of the solvent in broadening the bands, only a single interval of $ca. 1500 \text{ cm}.^{-1}$ is observed, which is presumably composite. It seems very likely that the "characteristic" vibrational interval of 1400—1500 cm.⁻¹ found in the electronic spectra

(Owing to the rapid polymerisation of solid octa-1,3,5,7-tetraene, the concentration of the solution was not determined.)

- A, Vapour (saturated vapour pressure at 29°) (1-mm. cell). B, Vapour (saturated vapour pressure at 29°) (1-cm. cell). C, Solution in 2,2,4-trimethylpentane.
- (Owing to the rapid polymerization of solid octa-1,3,5,7-tetraene, the concentration of the solution was not determined. Solution max. at 33,140, 34,680, 36,130, 37,600, and ca. 39,200 (i) cm.⁻¹.)

of all types of polyenes in solution (and in butadiene vapour ⁵) also involves two vibrational frequencies. Over 25 years ago, Hausser, Kuhn, and Seitz ⁷ showed the presence of two vibrational intervals (1570, 1230 cm.⁻¹) in the absorption spectra of diphenylpolyenes, polyenecarboxylic acids, and lycopene in rigid glasses at -196° . Although the bands are

⁷ Hausser, Kuhn, and Seitz, Z. phys. Chem., 1935, B, 29, 391.

rather broad, two vibrational intervals (ca. 1600 and ca. 1200 cm.⁻¹) can be detected in the previously reported ¹ induced singlet-triplet transitions of gaseous butadiene.

The 0,0 band in the spectrum of octa-1,3,5,7-tetraene shifts to lower frequency by 2380 cm.⁻¹ as we go from the vapour phase to solution in 2,2,4-trimethylpentane. This solvent shift is slightly greater than the solvent shifts found for butadiene (1800 cm.⁻¹) and hexa-1,3,5-triene (2150 cm.⁻¹; hexane solution ^{6,8}), although the increase seems smaller than would be expected from the theoretical formula for solvent shifts derived by Longuet-Higgins and Pople.⁹

INORGANIC CHEMISTRY RESEARCH LABORATORIES, Imperial College of Science and Technology, S. Kensington, London, S.W.7.

[Received, December 30th, 1960.]

⁸ Howton, J. Org. Chem., 1949, 14, 1.

⁹ Longuet-Higgins and Pople, J. Chem. Phys., 1957, 27, 192.