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333. Electronic Xtructzcre of Trimethylenemethyl, C( CH,) 
By D. P. CHONG and J. W. LINNETT 

Complete configuration interaction (CI) treatments have been carried out 
for the x-electron systems of C(CH,),, C(CH,),+, and C(CH,),,+. Energies, 
and overlap with the above CI functions, have also been calculated by using the 
approximate wave functions based on (i) a inolecular orbital treatment, (ii) a 
valence bond treatment, and (iii) the treatment first used by Hirst and Linnett 
and described by them as non-pairing. It is shown that (iii) provides the best 
simple representation of the electronic structure. The effect of branching in a 
molecule on the adjustable parameter in (iii) and transferability of this 
parameter from one molecule to another have also been examined. 

DURING the last few years, the method of assigning every electron to a different spatial 
orbital, even if the spins are different, has been applied to molecules, radicals, and ions in 
this laboratory in two general directions. Towards a better qilalitative description of 
electronic structure, the double-quartet (DQ) theory has been suggested, according to 
which the Lewis octet is treated as two quartets of electrons instead of four pairs. For the 
quantitative treatment, the so-called non-pairing method has been used.2-4 In order to 
make it clear that this procedure implies only an absence of spatial pairing, it is intended 
to  call this the method of non-paired spatial orbitals (NPSO) meaning that a pair of electrons 
is never assigned to the same spatial orbital (ie., no two electrons are given the same spatial 
function). It does not involve pairing in molecular orbitals as in the MO method, or in 
bonds or lone-pairs as in the valence-bond (VB) method. While the double-quartet 

1 Linnett, Nature, 1960,187,859; Green and Linnett, J. ,  1960,4959; Linnett, J .  Amer. Chem. Soc., 
1961,83,2643; Linnett, Nature, 1963,199, 168; Hirst, Hopton, and Linnett, Tetrahedron, 1963,19, suppl. 
2,  15; Linnett, J. ,  1963, 4663; Linnett, “ Electronic Structure of Molecules,” Methuen, London, 1964. 

* Hopton and Linnett, J., 1962, 1553; Gould and Linnett, Trans. Faraday Soc., 1963, 59, 1001; 
Empedocles and Linnett, Proc. Chem. SOC., 1963, 303; Linnett and Sovers, Discuss. Faraday Soc., 1963, 
35, 58. 

4 Unpublished results, Empedocles, Part I1 Thesis, Oxford, 1962. 

Hirst and Linnett, R o c .  Chem. Soc., 1961, 427; J. ,  1962, 1035, 3844; 1963, 1068. 
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Table 1. The ground state is a 3A2, state, with EOT = 4W2, - 3.75381 rydbergs, and the 
corresponding normalized best function is : 

y?cI = 0.30461 $1 + 0.05994 $2 + 0.09117 $3 + 0.02659 $4, 

where $1 =I 41 - $2 - 4 3  + 4 4  + $5 - $6; 

$2 = 412 - 4 7  + 410 - $11 + 4 8  - 4 9 ;  

$3 = $16 - $17 + 41s - $13 - $14 + 415; 
4 4  = - 4 2 8  + $19 4 2 2  - $30 + 4 2 7  + $25 + 4 2 9  - $20 - $23 + $21 $24 - $26' 

Molecular orbital. 
Y I I o ( k )  = (a + b + c + kx,  a + b + c + kx,  2a - b - c, b - c) 

- (a + b + c + kx,  a + b + c + kx,  b - c, 2a - b - c) 
= 4k$1 + 6& 2k2$3 f- 2k#d. 

Valence bond. 
TVB(k) = (E + @3' + C32)[(a + kx,  x ka, 6, c,) - (x + ha, a + kx,  c ,  b ) ]  

= (1 + k2)*1 + k*2 + k$3, 
where E, C31, and C32 are the identity, 120" rotation, and 240" rotation symmetry operators, 
respectively. 

NPSO. The basic function for the NPSO treatment is of the same type that worked 
well in the cases of the ally1 radical and b~ tad iene ,~  namely, (a, x + ka, c + kx,  b + kx) .  

For any four-electron system with SZ = 0, there are three independent combinations 
of spin assignments which are eigenfunctions of S2 with an eigenvalue of S = 1 : 

c1 = aPaP - pa@x; o2 = @Pa - $aaF; o3 = R a p @  - @@.a. 

Corresponding to these, 
'u; = (E + C31 + C32)[(a, x + ka,  c + kx, b + kx) - (x + ha, a, b + kx,  c + kx)] 
Yr,, = (E + C31 + C32)[-((a,  x + ka,  b + kx,  c + kx)  + ( x  + ka, a ,  c + kx, b + kx)]  

YIl1 = (E + C31 + @;)[-(a, c + kx,  .2: + kn, b + kx) + (c  + kx,  a, b + kx, x $- Ka)] 

= *I + k#Z + k$3 + k2*4; 

= $1 + k$2 + 4 4 3  + k2$4; 

= $1 + 2@3. 

Any linear combination of Y1, YII, and YIII is an eigenfunction of S2 with S = 1. Since 
crl and o2 are symmetric, Yl and YII are equal and have equal weight. Therefore, the 
general NPSO function is: 

(1 - 0 l)(Yl +- Yrr) $- OYIII, with - 1 < 0 < + 1. 

To avoid introducing this additional parameter 0 for energy minimization, we make use of 
the spin projection operator,8 0. For four-electron systems with SZ = 0,  3O = &S2(6 - S2), 
and 

3 0 ( ~ p . p )  == &(Rpccp - p.p.1. 

%PSO(k) = $1 + k$2 + k$3 + k2&. 

Since Y1 = Yll, the projected function corresponds to the special case in which 0 = 0, i.e., 

The justification for this procedure is discussed later. 
ResuEts.-The results of these one-parameter energy minimizations are listed in Table 2, 

in which the optimum values of k are shown in the first column, the energies, E - Ear in 

8 Lowdin, Adv.  Chem. Phys., 1959, 2, 309. 
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rydbergs, in the second, and the difference from unity of the overlap integrals /YarY'd~ in 
the last. The overlap integrals have been calculated with the normalized best function Yor 
and the normalized approximate function Y' in order to  show how closely the latter 
approximate the former. It places the three approximate functions in the same order as 
the energies do, both showing that the NPSO method is superior. 

TABLE 1 
Energies (E - nVV,,) in rydbergs, for the best CI wave functioiis (n equals the 

number of r-electrons) 
Sym. 
class 

C(CH2), ... 5IA, 

3A 1 
C(CH,),+ ... 42A, 

Energy 
-3.18127 
- 2.72752 
- 2.46431 
- 1.89277 
- 1.46663 

- 2.52329 
- 3.52860 
-3.00121 
- 2.55805 
- 2.13720 

- 3.48477 
- 2.29251 
- 3.46747 
- 2.67067 
- 2.22504 
- 1,62841 

Sym. 
class 
7lE 

72E 

3IE 

3A 1 

Energy 
- 3.68267 
-2.93627 
- 2.87551 
-2.48124 
- 2.30767 
- 1.76275 
- 1.54449 
- 3.85363 
- 3.47962 
- 3.14258 
-2.77023 
-2.64505 
- 2.34332 
-2.03993 
- 3.05 182 
- 2.52391 
- 1.66463 

- 2.89665 

TABLE 2 

Sym. 
class Energy 
43A2 -3.75381 

- 2.79860 
- 2.72025 
-2.06417 

'A, -2.50300 

21A 2 - 3.67329 
-2.96827 

4E - 3.34875 

3A2 -2.60936 

g3E -3.05519 - 2.74632 

Sym. 
class Energy 
53E - 3.50035 

-3.01453 
- 2.76265 
-2.36338 
- 2.25142 

Results obtained with various one-parameter approximate functions compared to the 
In the last column, values of the difference from unity of the best CI  function. 

overlap integral S = YoIY'd.r are listed 
k E-ECr l - S  

J^ 
Species Method 

Y MO 2-89390 0.10896 0-0577 
VB 0.28367 0.01054 0.0046 
NPSO 0-26052 0.00295 0.0014 

Y +  MO 2.34547 0.12016 0.0782 
VB 0.17259 0.20827 0.2749 
NPSO 0.70241 0.03013 0.0238 

Y2+ MO 2.76412 0.03174 0.0103 
VB 0.13534 0.07758 0.0301 
NPSO 0.87719 0.01491 0.0058 

Here, the three atomic orbitals in each case are associated with the ct, p, and a spin functions 
in that order. The 24 states and the energies of the best functions, listed as E - 3W,, 
are given in Table 1. The ground state is a 2E state, with EoI = 3W2, - 3.85353 rydbergs, 
and the pair of ground-state wave functions are not unique. If they are chosen such that 
they are symmetric and antisymmetric with respect to reflection in a plane through the 
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In the symbols #'s and 9's used in this and the following sections, the superscripts + and 
It should be 2f have been omitted for convenience since there should be no confusion. 

clear from the superscript on the symbol Y or 0 (see Discussion) which $'s are involved. 

Molecular orbitals. 

YXo+(k) = (a + b + c + kxJ a + b + c + Kx, b - c)  
= &[2$is %7 k$18 3$19 + $20 + 2k$21 + 2k2$221- 

Valence Bond. 

Ym+(k)  = (C31 - Ca2)[(a + kx, x + ka, b) + (x + ka, a + kx, b) + (a + kx, $- k a 9  c, $- (x + ka, a + kxJ ')] 
= 8C(1 + k2>$17 - (1 + k 2 ) h  - 4 k h  - 4 W 2 d  

NPSO. The simplest NPSO function is constructed with the basic function 
Because of the symmetry in such a function, it is independent (a + kx, b + kx, c + kx). 

of the combination of spin assignments, except for a multiplicative constant. 

YKps0+(k) = (C,l - C,2)[(n + kx,  b + kx, c + kx) + (a + kx, c + kx, b + kx)] 
=Z 4 [2#16 + 3k#i7 + k& 4- 6h21,!J22]. 

Reszdts. The results are shown in Table 2, where the energies are listed as E - E C I .  

We see that in this case, the NPSO method gives a much better wave function, both in 
energy and in overlap with the best CI function, than the other two methods. 

Trimethyle~emethy,? Doubly-positive lon.-Co.Pnplete treatment. The basic set of 
functions is : 

$1 = (a,b,); $2 = (b,c); $3 = (c,a); $4 = (b,a); $5 = (c,b); $6 = (a,c); $7 = (a,x);  
#* = (b ,x)  ; $9 = (c,x) ; +lo = (xja) ; $11 = ( % j b )  ; $12 = (x,c) ; $13 = (a,a); $14 = (b,b) ; 
615 = ( c ~ c ) ;  $16 = 

where the symbol (w, n) has been defined in the section on outline of treatment. The 
16 states and the energies of the best functions, listed as E - 2W2, are shown in Table 1. 
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The ground state is a lA,  state with Ecr = 2Wu - 3.46747 rydbergs. The normalized 
wave functions of the ground state is: 

ycr2+ = 0.06745 + 0.23135 1,4 - 0.00484 $3 + 0.39273 #4, 

where $1 = $1 + $2 t $3 + $4 + 4 5  + 4 6 ;  

Y4 ='4, + 4 8  + 4 9  + 410 + 411 + 412;  

#4 = 416. 

#3 = 413 4- $14 + 415; 
Molecular orbital. 

YMo2+(k) = (a + b + c 4- Ax, a 4- b +- c + Kx) 
= *1 + k$2 + $3 I- k2Jt4. 

Valence bond. 
YvB2+(k)  = (E + C3l + C,,)[(a 3- kx, ka + X) + (Ka 3- X ,  a + Ax)] 

= (1 3- h2)Jt2 + 2w3 + 6W4. 
NPSO. 

Y'Npso2+(k) = (E + + (&'>[(a + AX, 8 + Ax) + (b + k ~ ,  a + Kx)] 
= $1 + 2k#, + 6k2$4. 

ResuEts. The results are compared with the complete treatment in Table 2, with the 
The NPSO function again fares better than the other energies expressed as E - EoI. 

two, all on the same, one-parameter, level of approximation. 

D I s c u s s I o N 

The NPSO function for Y has been obtained by using the spin projection operator. 
Table 3 gives some of the more common projected spin functions. 
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structure, there are six ways of assigning the spin functions such that SZ = 0. For 
instance, for (I), there are the following: 

The projection operator in this calculation essentially eliminates the last pair and gives 
equal weights to the first four.* 

The NPSO function for Y+ is represented by formula (IV) and that of Y2+ by (V), 
VI), and (VII). 

(IV) (V) (VIi (V11) 

For these functions, there is no ambiguity in the spin assignments, though for different 
reasons. Table 2 shows that for these species the NPSO method gives considerably lower 
energies than MO and VB treatments, especially for Y+. The values of the NPSO para- 
meter k at  the minimum energies are not too far from unity. And, if k is arbitrarily set 
equal to I ,  one obtains an energy of 3W,, - 3.79977 rydbergs for Y+, and 2W2, - 3.44946 
rydbergs for Y2+, both better than either MO or VB with one-parameter variation. There- 
fore, for the I;-electrons in these ions, the NPSO picture of a one-electron bond for each of 
the carbon-carbon bonds in Y+ and 8 of a one-electron bond in Y2+ are better than the VB 
representation of Q of a two-electron bond in both Y+ and Y2+. 

Other NPSO Functiorcs.-The NPSO functions presented so far are by no means unique. 
Other NPSO functions, to which the symbol 0 is given, have also been tested. Some of 
them give better energies than the YNpso(k), and some, worse. A few of them will be 
discussed below. 

For Y, we tried a NPSO function with the parameter 8 = 0.5: 

@,(A) = 0*5(Y?I -+ 'rI1 + yI;II) = ++I + k94 + 2w3 + k2*& 
as well as one which is similar to the VB function: 

@,(A) = (E + C$ + C,,)[(x + ka, a + kx,  b + kx,  c + kx)  
- (a + kx,  x + ka, c + kx, b + Kx)] 

= (1 + A,)*, + k+, + (2k + k3>+3 + k2*.,. 
The energies obtained are- 4W,, - 3.75088 and 4W, - 3.74920 rydbergs, respectively, 
compared to 4W,, - 3.75085 rydbergs for YKpso(k). 

For Y+, the @+ functions tested are all special cases of a two-parameter NPSO function 
obtained by using the spin projection operator and starting with (a + k p ,  b + k2x, c + k p )  
as the basic determinant. This general NPSO function, antisymmetric with respect to a, 
(one member of the 

The energies, E - 3W2,, in rydbergs for the special cases of k,  = 0, k ,  = 1, k, = 1/k2, 
k, = 0, and k ,  = 1 are -3.83065, -3-82464, -343371, -3.79000, and -3432733, 
respectively. The NPSO function YNPSO+(k), used in the previous section, with an energy 
of 3W2, - 3.82341 rydbergs, is just the special case of @+(A,, k,) with k,  = k,. 

A dot represents a single electron, the spin not being specified. 
J. W. Linnett, " The Electronic Structure of Molecules," Methuen, 1964. 

pair), has the form: 

@+(RIP h2) = %h6 + (6R2 + 3 k 1 ) h  + (2k2 + k)A8 + W b k 2  + 6k22)95220 

* In these formulae crosses represent electrons having one spin and circles those having the other. 
For a more detailed description see 
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Similarly, the NPSO function for Y2+ was generalized as a two-parameter function and 
various special cases were tested. 

@2+(k1, k,) = (E '3, $- + k,xJ '2%) + (b  + '2'1 a + k,x)] 
= #l + (kl + k2)#2 f- 6k1K2$4. 

The energies for the special cases with k, = 1 and k,  = 1/k, are 2W,, - 3.45311 and 
2W,, - 3.46735 rydbergs, respectively, compared to 2W,, - 3.45256 rydbergs for Y ~ s o 2 + J  
i e . ,  a2+(k,, k,) with k,  = k,. 

Efect of Branching.-Before considering the effect of branching of a molecule on the 
NPSO parameter k ,  we must go back to the straight-chain species, the allyl radical, as a 
basis of comparison, and examine how k varies down the chain. In other words, instead 
of starting with (a, b + ka, c + Kb) as the basic determinantal function,, we now use 
(a ,  b -t k,a, c + k,b), and obtain 

where the symmetry spin orbitals in this function are those defined by Hirst and Linnett.2 
From the coefficients of the best function, in place of k = 0.2'77 * the best values for k,  
and k,  are now 0.241 and 0.293, respectively.* Therefore, for a normal straight-chain 
neutral hydrocarbon, the NPSO parameter k is expected to increase slowly down the chain. 
The minimum energy is not particularly sensitive to such a variation in k since the one- 
parameter variation for the allyl radical already yields an energy which is only 0.00080 
rydbergs above the best energy from the complete CI treatment. 

Now, if the same is done for Y, i .e.,  replacing k with kl and k,, we get 

@@,, k,) = (E + '2 + C3,>[(a, x + k,a, c + k,x, + k,x) 
- (' ' l a ,  IE, + k , x J  + k,x)] 

= $1 + '1$2 + '2$3 + k1k2#4. 

A two-parameter variation yields a minimum energy of 4W,, - 3.75329 rydbergs at  
k ,  = 0.21589 and k ,  = 0.31822. 

At first glance, these values of k ,  and k,  appear surprising, since we expect that the 
effect of branching in a molecule is such that the electrons tend to stay apart thereby 
increasing k,  and decreasing k ,  with respect to the straight chain. However, if we carry 
out a two-parameter variation on one of the other NPSO functions tested, the one with 
0 = 0.5 arbitrary, i.e., 

we find that the minimum energy is 4W,, - 3.75243 rydbergs at k, = 0.33664 and k ,  = 
0.24553. Therefore, we are forced to conclude that the variation in k is strongly governed 
by the choice of combination of spin assignments. Happily, the energy is not very sensitive 
to such variations. 

Transferability of NPSO Parameter.-A satisfactory feature exists in the values of the 
NPSO parameter k ,  in that, for the cases investigated as far, the optimum values of k 
are all fairly close to 0.3. The best values of k for the projected NPSO fmction are 
0.2769 for allyl radical, 0.30 for butadiane, and 04605 for trimethylenemethane. 

Moreover, in these calculations, the energy is not very sensitive to small variations in k. 
At k = 0.3 for Y , the energy is 4W,, - 3.74953 rydbergs, which is still lower than those for 
the MO and VB functions with energy minimization. 

These two facts, (1) that the parameter k is relatively constant, and (2) that the energy 
is not very sensitive to small changes in k ,  suggest the possibility of extending the NPSO 
method to more complicated molecules for which energy minimization may be too involved 

@l(kl, k2)  = + k1$2 + 2k2#3 + k1k2'b4, 

* These best values of k, R,, and R, are slightly different from those in ref. 2 (0.279,0*243, and 0.298) 
because they have been obtained by starting with the more accurate integrals over atomic orbitals used 
in this work. 
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Penetration (rydbergs) ...... (a 
(a 
(a 
(a 

Electronic Structure of Trimethy ZenenzethyZ, C (CH,) 

XX) = 0.062831 (X 1 ab) = 0.023403 
bb) = 0.000976 (a ~ b )  = 0.002848 
UX) = 0.138783 
&) = 0.007990 

(a I bc) = 0.000153 

or not even feasible. 
benzene molecule with considerable success. 

helpful discussions. 

Empedocles and Linnett have applied the NPSO method to the 
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TABLE 6 
Matiix elements between one of the sets of 2E symmetry spin orbitals of Yf 

Hi* - 3si,w,, Hij - 3SijW2, 
j Sij (rydbergs) i i s4j (rydbergs) 
16 5.999648 -20.611823 18 18 40.797719 - 150'29575 
17 1.499088 - 6.239956 18 19 4.846870 - 18.536159 
18 4.846870 -20'496267 18 20 4.846870 - 18.605908 
19 0.241573 - 1.058507 18 21 1.169073 -6.195947 
20 0.672444 -2.896364 18 22 4.497264 - 18.566524 
21 0.058268 -0.293713 19 19 4.223913 - 11.290823 
22 0.389691 - 1.890982 19 20 0-241573 - 0.998567 
17 3.714628 - 12.973275 19 21 1.018815 - 3.420010 
18 1.169073 -5.677140 19 22 0.38969 1 - 1.744974 
19 -0.422006 + 1.478817 20 20 11.326851 -28.722191 
20 1.499088 - 5.634553 20 21 0-05 82 6 8 -0.281354 
21 0.019536 -0.070269 20 22 0.389691 - 1.773754 
22 0.499696 -2.074401 21  21 1 -867082 - 4.967665 

21 22 0.499696 - 1.868725 
22 22 1.922262 - 6,407065 

TABLE 7 
Matrix elements between the l A ,  symmetry spin orbitals of Y2' 

H, - 2s,w,, 
S.. j Sij (1- ydbergs) i j 

1 6.493620 - 18.204786 2 2 7.682776 
2 3.361920 - 12.291553 2 3 1.680960 
3 0.475490 - 1.751757 2 4 1.559712 
4 0.405450 - 1.774067 3 3 3.009065 

3 4 0.202726 
4 4 1~000000 

H, - 2sijw,, 
(rydbergs) 

-25.608114 
-5'490175 
- 5.902922 
- 5-68 1360 
- 0.826049 
- 3.114366 


