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245. Griseofulvin Analogues. Part V.* Infrared Absorption.
By J. E. Page and SusaN E. STANIFORTH.

The infrared absorptions of 141 analogues of griseofulvin and isogriseo-
fulvin have been examined, and the behaviour of absorption bands associated
with carbonyl, alkyl, alkoxy-, alkylthio-, and halogen substituents is
described. Absorption bands that can be used to distinguish between
4’-0x0-2’-enol ether and 2’-oxo0-4’-enol ether analogues, and between griseo-
fulvin and epigriseofulvin, are reported. Certain analogies with the
spectra of 1-methoxycholest-1-en-3-one and 3-methoxycholest-2-en-1-one are
discussed.

ALTHOUGH infrared absorption spectra of Nujol mulls of griseofulvin and several griseo-
fulvin derivatives have been reported previously,! the detailed interpretation of the
spectra has not been attempted. We have examined under standard conditions the infra-
red spectra of 141 griseofulvin analogues and here suggest structural assignments for their
principal absorption bands. The griseofulvin analogues, which had been prepared in
these laboratories during a study of the effect of structural change on antifungal activity,?
contain various alkyl, alkoxy-, alkylthio-, and halogen substituents at different positions

® Part IV, preceding paper.

1 (@) Grove, MacMillan, Mulholland, and Rogers, J., 1952, 3949; Mulholland, J., 1952, (b) 3987,
(c) 3994; (4) Duncanson, Grove, MacMillan, and Mulholland, J., 1957, 3555; (e) Brossi, Baumann,
Gerecke, and Kyburz, Helv. Chim. Acta, 1960, 43, 2071.

2 (@) Arkley, Attenburrow, Gregory, and Walker, J., 1962, 1260; (b) Gregory, Holton, Robinson,
and Walker, ., 1962, 1269; (¢} Walker, Warburton, and Webb, J., 1962, 1277; (d) Stephenson,
Walker, Warburton, and Webb, preceding paper.
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on a rigid ring system of known configuration.? The infrared spectra of the steroid isomers,
1-methoxycholest-1-en-3-one and 3-methoxycholest-2-en-1-one,* in which the steroid
ring-a substitution patterns are similar to those in ring-c of griseofulvin (I; R=R' =
R” = Me) and isogriseofulvin (II; R = R’ = R"” = Me), respectively, will also be
considered.

Bromoform solution spectra were studied, since in solution spectra, as compared with
Nujol mull or potassium bromide disc spectra, intermolecular hydrogen-bonding effects
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are largely eliminated; bromoform is a better solvent than carbon disulphide or carbon
tetrachloride for griseofulvin and its analogues and it transmits over a slightly wider and
more useful spectral region than does chloroform. The Nujol mull spectra of all the
griseofulvin analogues were recorded, but they are not discussed in detail.

Carbonyl Streiching Bands.—Bromoform solution spectra of griseofulvin and isogriseo-
fulvin (Table 1) show strong absorption bands in the C=0O and C=C stretching regions at
1705, 16564, 1615, and 1591, and at 1698, 1660, and 1614—1598 cm.?}, respectively. The
bands between 1615 and 1590 cm.™, which would normally be assigned to C=C stretching,
are, rather surprisingly, about three times as strong as those between 1710 and 1650 cm.™,
which would be assigned to C=0 stretching; carbonyl bands are usually af least five times
as strong as C=C bands. We therefore examined the behaviour of the bands in different
solvents (see Bellamy and Williams 3).

The results listed in Table 2, in which the conventions used by Bellamy and Williams
are followed, show that the 1705 and 1654 cm.™ bands for griseofulvin are more sensitive
than the 1615 and 1591 cm.™ bands to solvent changes. Since C=0 groups are more polar
and consequently show larger displacements than C=C bands in different solvents, we
believe that the 1705 and 1654 cm.™ bands are associated with the 3- and 4’-ketones,
respectively, and the 1615 and 1591 cm.? bands with various C=C linkages. Similar
results were obtained for isogriseofulvin.

The position and relative intensities of the carbonyl bands can be used to distinguish
between, and to determine in the presence of each other, griseofulvin and isogriseofulvin.
In griseofulvin, the 3-ketone band (1705 cm.™) appears about 50 cm.™ higher and is more
intense (apparent € ~760) than the 4’-ketone band {(apparent « ~500), whereas in isogriseo-
fulvin, the 3-ketone band (1698 cm.™) is only 38 cm. higher and is less intense (apparent ¢
~600) than the 2'-ketone band (apparent e ~700).

Of the steroid isomers, 1-methoxycholest-1-en-3-one and 3-methoxycholest-2-en-1-one,

3 MacMillan, J., 1959, 1823.
¢ Tamm, Helv. Chim. Acta, 1960, 48, 1700.
¢ Bellamy and Williams, Proc. Roy. Soc., 1960, 4, 255, 22.
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the 3-ketone absorbed at a slightly lower frequency (1634 cm.?l) than the l-ketone
(1642 cm.™); this displacement parallels the behaviour of the 4'- (1654 cm.™) and 2'-ketone
(1660 cm. ) from griseofulvin and isogriseofulvin, respectively, but contrasts with Roberts,
Gallagher, and Jones’s observation ¢ that a 1-oxo-steroid has a lower C=O frequency than a
3-oxo-steroid, and with our own 7 that an «-alkyl substituent tends to lower a ketone
frequency. The band displacements must therefore be characteristic of the keto-enol
ether grouping.

Similar differences in C=0 frequency and intensity are shown by 2’- and 4’-enol ether
analogues of griseofulvin, in which at least one of the 4-, 6-, or 2"-methoxyl groups has
been replaced by ethoxyl, propoxyl, isopropoxyl, butoxyl, hexyloxyl, allyloxyl,
phenoxyl, or benzyloxyl (see Table 1). In general, the 3- and the 4’'-ketones of a 2’-enol
ether absorb at 1708—1704 and 1656—1650 cm.™, respectively, and the 3- and 2'-ketones
of a 4’-enol ether at 1698—1694 and 1664—1658 cm.™., respectively; the 3-ketone band
of a 2’-enol ether (apparent e 760—830) is more intense than the corresponding 4'-ketone
band (apparent € 500—710), whereas the 3-ketone band of a 4’-enol ether (apparent ¢ 530—
640) is weaker than the corresponding 2'-ketone band (apparent e 700—880). Similar
carbonyl frequency and relative intensity changes are shown by epigriseofulvin 3 (Table 3).
It is to be inferred that the changes (cf. Zbinden and Hall 8 and references there cited) are
associated with strain on the spiro-carbon-2, and with resulting changes in bond
angle there.

A 3'-alkyl substituent (see Table 4) raises by about 14 cm.™! the 4'-ketone frequency of
griseofulvin, but lowers by about 6 cm.™? the 2'-ketone frequency of isogriseofulvin; the
3-ketone frequency is unchanged. Further, in the isogriseofulvin derivative, the intensity
of the 3-ketone band (apparent ¢ ~700) becomes slightly greater than that of the 2’-ketone
(apparent ¢ ~650); the intensity of the 3-ketone band for the griseofulvin derivative
(apparent e ~780), however, remains considerably greater than that of the 4’-ketone
(apparent € ~600). It is, therefore, still possible to distinguish between isomeric 2'- and
4'-enol ethers.

3’-Halogenation of griseofulvin and isogriseofulvin (see Tables 4 and 5) does not affect
the 3-ketone frequency, but displaces the 4'- and 2’-ketone bands, respectively, to higher
frequencies (cf. Cummins and Page 7 and references there cited). Chlorine, bromine, and
iodine raise the 4’-ketone frequency of 2’-enol ethers by about 36, 30, and 20 cm.™?,
respectively, and that of the 2’-ketone of 4’-enol ethers by 18, 14, and 8 cm.™, respectively.
3'-Halogeno-4'-enol ethers frequently show a third, weak C=O band at about the same
frequency, 1708—1704 cm., as that of the 3-ketone band for the corresponding
3’-halogeno-2’-enol ether. The relative intensities of the C=0 bands for isomeric analogues
are otherwise similar to those for griseofulvin and isogriseofulvin.

5-Alkylation and 5-halogenation of griseofulvin (see Table 5) has little effect on C=0O
frequency and intensity. If the 2’- and 4'-methoxyls of griseofulvin and isogriseofulvin,
respectively, are replaced by chlorine (see Table 3), the isomeric products have
approximately the same carbonyl frequencies. The isomers can, however, be distinguished
by comparing band intensities. In the 2'-chloro-isomer, the 3-ketone band (1706 cm.™) is
more intense than the 4’-ketone (1684 cm.™), whereas in the 4'-chloro-isomer the 3-ketone
band is less intense than the 2’-ketone; similar intensity differences are shown by 3’-alkyl
and 3'-halogen derivatives.

If either the 2’-methoxy-group of griseofulvin or the 4’-methoxy-group of isogriseo-
fulvin is replaced by an alkylthio-group (see Table 6), the corresponding 4’- or 2’-ketone
frequency is lowered slightly; the relative intensities of the 3- and 4'-ketone and 3- and
2’-ketone bands are unchanged. The 2'- and 4’-alkylthio-enol ethers can therefore be

8 Roberts, Gallagher, and Jones, ‘‘ Infrared Absorption Spectra of Steroids. An Atlas,” Vol. II,
Interscience Publ., Inc., New York, 1958, p. 24.

7 Cummins and Page, [., 1957, 3847.

¢ Zbinden and Hall, J. Amer. Chem. Soc., 1960, 82, 1215.
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distinguished. Introduction of 3'-propyl or 3’-benzyl into 2’-alkylthio-analogues of
griseofulvin (Table 7) does not affect the 3-ketone band, but displaces the 4’-ketone band
further (22—26 cm.™!) than was observed for, the corresponding 2’-alkoxy-compound
(10—14 cm. ).

C=C Stretching Bands.—The bands at about 1615 and 1508 cm.™ in the infrared spectra
of griseofulvin are C=C skeletal in-plane vibrations of the aromatic ring-A and are present
in the spectra of all griseofulvin derivatives listed in Tables 1—7 that have a 5-hydrogen
atom. Inmany derivatives the 1615 cm.™ band broadens and extends to about 1595 cm.™1;
this range is given in the Tables. The 1508 cm.™ band is displaced to 1502 cm.™ in the
spectra of dechloro-griseofulvin and -isogriseofulvin (Table 3) and to about 1472 cm.™ in
5-alkyl and 5-halogen derivatives (Table 5); these displacements provide a useful test for
the substitution pattern of ring A.

The 2'-ethylenic linkage of griseofulvin absorbs sharply at 1591 cm.™!; the corre-
sponding 3’-ethylenic linkage for isogriseofulvin absorbs close to the strong aromatic-ring
band at 1614—1598 cm.? and cannot always be resolved from it. Similar displacements
are shown by the 2'- and 3’-ethylenic linkages of alkoxy-analogues of griseofulvin and
isogriseofulvin, respectively. The 1- and 2-ethylenic linkages of 1-methoxycholest-1-en-
3-one and 3-methoxycholest-2-en-1-one, which are analogous to the 2'- and 3’-ethylenic
linkages of griseofulvin and isogriseofulvin, absorb at 1588 and 1616 cm.™, respectively.

3’-Alkylation and 3’-halogenation (Table 4) have little effect on the 2'-ethylenic band
of a 2"-enol ether, but 3'-chlorine, 3’-bromine, and 3’-iodine displace the 3’-ethylenic band
of a 4’-enol ether to 1590—1588, 1588—1584, and 1578—1574 cm. T, respectively. The
aromatic C=C bands at 1616—1600 and 1508 cm.™ are unchanged.

2’- and 4'-Phenoxy-analogues show additional aromatic C=C bands at 1592 and 1492—
1490 cm.”l. Benzyl, benzyloxy-, and benzylthio-groups absorb weakly, but distinctly,
at 1500—1498 cm.™?; the corresponding 1600 cm.™ bands are masked by aromatic ring-a
bands.

The spectra of 2'- and 4’-alkylthio-analogues of griseofulvin (Table 6) reveal three
discrete bands between 1616 and 1568 cm.™. The relatively weak, low-frequency, bands
at 1570—1568 and 1572 cm.™ are assigned to the 2’- and 3'-ethylenic linkages of the 2'- and
4’-alkylthio-analogues, respectively. This displacement of the 2'- and 3’-ethylenic bands
is largely eliminated by the introduction of a 3’-propyl or 8'-benzyl group, but is increased
by 3"-halogen (see Table 7). The ring-a aromatic C=C bands at about 1614, 1590, and
1508 cm. ™! are unaffected by these substitutions.

The great intensity of the C=C bands (apparent ¢ 1600—2500), compared with that of
the C=O bands (apparent ¢, about 500—800), is a notable feature of the spectra of griseo-
fulvin and its analogues; 12 their strength is relatively unaffected by substitutions in
rings A and c¢ and is only reduced when a ring is opened. Most of the increased intensity
can be associated with the aromatic C=C bands; the 1590 cm.™ band for griseofulvin
(apparent € ~800), which is probably associated with the 2’-ethylenic linkage, is neverthe-
less slightly stronger than the corresponding 4'-ketone band (apparent e ~500). Similarly,
the C=C bands for l-methoxycholest-1-en-3-one and 3-methoxycholest-2-en-1-one are
slightly stronger than the corresponding ketone bands.

Erskine and Waight ® have shown that, whereas in rigidly #ransozd oB-unsaturated
ketone systems the C=O band is much stronger than the C=C stretching band, in cisoid
systems the C=O and C=C bands are of more nearly equal intensity. This observation
will not explain the strength of the C=C bands of the two steroids and of griseofulvin and
its analogues; in these compounds the «B-unsaturated ketone system is #vawmsoid. The
abnormal C=C band intensities must, therefore, like the unusual C=0O band displacements
discussed above, be a special feature of the keto-enol ether system. The same explanation
may account for the intense aromatic C=C bands; ring A could be visualised as part ofa
keto—enol ether system.

¢ Erskine and Waight, J., 1960, 3425.
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Carbon-Hydrogen Deformation Bands.—The various alkoxyl and alkyl groups of
griseofulvin and its analogues show a series of C-H deformation bands in the 1480—
1350 cm.? region. We have, in accordance with Katritzky and Coats’s assignments
for simple methoxybenzenes 10 (see also ref. 11), attributed the 1470—1462 and 1438 cm.
bands of griseofulvin and isogriseofulvin to asymmetrical and symmetrical CH; bending,
respectively. These bands have the same frequencies and relative intensities in all
griseofulvin derivatives as have 4-, 6-, and either 2’- or 4’-methoxy-groups.

The 1416—1408 cm.? bands include vibrations associated with the 5-methylene
group and, possibly, with aromatic ring A; they are probably present, although sometimes
masked by stronger bands, in the spectra of all griseofulvin derivatives. The weak band
at 1388—1384 cm.® in the spectra of griseofulvin and other 2’-enol ethers, which is, how-
ever, masked in the spectra of isogriseofulvin and 4’-enol ethers, is the C-H symmetrical
bending band for the 6’-methyl group; the corresponding asymmetrical band probably
contributes to the 1470—1462 cm. band.

Replacement of the methoxy-groups of griseofulvin by one, two, or three ethoxy-
groups progressively weakens the 1470—1462 and 1438 cm.™ bands and leads to the
appearance of strong ethoxy-bands at about 1416 and 1380 cm.. We (cf. Katritzky and
Coats 19) have assigned the 1474 and 1386—1378 cm.™ bands of the triethoxy-analogues of
griseofulvin and isogriseofulvin to CH, scissoring and wagging vibrations, respectively,
and the 1446 and 1416 cm. bands to asymmetrical and symmetrical CH; bending
vibrations, respectively; the remaining bands at 1460 and 1398 cm.? may include
aromatic-ring vibrations. Introduction into ring ¢ of larger alkoxy-groups, such as butoxy
and allyloxy, causes similar progressive spectral changes.

2’-Demethoxygriseofulvin (V; R = R’ = H), 4'-demethoxyisogriseofulvin (VI; R =
R’ = H), 2'-dihydrogriseofulvin (III; R = MeO), 3’-dihydroisogriseofulvin (IV; R = MeO)
(see Table 3), and 3'-alkyl and 3’-halogen derivatives of griseofulvin (see Table 4) show the
additional C-H deformation bands that might be expected from their structures.
Isomeric 2'- and 4'-alkylthio-analogues do not exhibit big spectral differences in this region.

Carbon-Oxygen Stretching Bands.—Griseofulvin and its alkoxy-analogues show strong
bands at about 1350, 1225, 1140, and 1100 cm.. The first two bands are probably
C-O-C asymmetric stretching bands and the last two, which are obscured by solvent
absorption in bromoform solution spectra but may be observed at 1140—1132 and 1105—
1096 cm.™, respectively, in chloroform solution or Nujol mull spectra, are probably skeletal
vibrations. The 1350 cm.? band has a higher frequency than those (1330—1273 and
1288—1225 cm.?) assigned to C—O—C asymmetric stretching of simple methoxybenzenes
by Katritzky and Coats.1?

Griseofulvin and 2’-enol ethers differ characteristically from isogriseofulvin and 4’-enol
ethers in this region; griseofulvin and 2'-enol ethers absorb about 309, more strongly at
1350 and 1225 cm.™, whereas isogriseofulvin and 4’-enol ethers absorb 2—4 times as
strongly at 1388 and 1175 cm.™. 2’-Enol ethers, but not 4’-enol ethers, have a weak band
at 1282—1280 cm.™. Similar differences are shown by carbon disulphide solution spectra
of l-methoxycholest-1-en-3-one and 3-methoxycholest-2-en-1-one; the former absorbs
more strongly at 1346, 1276, and 1225 and the latter at 1380 and 1176 cm.”™. The 1388
and 1175 cm.™ bands for isogriseofulvin and 4'-enol ethers must therefore be associated
with ring-oxygen stretching of the 4’-alkoxy-group; the 4- and 6-alkoxyl groups absorb
at 1350 and 1225 cm.™, and the ring-oxygen stretching bands for the 2'-, 4-, and 6-alkoxyl
groups of griseofulvin and of 2"-enol ethers also have these frequency values.

3’-Alkylation and 3’-halogenation of griseofulvin and isogriseofulvin do not affect the
1350 cm.? band, but weaken the 1225 cm.? band (Table 4); additional bands for the
3’-alkyl, 3'-chlorine, 3’-bromine, and 3'-iodine derivatives appear at 1250—1246, 1274—
1260, 1268—1252, and 1256—1248 cm.l, respectively. 5-Alkylation (Table 5) weakens

10 Katritzky and Coats, J., 1959, 2062.
11 Briggs, Colebrook, Fales, and Wildman, Analyt. Chem., 1957, 29, 904.
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the 1350 cm.™? band and displaces the 1225 cm.™ band to about 1252 cm.™.. 5-Halogen-
ation moves the 1350 cm.? band to about 1388—1380 cm.™ and displaces the 1225 cm.™®
band slightly.

Replacement of the 2"-methoxyl of griseofulvin and the 4’-methoxyl of isogriseofulvin
by an alkylthio-group (Table 6) leads, as might be expected, to a weakening of the 1350
and 1225 cm.™ bands, and it becomes less easy to distinguish in this spectral region between
the two isomers; a new band of medium intensity, probably an alkylthio C-H deformation
band, appears at 1246—1240 cm.™.

We were unable to identify between 1300 and 900 cm.™ the pattern of alkylthio C-H
deformation and skeletal bands reported by Boonstra and Rinzema.? The alkylthio-
bands are probably weaker than, and are masked by, the relatively strong C-O stretching
bands. The conjugation effects in our compounds would also cause a displacement of the
bands (see below).

The C-O symmetrical stretching bands for griseofulvin and its 2’-methoxy-analogues
and for isogriseofulvin and its 4-methoxy-analogues at 968—960 and 1010—995 cm.™,
respectively, like those for 1-methoxycholest-1-en-3-one and 3-methoxycholest-2-en-1-one
at 980 and 996 cm.l, respectively, but unlike those for simple methoxy- and ethoxy-
benzenes at 1048—1013 and 1050—1034 cm.™, respectively,l® are much weaker than the
corresponding asymmetrical bands. The bands are displaced by 3’-alkyl and 3’-halogen
substituents and by new 2'- and 4’-alkoxy-substituents. The corresponding bands for 2'-
and 4’-ethoxyl, 2'- and 4'-propoxyl, 2'- and 4'-isopropoxyl, 2'- and 4’-butoxyl, and 2’- and
4’-allyloxyl are 1052—1048 and 1028—1020, 1058 and 1058, 1034 and 1062, 1045—1040
and 1065—1060, and 1042 and 1066 cm.™, respectively.

All griseofulvin and isogriseofulvin derivatives, except 5-alkyl and 5-halogen deriv-
atives, with the same relative configuration at position 2 as griseofulvin, (2S,6'R)-7-chloro-
4,6,2'-trimethoxy-6'-methylgris-2’-en-3,4'-dione, show a strong band at 1000 cm.™, which
shifts to about 948 cm.™ in the spectrum of the 2R,6’R-diastereoepimer, epigriseofulvin.3
These bands, which probably represent a stretching vibration of the Ogy~Cey, linkage,
provide a method for distinguishing between the two epimers. 5-Alkyl and 5-halogen
derivatives of griseofulvin (Table 5) are readily distinguished from the epimeric form;
whereas epigriseofulvin absorbs normally at 1508 cm.™, the 5-alkyl and 5-halogen deriv-
atives show a displaced aromatic C=C band at about 1472 cm.™.

The 960—400 cm. Region.—Griseofulvin and isogriseofulvin show 2’- and 3’-double-
bond C-H bending bands at 838 and 842 cm.™}, respectively. Similar bands appear at
838—832 and 844—842 cm.™}, respectively, in the spectra of all 2’- and 4'-enol ethers with
a 3’-hydrogen atom; 2’'-dihydrogriseofulvin (III; R = MeO), 3’-dihydroisogriseofulvin
(IV; R = MeO), and 3’-alkyl and 3’-halogen derivatives do not give the band. The bands
are weaker in the spectra of alkylthio-analogues and are displaced in the spectra of
2’- and 4’-chloro-compounds. 1-Methoxycholest-1-en-3-one and 3-methoxycholest-2-en-
1-one show double-bond C-H bending bands at 822 and 830 cm.™}, respectively.

All griseofulvin analogues with a 5-hydrogen atom absorb strongly at 800—796 cm.™.
The position of the band is affected by changes in the substitution pattern of ring A (see
Table 5). Introduction of 4,6-diethoxy-groups depresses the band position to 790 cm.,
whereas removal of the 7-chlorine atom raises the band to 820—818 cm.”™. The 800—
796 cm.® band is possibly a C-H out-of-plane deformation band for the aromatic ring.
The 890—882 cm.™? band, which appears in the spectra of most 7-chloro-analogues of
griseofulvin, disappears on dechlorination; substitution at position & splits the band into
a weak doublet at 885—868 cm.™L.

Griseofulvin and isogriseofulvin do not absorb strongly between 960 and 900 cm.™, but
their 4-, 6-, 2’-, and 4’-ethoxy-analogues show medium-intensity C-C stretching

12 Boonstra and Rinzema, Rec. Trav. chim., 1960, 79, 962; see also Menefee, Alford, and Scott, J.
Org. Chem., 1957, 22, 792; Scott and McCullough, J. Amey. Chem. Soc., 1958, 80, 3554.
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ethyl bands at 940—914 cm.? (cf. Katritzky and Coats19). Allyloxy- and allylthio-
derivatives yield medium-intensity CH, out-of-plane deformation bands at 938—932 and
930—926 cm.?, respectively; a weak overtone band at about 1850 cm.? was usually
detected, but the corresponding C-H out-of-plane deformation band, at about 990 cm.™,
was not readily distinguished from other bands in the 1000 cm.™ region (cf. ref. 13).

Phenoxy- and benzyloxy-analogues of griseofulvin and isogriseofulvin absorb relatively
strongly at 778—1772 and 736—730 cm.™, respectively; Nujol mull or carbon disulphide
solution spectra show additional phenoxy- and benzyloxy-bands at 685—682 and 695—
688 cm.l, respectively. Benzylthio- and 3’-benzyl derivatives, as Nujol mulls, absorb
at about 725 and 700 cm.™.

Nujol mull spectra of our alkylthio-compounds did not reveal any distinctive C-S
stretching bands 12 in the 750—650 cm.™ region. Nevertheless, the bromoform solution
spectra of the 2’-alkylthio-analogues showed strong bands at 956—954 and 888—886 cm.},
which were absent from, or much weaker in, the spectra of the corresponding 4'-alkylthio-
isomers; the latter showed bands at 860—858 and 842—840 cm.™, which were not given
by 2’-alkylthio-analogues. These bands were displaced and were much weaker in the
spectra of 3’-alkyl and 3’-halogen derivatives.

A careful inspection of the 700—400 cm.™? region of the spectra of griseofulvin and its
simple analogues did not yield much useful information. The spectra of isomeric 2'- and
4’-enol ethers differed considerably. The absorption bands appeared to be highly specific
for each compound, and we were unable to provide a simple interpretation.

Experimental.—The griseofulvin analogues were examined over the 4000—650 cm.™ spectral
region as 1-0% (w/v) and frequently as 0-1% (w/v) solutions in bromoform, stabilised with
0:05% of diphenylamine, in 0-8 mm. cells and as Nujol mulls by means of a Perkin—Elmer
Corporation, model 21, double-beam infrared spectrophotometer fitted with a sodium chloride
prism. Selected compounds were examined over the 1000-—400 cm.™ region as saturated
solutions in acetonitrile in 0-5 mm. cells, and as Nujol mulls in the same spectrophotometer
fitted with a potassium bromide prism. The accuracy of frequency measurements for sharp
bands was about 43 cm.™ at 1700 cm.™ and +2 cm.™ at 800 cm.™®; the spectral slit width was
about 6 cm.” at 1700 cm.™.

The apparent molecular extinction coefficients were measured in triplicate on 0-1% (w/v)
bromoform solutions and were calculated from the relation, ¢ = (1/¢l) logy, (T/T), where T,
and T are, respectively, the radiation (%) transmitted by the solvent and by the solution at
the frequency of the absorption band, ¢ is the solute concentration in moles per 1., and [ is the
cell thickness in cm.

The effect of different solvents on the carbonyl and C=C frequency of griseofulvin and
isogriseofulvin was determined by measuring the spectra of 0-5%, (w/v) solutions in the solvents
listed in Table 2 in 0-1 mm. cells at 2000—1500 cm.™. Replicate measurements were under-
taken, and special care was taken to locate band positions with an error of less than +2 cm.™.

All the compounds, with the exception of the two steroids and epigriseofulvin, were prepared
in these laboratories and had the physical properties described in the references listed in
the Tables.
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