Infrared Spectra and Structure of Nitrates of Some **451.** Aldehydes, Ketones, and Ethers.

By W. Hofman, L. Stefaniak, and T. Urbański.

Infrared spectra have been examined of the addition compounds ("nitrates") of aldehydes, ketones, and ethers with nitric acid. The spectra give a broad band at 2700—2600 cm.-1 which can probably be assigned to the hydroxonium bond (=O+-H) and a strong band near 1400 cm. $^{-1}$ produced by the NO $_3^-$ ion. It is concluded that the nitrates possess mainly an ionic structure, >C=O $^+$ H NO $_3^-$ (for aldehydes and ketones) or C O^+H NO_3^- (for ethers).

It has been known since 1835 that many organic compounds containing a carbonyl group, such as aldehydes and ketones, form addition products with nitric acid.¹ They have since been described by numerous authors.²⁻⁵ Reddelien,⁶ who carried out particularly extensive studies, represented the structure diagrammatically as C=0 · · · HONO₂ which in modern terms would denote combination by an intermolecular hydrogen bond. The structure of these addition products (which we shall call "nitrates") has now been examined by infrared spectroscopy.

Nitrates of isobutyraldehyde, benzaldehyde, and cinnamaldehyde, acetone, isobutyl methyl ketone, di-n-butyl ketone, acetophenone, and benzophenone were prepared and examined. It has also been now suggested that the structures of the addition compounds of ethers with nitric acid ⁷ are similar to those of the nitrates of aldehydes and ketones. We also examined the infrared spectra of a few ethers (di-n-butyl ether, 1,4-dioxan, and tetrahydrofuran). Also 2,6-dimethylpyrone nitrate has been prepared and its spectrum examined. Further it proved necessary to study the infrared spectra of nitric acid of various concentrations.

EXPERIMENTAL

Aldehyde and Ketone Nitrates.—The addition products of aldehydes and ketones with nitric acid were prepared in principle as described by Reddelien, but the aldehyde or ketone

- ¹ Dumas and Peligot, Annalen, 1835, 14, 65.
- ² Mulder, Annalen, 1840, 34, 165; Kehrmann and Mattisson, Ber., 1902, 35, 343; Schmidt and Bauer, Ber., 1905, 38, 3758.
 - ³ Kachler, Annalen, 1871, 159, 283.
 - Collie and Tickle, J., 1899, 75, 710.
 Meyer, Ber., 1910, 43, 157.
- ⁶ Reddelien, Ber., 1912, 45, 2904; 1915, 48, 1462; J. prakt. Chem., 1915, 91, 213; Angew. Chem., 1922, **35**, 580.
 - ⁷ McIntosh, J. Amer. Chem. Soc., 1905, 27, 1013.

(1 mol.) was added dropwise to nitric acid (99.5%); 1 mol.) while the temperature was kept at -40° to -50° . The products were separated as oils or crystals. Only the lower part of the oily layer was used for analysis and spectroscopy. The crystalline addition products were separated by filtration on a cooled funnel (-50°) and purified by being pressed on a porous

Table 1. Nitrates of organic compounds.

	Yield			HNO	s (%)
Organic component	(%)	M. p.	Formula	Found	Reqd.
Benzaldehyde 6	89	-12°	$C_7H_6O_7HNO_3$	38.0	37.0
Cinnamaldehyde 1, 2	91	+60	$C_9H_8O_1HNO_3$	$32 \cdot 8$	$32 \cdot 3$
Acetone 7	92	-18	C_3H_6O,HNO_3	$52 \cdot 2$	$52 \cdot 0$
Acetophenone 6	91	-24	C_8H_8O,HNO_3	$33 \cdot 6$	$34 \cdot 4$
Benzophenone 5, 6	89	+31	$C_{13}H_{10}O,HNO_3$	$25 \cdot 3$	$\mathbf{25 \cdot 7}$
2,6-Dimethylpyrone 4	88	+9	$C_7H_8O_2, 2HNO_3$	50.6	$50 \cdot 4$
Isobutyraldehyde	92	-24	C_4H_8O,HNO_3	45.6	46.7
Isobutyl methyl ketone	91	Oil	C_6H_{12} , HNO ₃	$38 \cdot 1$	38.65
Di-n-butyl ketone	9 3	-45	$C_9H_{18}O,HNO_3$	$30 \cdot 1$	30.7
Di-n-butyl ketone	91	Oil	$C_8H_{18}^-O, HNO_3$	$32 \cdot 3$	$32 \cdot 5$
1,4-Dioxan	89	+11	$C_4H_8O_2,2HNO_3$	$\mathbf{58 \cdot 2}$	$\mathbf{58 \cdot 9}$

plate cooled with solid carbon dioxide. The content of nitric acid was determined by titration. Ether Nitrates.—The addition products of ethers and nitric acid were prepared in the same way, similar to that indicated by McIntosh. The product from tetrahydrofuran was also prepared but was unsuitable for investigation as it decomposed with violence shortly after being prepared.

Table 2. Infrared frequencies of aldehydes and their nitrates.

Isobutyra	ldehyde	Benzald	lehyde	Cinnama	ldehyde	
aldehyde	nitrate	aldehyde	nitrate	aldehyde	nitrate	Assignment
J	313 0w	•	3100m	•		OH of nitric acid
		3071		3057w		C-H stretching in aromatic ring
				3024w	3000m	C-H stretching in alkenes
2967m	2967m					C-H stretching of CH ₂ , CH ₂ , and
$2929 \mathrm{sh}$	2929 sh					CH
2868m	2868m	$2854 \mathrm{sh}$	2873w			
		2821m		2807m		C-H stretching vibrations in alde-
		2741m		2731m		hydes
2708w		2706w				
	$2690 \mathrm{mb}$		$2600 \mathrm{mb}$		2330wb	
170 3 s	1670s	170 3 s	1670s	1670s	1651s	C=O
				1623s	1618s	
		1599m	1604m	1599sh	$1590 \mathrm{sh}$	C-C aromatic skeletal in-plane
	14001	1585m	1580m	1571w	1440	
1472m	$1466 \mathrm{sh}$	1458m	$1481 \mathrm{sh}$	1490w	1443s	
1415w		1391m		1448m		
	1075-		1401-	1396w	1905-	NO =
1000	1375s	1316m	1401s	1330w	1395s	NO ₃ -
1330w	1300s	1910111	1307s	1990M	1290s	NO_2
1292w	13005	1288w	13075	1260w	1250s $1257s$	1402
1232 w 1241 m		1268s		1200W	12013	
1208sh	1208sh	12003	1212m			
1160w	1160w	1189m	1170m	1160w	1163w	
1100				1123s		
1099w	1100w	1080w	1076w	1075w		
		1024w	1024w			
		1005w		1009w	988m	
				97 3 s	960s	C=C
934m	943s	924w	944s			C-H deformation vibrations in
844w		830m	835m		868w	aldehydes
807w	815w				854w	
		750s	750s	750s	750 s	C-H aromatic out-of-plane vibrations

Nitric Acid.—Nitric acid (98—99.5%) was prepared by distillation of a 1:2 v/v mixture of nitric acid (d 1.5) and sulphuric acid (99—100%) under reduced pressure. It was free from nitrogen dioxide.

Some properties of the nitrates are listed in Table 1. Nitrates for which references are not given are new.

Spectra.—Infrared absorption spectra were determined by means of a Hilger H-800 double-beam spectrophotometer with a 60° prism of sodium chloride. The liquid substances were used in capillary thicknesses, the solids as Nujol mulls. To avoid corrosion of the cuvettes, they were prepared from silver chloride.⁸

A technique for preparation of perfectly polished plates of pure silver chloride will be described elsewhere.9

As some of the substances are hygroscopic, they were also examined in Polyethylene envelopes.

The addition products were taken for analysis and spectroscopic examination immediately after preparation. This was important as some of them are unstable at their m. p. and above.

The frequencies were checked by means of a polystyrene film. The frequencies are recorded in Tables 2-6.

Discussion

Hydroxyl Stretching Vibrations.—Some of the nitrates show a broad band of low or medium intensity in the region 3130—3060 cm.⁻¹. This is probably produced by the hydrogen-bonded hydroxyl group present in the molecule of free nitric acid. The latter can be present in the substances in traces owing to the relative instability of some of them at room temperature.

Table 3.

Infrared frequencies of ketones and their nitrates.

			imiaico	ı meque	JICICS OF	. ACCOILC	s and the	on mua	ico.	
	Acetone	\mathbf{B}	ıi·CO·Me	• :	Bu¹₂CO	Ace	etophenor	ne Ben	zopheno	ne
ketone	nitrate	ketone	nitrate	ketone	nitrate	ketone	nitrate	ketone	nitrate	Assignment
	3090m		3080w		3094w		3080w		3060w	OH of nitric acid
3 010m						3075m				
						3009w				
2930m	29	2973s	2962s	2958s	2962s	2925w	2940w			Aliphatic C–H
				2939s	2939s					stretching
		2868s	2873s	2873m	2873m					
	2640s		2665s		2679m		$2660 \mathrm{m}$		$2660 \mathrm{w}$	=O+H
	2415m		2311w				2330 m			
1712s	1684s	1708s	1670s	1712s	1665s	1680s	1665s	1646s		C=O
						1598m	1598s			C-C ar. skeletal in-
						1580m	1580m		1571m	plane
1440sh			1467m	1462m	1459m	1448s	1448s	1448m	1448m	
1424m	$1415 \mathrm{sh}$	1424m		7.470						
	100m 1	1406m	1000	1410m	100=		1400		1000	370
	$1387 \mathrm{sh}$		1386s	10==	1387s	1000	1406s	1055	1396m	NO ₃ -
1000	1000	10.00	1000	1377m		1360s	1368s	1377m	1010	
1360s	1339s	1363s	1363s		1000-	1307m	1000-	1316s	1316m	O. NO
1000-	1287s	1041	1297s	1050	1 3 02s	1260s	1292s	1278s	1288s	O-NO ₂ symm.
1222s	$1245 \mathrm{sh}$		1203m		1165w		1184m		1179w	
1100	1100m	1174s	1118w			1110sh	1184m 1100sh		1179W 1151w	
1100m	1100111	1119W	1119W	1132111	1134W	1085m	100sh 1080w		1075w	
				1047m	1047m		1028m		1073w 1028m	
				1047111	1047111	1024iii 1000sh	1020m	1020m	1000w	
940w	940w	948m	943m			958s	1000311	948m	1000W	
JIOW	310W	040111	0 10111		929s	$925 \mathrm{sh}$	934s	939m	939m	
					0200	020011	0015	920m		
		935w	827w			850w	$860 \mathrm{sh}$	811w	811w	
		03011	0 21 W			760s	764s	769m		C-H ar. out-of-
						684m	684m		. , , , ,	plane deform-
										ation

⁸ Le Sech, Chim. Analyt., 1958, 40, 425.

⁹ Hofman and Stefaniak, Roczniki Chem., in the press.

TABLE 4. Infrared frequencies of ethers and their nitrates.

Di-n-buty	yl ether	1,4-D	ioxan	
ether	nitrate	ether	nitrate	Assignment
			3116 b	OH in HNO ₃
2952s	2960s	2972m	$2987 \mathrm{sh}$	C-H stretching in CH ₃ and CH ₂ groups
		2921sh	2935m	
2868s	2876s	2863m	$2882 \mathrm{sh}$	
	2600b		2650b	=O+-H
	1845bw			
	1657s		1670s	O-NO ₂ stretching antisym.
1464s	1460s	1453m		CH ₂ scissor
	1422		1399sh	NO_3
1379s	1381s	1368w	1373s	
1303w	1298s		1303s	NO ₂ stretching symm.
1235w		1291m	1260m	
		1258s		
1123s	1086s	1122s	1118	C-O-C in ethers
1042m		1085m	1083m	
		1049w	1045w	
980				
	932s	222	940s	NO ₂ bending in NO ₃ -
		889sh	894w	
		876s	866s	
835w	835w		828w	
740w	740w		776w	

C-H Stretching Vibrations.—The aromatic C-H vibrations are undetectable for the nitrates, as is the C-H stretching vibration of CHO group in aldehyde nitrates.

Band at 2690—2600 cm.-1.—This is a broad band of medium intensity most typical for the nitrates. It is not present in aldehydes, ketones, or ethers and should probably

TABLE 5. Infrared frequencies of 2,6-dimethylpyrone and its dinitrate. 2,6-Dimethylpyrone Assignment pyrone dinitrate 3090mb OH of HNO3 3048mb 2500sb =O+-H 1859w1859m 1670s 1651s C=O1613s 1602sh1557s 1498s 1361s NO₃-1340sNO2 stretching symm. 1296s 1199m 1188m C-O-C in the ether 1162sh 1040m 1038w 956w 941m 927m914m

NO₃-

903s

875m 839w

776w 720w

Table 6.

Infrared frequencies of nitric acid.

99.5	$98 \cdot 2$	6	Assignment
3375b 1665m 1368s 1306m 930w 835w	3385b 1665m 1368s 1297m 938w 835w	3400sb 1642s 1385s	OH hydrogen bonded NO ₂ stretching assym NO ₃ -NO ₂ stretching sym. NO ₂ banding NO ₄ -
772w	774w	770w	NO ₃ -

be assigned to the hydroxonium bond =O+-H. This would be on similar lines to the work by Ferriso and Hornig ¹⁰ who assigned such bands at 2570 and 2610 cm.⁻¹ for

¹⁰ Ferriso and Hornig, J. Amer. Chem. Soc., 1953, 75, 4113.

hydroxonium chloride and bromide, respectively. Rasmussen, Tunnicliff, and Brattain 11 moreover, assigned a band 2703 cm.⁻¹ to the resonance structure involving hydroxonium ion: $C=O \cdot \cdot \cdot H^+ \leftarrow C=O^+-H$.

In the spectrum of cinnamaldehyde nitrate the frequency is considerably lower (2330 cm.-1), perhaps owing to conjugation of the C=O group with double bonds of the side chain and the aromatic ring.

A band of the same frequency is present for the nitrates of the ethers examined (2650— 2600 cm.⁻¹) and for the 2,6-dimethylpyrone dinitrate (2500 cm.⁻¹).

C-O Stretching Vibrations.—The bands at 1712—1646 cm.-1 present in the spectra of all the aldehydes and ketones should be assigned to C=O stretching vibrations. Their frequencies are lower for the nitrates of non-aromatic aldehydes and ketones by 33 and 28—47 cm.⁻¹, respectively. They are also lower for the nitrates of the aromatic aldehydes investigated and for acetophenone, 19—33 and 15 cm.⁻¹, respectively. The frequencies are unchanged for benzophenone nitrate.

The difference between aliphatic and aromatic substances may be due to conjugation of C=O group with the aromatic rings. In benzophenone and its derivatives the two aromatic rings are in different planes, and it is possible to envisage competitive conjugation of two aromatic rings with the carbonyl group.

Both cinnamaldehyde and its nitrate give two strong bands in the C=O region, 1670, 1623 and 1651, 1618 cm.⁻¹, respectively, possibly due to the presence of cis-trans-isomers of cinnamaldehyde.

Band at 1422—1361 cm.-1.—This strong band is present in the spectra of all the nitrates and of nitric acid and should be assigned to vibrations of the anion NO₃-.

Antisymmetrical and Symmetrical NO₂ Stretching Vibrations.—The bands produced by the antisymmetrical stretching vibrations of the nitro-group of the nitric acid in the addition compounds could only be detected for the ethers, at 1670—1657 cm.⁻¹. With both aldehydes and ketones it was shielded by strong C=O vibrations. On the other hand, the bands due to symmetrical nitro-vibrations are prominent in spectra of all the nitrates examined.

Ether Bond C-O-C Stretching Vibrations.—Bands at 1123—1122 cm.-1 in the spectra of ethers (Table 5) should be assigned to C-O-C vibrations. For the nitrates they are shifted to lower frequencies (1086 and 1118 cm.-1). A much smaller shift was recorded for 1,4-dioxan. For 2,6-dimethylpyrone, the band at 1199 cm.-1 should probably be assigned to the C-O-C bond; it is transformed into one at 1188 cm.-1 in the spectrum of the dinitrate of this compound. The band at 1162 cm. -1 for the free dimethylpyrone disappears from the spectrum of the nitrate.

Nitric Acid Spectra.—So far only a few papers have been published on the infrared spectroscopy of nitric acid.^{12,13} With both concentrated and dilute nitric acid a strong band at 1368 cm.⁻¹ is found. This corresponds to the NO₃⁻ ion.¹³ The weak bands at 835 and 774 cm.-1 should also be assigned to this ion. The NO₂+ band (2360 cm.-1) was not detected for capillary layers.¹³ All the nitro-group stretching vibrations (both antisymmetrical and symmetrical) are present in the spectrum with the frequencies typical for O-nitro-compounds. Also, concentrated nitric acid shows a weak band frequency 948 cm. $^{-1}$ which should be assigned to NO₂ bending vibrations.

The spectrum of the dilute acid contains a prominent hydroxyl band.

The authors are much indebted to Mrs. U. Dabrowska for measuring the infrared spectra.

Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 10, Poland. [Received, November 2nd, 1961.]

¹³ Marcus and Fresco, *J. Chem. Phys.*, 1957, 27, 564.

<sup>Rasmussen, Tunnicliff, and Brattain, J. Amer. Chem. Soc., 1949, 71, 1068.
Frejacques, Compt. rend., 1952, 234, 1769; Bethell and Sheppard, J. Chem. Phys., 1953, 21, 1421;
Bellamy, "The Infra-red Spectra of Complex Molecules," Methuen, London, 1958.</sup>