Molecular Polarisability. Carbon-Halogen Bond Polar-**626**. isabilities in Some p-Disubstituted Benzenes

By (Miss) M. L. Kemp and R. J. W. Le Fèvre

Molar Kerr constants and apparent dipole moments in carbon tetrachloride at 25° are recorded for p-disubstituted benzenes, p-X·C₆H₄·Y, where X and Y are, respectively: F, F; Cl, F; Br, F; Cl, Cl; Br, Cl; Cl, I; Br, Br; I, I. The observed mK values lie between those calculated using carbon-halogen bond semi-axes derived from methyl and phenyl halides. The polarisability semi-axes of the carbon-halogen bonds in the symmetrically substituted benzenes are estimated and found to be satisfactorily applicable to the non-symmetric molecules.

The measurements here reported have been made to examine the apparent anisotropic polarisabilities of carbon-halogen bonds when two of these are para-situated in a benzene ring.

EXPERIMENTAL

Materials, Apparatus, Etc.—Commercial samples of the following were recrystallised from ethanol: p-dichlorobenzene (m. p. 53°); p-bromochlorobenzene (m. p. 66·5°); p-dibromobenzene (m. p. 87°); p-di-iodobenzene (m. p. 129·5°); p-chlorofluorobenzene (b. p. 130°/760 mm.), and p-bromofluorobenzene (b. p. $152^{\circ}/760$ mm.) were prepared by the method of Kukui, et al.; 1 p-chloroiodobenzene (m. p. 54°) was obtained by the general procedure described by Vogel.² A commercial sample of p-diffuorobenzene $(n_p^{19-1} 1.4418)$ was used without further purification.

Apparatus, techniques, symbols used, and methods of calculation have been described before.^{3,4} The quantities $\Delta \varepsilon$, Δd , Δn , and ΔB are the differences found between the dielectric constants, densities, refractive indices, and Kerr constants, respectively, of carbon tetrachloride as solvent, and of solutions containing weight fractions w_2 of solute. Observations and results are summarised in Tables 1 and 2. When $w_2 = 0$, the following apply at 25°: $\varepsilon_1 = 2.2270$, $d_1 = 1.58454$, $(n_1)_D = 1.4575$, and $(B_1)_D = 0.070 \times 10^{-7}$.

Previous Measurements.—McClellan 5 lists small apparent moments, ranging up to ca. 0.5 p, for some of the compounds under consideration when dissolved in non-polar media (usually benzene). No entry occurs for p-F·C_eH_A·F, and in no case is carbon tetrachloride shown as the solvent involved. A moment of 0.53 D is attributed to p-Br·C₆H₄·F as a gas or as a molten liquid (in which state the polarity of p-Cl·C₆H₄·F is given as 0.95—0.99 D). Differing methods of estimating distortion polarisations may account for such results. Hurdis and Smyth 6 record the total polarisations of p-Br·C₆H₄·F at seven temperatures between 436 and 524° K; $_{\rm T}P$ values from 37.1 to 37.8 c.c. are scattered irregularly, and moments calculated at each point by taking $_{D}P=R_{D}=33.7$ c.c. The correct $_{D}P$ should undoubtedly be greater than this, and the moment correspondingly lower; moreover, Hurdis and Smyth raise the possibility that their substance had a small content of the o-isomer. In Table 2, the R_D values are those deduced from solution, and if the common convention be followed that $_{\rm D}P=1.05R_{\rm D}$ we must conclude that, within the limits of experimental accuracy, the moments in carbon tetrachloride are all indistinguishable from zero.

The $_{\infty}(_{\rm m}K_2) \times 10^{12}$ published by Le Fèvre and Le Fèvre 7 for $p\text{-Cl}\cdot C_6H_4\cdot Cl$ (38·6) is inexplicably higher than our now redetermined value (25.8), which is more in harmony with earlier data by Otterbein and Briegleb; the 40.3 ± 2 quoted in ref. 7 for $p\text{-Br}\cdot C_6H_4\cdot Br$ is in satisfactory agreement with the 38·1 in Table 2.

- Kukui et al., J. Chem. Soc. Japan, 1958, 79, 1120.
 Vogel, "Practical Organic Chemistry," Longmans, London, 3rd edn., 1956, p. 598.
 Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953.
 Le Fèvre and Le Fèvre (a) Rev. Pure Appl. Chem. (Australia), 1955, 2, 261; (b) Ch. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience, New York, London, 3rd edn., vol. 1, p. 2459.

 ⁵ McClellan, "Tables of Experimental Dipole Moments," Freeman, San Francisco, 1963.

 - 6 Hurdis and Smyth, J. Amer. Chem. Soc., 1942, 64, 2212.

 - Le Fèvre and Le Fèvre, J., 1954, 1577.
 Otterbein, Physik. Z., 1933, 34, 645; 1934, 35, 249.
 Briegleb, Z. physikal. Chem., 1932, B16, 249.

Table 1 Incremental dielectric constants, densities, refractive indices, and Kerr constants of solutions in carbon tetrachloride at 25°

	ene		p-Ba	romofluo	robenzene		
$10^5 w_2$ 559 856				2538	4825	6367	8750
$10^4\Delta\epsilon$	throughout 658 1794	$10^4\Delta \epsilon \dots 10^5\Delta d \dots$		58 —	110	148 31	206 55
	throughout	$10^4\Delta n$.		_	_	48	65
$10^{11}\Delta B$			17	22	45	60	81
whence $\Sigma \Delta \varepsilon / \Sigma w_2 = ca. 0$; $\Sigma \Delta \varepsilon$	$d/\Sigma w_2 = -0.58_5;$	whenc	$e \Sigma \Delta \varepsilon / \Sigma w_2$	= 0.23	1 ; $\Sigma \Delta d/\Sigma$	$\Sigma w_2 = 0$	0.00_{6} ;
$\Sigma \Delta n / \Sigma w_2 = ca. 0; \ \Sigma \Delta B / \Sigma w$	$_2 = 0.71 \times 10^{-7}$	$\Sigma \Delta n/\Sigma$	$2w_2 = 0.07$	$5; \Sigma \Delta E$	$3/\Sigma w_2 = 0$	0.92 ₀ ×	10-7
	p-Chle	orofluorobenzene	?				
$10^5 w_2 \dots 1298 1854$	2556 2616	2676 3270		3920	4023	5585	9796
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41 —	$\begin{array}{ccc} 40 & 47 \\ 1212 & \end{array}$	54 	_	55 —	90 2551	$\begin{array}{c} 150 \\ 4453 \end{array}$
$10^4\Delta n$		12 —		_	_	25	43
$10^{10}\Delta B$ — 24	— 27	— 32		43	-	66	104
whence $\Sigma\Deltaarepsilon/\Sigma w_2=0{\cdot}150$; $\Sigma \Delta d/\Sigma w_2 = -$	0.455 ; $\Sigma \Delta n/\Sigma n$	$v_2 = 0.044$	$\mathbf{I}; \; \Sigma \Delta B_{i}$	$\Sigma w_2 = 1$	$\cdot 09 \times 1$	10-7
	p-D	ichlorobenzene					
$10^5 w_2 \dots 3476 \qquad 5547$	5686 6424		7689	8056	9771	1'	7,431
10 ⁴ Δε — —	170 180		211		265		469
$-10^{5}\Delta d$ 1248 1980 $10^{4}\Delta n$ — —	$\begin{array}{ccc} - & 2285 \\ 69 & 75 \end{array}$		— 88	2866	$\begin{array}{c} 3471 \\ 112 \end{array}$		212
	$284w_2 - 0.089w_2$			$\sum \Delta n / \sum r$		7	212
							11 410
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1839 3356 3 300 615	3374 4416	5554 6 82 ₃		6397 10 1073	$0,270 \ 159_5$	11,416 179 ₆
		$B/\Sigma w_2 = 1.57_0$	-	oog	1010	1006	1.08
		· -					
$10^5 w_2 \dots 1231 \qquad 2408$	p- <i>Bro</i> s 3632 4347	mochlorobenzene		57 0	148 9	909	0790
$10^{5}w_{2}$ 1231 2408 $10^{4}\Delta\varepsilon$ $ 72$	114 —					$\begin{array}{c} 302 \\ 296 \end{array}$	$\begin{array}{c} 9729 \\ 308 \end{array}$
$10^{5}\Delta d$ \longrightarrow \longrightarrow						452	—
$10^4 \Delta n \dots 31$	45 —	57				—	-
$10^{10}\Delta B \dots 20$ —	— 58	68		06			_
whence $\Sigma\Delta\varepsilon/\Sigma w_2=0.31$	$I; \; \Sigma \Delta a / \Sigma w_2 = 0$	$\cdot 049$; $\Sigma \Delta n/\Sigma w_2$	$_{3}=0.127;$	$\Sigma \Delta B/\Sigma$	$\Delta w_2 = 1.4$	04 × 1	0-7
	p-Ch	loroiodobenze n e					
$10^5 w_2$ 930	1011 1376		328 16			056	3332
$10^4\Delta\epsilon$	$\begin{array}{ccc} 41 & 60 \\ 2373 & 3330 \end{array}$	67	75	75	96	133	151
		3012				100	
$10^5 \Delta d$ 700	731 1027	$\frac{3912}{1233}$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	731 1027 1698 2490	$\frac{1233}{3093}$					
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$731 1027 \\ 1698 2490 \\ 27 38$	1233 3093 45	105 99	9A 9	019		
$egin{array}{cccc} 10^5 \Delta d & 700 \\ 10^5 w_2 & 1376 \\ 10^4 \Delta n & 20 \\ 10^5 w_2 & 812 \\ \end{array}$	731 1027 1698 2490 27 38 1287 1576	1233 3093 45 2373 24	125 33 50		912 77		
$\begin{array}{cccc} 10^5 \Delta \overline{d} & & 700 \\ 10^5 w_2 & & 1376 \\ 10^4 \Delta n & & 20 \\ 10^5 w_2 & & 812 \\ 10^{10} \Delta B & & 15 \end{array}$	731 1027 1698 2490 27 38 1287 1576 22 26	1233 3093 45 2373 24	50	66	77		-7
$egin{array}{cccc} 10^5 \Delta d & 700 \\ 10^5 w_2 & 1376 \\ 10^4 \Delta n & 20 \\ 10^5 w_2 & 812 \\ \end{array}$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d/\Sigma w_2 = 0 \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	50	66	77		-7
$egin{array}{cccccc} 10^5 \Delta d & & & 700 \\ 10^5 w_2 & & & 1376 \\ 10^4 \Delta n & & & 20 \\ 10^5 w_2 & & & 812 \\ 10^{10} \Delta B & & & 15 \\ & & & & & \text{whence } \Sigma \Delta \epsilon / \Sigma w_2 = 0.46 \\ \hline \end{array}$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d/\Sigma w_2 = 0 \\ & \text{p-}D \end{array}$	$1233 \\ 3093 \\ 45 \\ 2373 \\ 247 \\ \cdot 31_6; \; \Sigma \Delta n/\Sigma w_s$ ibromobenzene	50 = 0.150;	66 ΣΔΒ/Σ	77 $\Xi w_2 = 1.9$	$v_3 \times 10$	
$\begin{array}{cccc} 10^5 \Delta \overline{d} & & 700 \\ 10^5 w_2 & & 1376 \\ 10^4 \Delta n & & 20 \\ 10^5 w_2 & & 812 \\ 10^{10} \Delta B & & 15 \end{array}$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d/\Sigma w_2 = 0 \\ & \text{p-}D \end{array}$	$1233 \\ 3093 \\ 45 \\ 2373 \\ 247 \\ \cdot 31_6; \; \Sigma \Delta n/\Sigma w_s$ ibromobenzene	50	66	77	$\theta_3 imes 10$	-7 7489 255
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; \; \Sigma\Delta d/\Sigma w_2 = 0 \\ & p-D \\ 7 & 1860 \\ . & 59 \\ . & 580 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50 3 = 0·150; 4283 140 1329	$5264 \\ 182 \\ 1625$	77 $\Sigma w_2 = 1.9$ 5905 196	$v_3 imes 10$	7489 255 2324
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; \; \Sigma\Delta d/\Sigma w_2 = 0 \\ & p\text{-}D \\ 7 & 1860 \\ 5 & 59 \\ 5 & 580 \\ 4 & 25 \\ \end{array}$	1233 3093 45 2373 24 47 0.31_6 ; $\Sigma\Delta n/\Sigma w$, ibromobenzene 2655 86 820 35	50 = 0·150; 4283 140 1329 55	$egin{array}{c} 566 & \Sigma \Delta B / \Sigma & \\ 5264 & 182 & \\ 1625 & 67 & \\ \hline \end{array}$	77 $\Sigma w_2 = 1.9$ 5905 196 $ 76$	$v_3 imes 10$	7489 255
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; \; \Sigma\Delta d/\Sigma w_2 = 0 \\ & p-D \\ 7 & 1860 \\ . & 59 \\ . & 580 \\ \end{array}$	1233 3093 45 2373 24 47 0.31_6 ; $\Sigma\Delta n/\Sigma w$, ibromobenzene 2655 86 820 35	50 = 0·150; 4283 140 1329 55	$egin{array}{c} 566 & \Sigma \Delta B / \Sigma & \\ 5264 & 182 & \\ 1625 & 67 & \\ \hline \end{array}$	77 $\Sigma w_2 = 1.9$ 5905 196 $ 76$	$v_3 imes 10$	7489 255 2324
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d / \Sigma w_2 = 0 \\ & & p-D \\ 7 & 1860 \\ . & 59 \\ . & 580 \\ 4 & 25 \\ . & \varepsilon / \Sigma w_2 = 0.334; \\ 33 & 2576 \end{array}$	$egin{array}{c} 1233 \\ 3093 \\ 45 \\ 2373 \\ 47 \\ 0.31_{e}; \; \Sigma \Delta n/\Sigma w_{e} \\ ibromobenzene \\ 2655 \\ 86 \\ 820 \\ 35 \\ \Sigma \Delta d/\Sigma w_{2} = 0.8 \\ 2751 \\ \end{array}$	50 $3 = 0.150;$ 4283 140 1329 55 $1310; \Sigma \Delta n$	$ \begin{array}{c} $	77 $\Xi w_2 = 1.9$ 5905 196 -76 0.129 4753	$_3 imes 10$	7489 255 2324 97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d / \Sigma w_2 = 0 \\ 7 & 1860 \\ . & 59 \\ . & 580 \\ 4 & 25 \\ \varepsilon / \Sigma w_2 = 0.334; \\ 33 & 2576 \\ 22 & 41 \\ \end{array}$	$egin{array}{c} 1233 \\ 3093 \\ 45 \\ 2373 \\ 47 \\ \hline 0.31_6; \; \Sigma\Delta n/\Sigma w_2 \\ ibromobenzene \\ 2655 \\ 86 \\ 820 \\ 35 \\ \Sigma\Delta d/\Sigma w_2 = 0.5 \\ 2751 \\ 43 \\ \hline \end{array}$	50 $3 = 0.150;$ 4283 140 1329 55 $310; \Sigma \Delta n$ 38855 56	$\begin{array}{c} 66 \\ \Sigma \Delta B / \Sigma \\ 5264 \\ 182 \\ 1625 \\ 67 \\ \Sigma w_2 = 1 \end{array}$	77 $5w_2 = 1.9$ 5905 196 $ 76$ 0.129	$_3 imes 10$	7489 255 2324 97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d / \Sigma w_2 = 0 \\ 7 & 1860 \\ . & 59 \\ . & 580 \\ 4 & 25 \\ \varepsilon / \Sigma w_2 = 0.334; \\ 33 & 2576 \\ 22 & 41 \\ \end{array}$	$egin{array}{c} 1233 \\ 3093 \\ 45 \\ 2373 \\ 47 \\ 0.31_{e}; \; \Sigma \Delta n/\Sigma w_{e} \\ ibromobenzene \\ 2655 \\ 86 \\ 820 \\ 35 \\ \Sigma \Delta d/\Sigma w_{2} = 0.8 \\ 2751 \\ \end{array}$	50 $3 = 0.150;$ 4283 140 1329 55 $310; \Sigma \Delta n$ 38855 56	$ \begin{array}{c} $	77 $\Xi w_2 = 1.9$ 5905 196 -76 0.129 4753	$_3 imes 10$	7489 255 2324 97
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d/\Sigma w_2 = 0 \\ & & p-D \\ 7 & 1860 \\ 5.59 & 580 \\ 4 & 25 \\ & & \times /\Sigma w_2 = 0.334; \\ 13 & 2576 \\ 22 & 41 \\ & & \text{whence } \Sigma \Delta \\ & & p-L \end{array}$	1233 3093 45 2373 24 47 0.31_6 ; $\Sigma \Delta n/\Sigma w_3$ $1000000000000000000000000000000000000$	50 $_{3}=0.150;$ 4283 140 1329 55 $810; \Sigma \Delta n/$ 3855 56 $\times 10^{-7}$	$egin{array}{l} 66 & \Sigma \Delta B/\Sigma \ & \Sigma \Delta B/\Sigma \ & 5264 & 182 \ & 1625 & 67 \ & \Sigma w_2 = 0 \ & 4315 & 56 \end{array}$	77 $2w_2 = 1.9$ $\begin{array}{r} 5905 \\ 196 \\ \hline 76 \\ 0.129 \\ 4753 \\ 66 \end{array}$	$t_3 \times 10$	7489 255 2324 97 6874 109
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d / \Sigma w_2 = 0 \\ 7 & 1860 \\ . & 59 \\ . & 580 \\ 4 & 25 \\ . \varepsilon / \Sigma w_2 = 0.334; \\ 32 & 2576 \\ 22 & 41 \\ & \text{whence } \Sigma \Delta \\ & p-L \\ 6 & 806 \end{array}$	$egin{array}{c} 1233 \\ 3093 \\ 45 \\ 2373 \\ 47 \\ \hline \end{array} 24 \\ \hline \end{array} 2573 \\ 2655 \\ 86 \\ 820 \\ 35 \\ \hline \end{array} 255 \\ \Sigma\Delta d/\Sigma w_2 = 0.5 \\ 2751 \\ 43 \\ B/\Sigma w_2 = 1.47 \\ \hline \end{array} 257 \\ \hline \end$	50 $_{2}=0.150;$ 4283 140 1329 $_{5}$ $5810; \Sigma \Delta n/$ 3855 $_{6}$ $\times 10^{-7}$	$ \begin{array}{c} $	77 $\Xi w_2 = 1.9$ 5905 196 -76 0.129 4753	$t_3 \times 10$	7489 255 2324 97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 731 & 1027 \\ 1698 & 2490 \\ 27 & 38 \\ 1287 & 1576 \\ 22 & 26 \\ 5_0; & \Sigma \Delta d / \Sigma w_2 = 0 \\ 77 & 1860 \\ . & 59 \\ . & 580 \\ 4 & 25 \\ . \varepsilon / \Sigma w_2 = 0.334; \\ 13 & 2576 \\ 22 & 41 \\ & \text{whence } \Sigma \Delta \\ 66 & 806 \end{array}$	1233 3093 45 2373 24 47 0.31_6 ; $\Sigma \Delta n/\Sigma w_3$ $1000000000000000000000000000000000000$	50 $3 = 0.150;$ 1283 140 1329 55 $310; \Sigma \Delta n$ 3855 56 $\times 10^{-7}$ 1576 67	$egin{array}{l} 666 & \Sigma \Delta B/\Sigma \\ \Sigma \Delta B/\Sigma & 5264 & 182 & 1625 & 67 & 72 & 72 & 72 & 72 & 72 & 72 & 72$	77 $2w_2 = 1.9$ $\begin{array}{r} 5905 \\ 196 \\ \hline 76 \\ 0.129 \\ 4753 \\ 66 \end{array}$	$v_3 \times 10$	7489 255 2324 97 6874 109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} 1233 \\ 3093 \\ 45 \\ 2373 \\ 47 \\ 0.31_6; \; \Sigma \Delta n/\Sigma w_2 \\ ibromobenzene \\ 2655 \\ 86 \\ 820 \\ 35 \\ \Sigma \Delta d/\Sigma w_2 = 0.5 \\ 2751 \\ 43 \\ B/\Sigma w_3 = 1.47 \\ 0i-iodobenzene \\ 1217 \\ \hline $	50 $_{2} = 0.150;$ 4283 140 1329 55 $810; \Sigma \Delta n/$ 3855 56 $\times 10^{-7}$ 1576 67 916 26	$egin{array}{l} 66 & \Sigma \Delta B/\Sigma \ & \Sigma \Delta B/\Sigma \ & 5264 & 182 \ & 1625 & 67 \ & \Sigma w_2 = 0 \ & 4315 & 56 \end{array}$	77 $5w_2 = 1.9$ 5905 196 -76 0.129 4753 66 2384 -1 -1 40	$t_3 \times 10$	7489 255 2324 97 6874 109
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1233 3093 45 2373 26 47 0.31_6 ; $\Sigma \Delta n/\Sigma w_2$ $ibromobenzene$ 2655 86 820 35 $\Sigma \Delta d/\Sigma w_2 = 0.5$ 2751 43 $B/\Sigma w_3 = 1.47$ $0i-iodobenzene$ 1217 $$ 20 24	50 $_{2} = 0.150;$ 4283 140 1329 55 $810; \Sigma \Delta n/$ 3855 56 $\times 10^{-7}$ 1576 67 916 26 28	$\begin{array}{c} 666 \\ \Sigma \Delta B/\Sigma \\ 5264 \\ 182 \\ 1625 \\ 67 \\ (\Sigma w_2 = 1) \\ 4315 \\ 56 \\ \hline \\ 1767 \\ 1012 \\ \\ \\ \end{array}$	77 $5w_2 = 1.9$ 5905 196 -76 0.129 4753 66 2384 -1 40 46	$t_3 \times 10$	7489 255 2324 97 6874 109 2758 1601

TABLE 2 Polarisations, refractions, and molar Kerr constants in carbon tetrachloride at 25°

Solute	$\alpha \epsilon_1$	β	γ	δ	$_{\infty}P_{2}$ (c.c.)	$R_{\mathbf{D}}$ (c.c.)	$10^{12} \infty (_{ m m} K_2)$
p-F·C ₆ H ₄ ·F	0	-0.369	0	$10 \cdot 1$	$28 \cdot 6$	26.9	9.8
p-Cl·C ₆ H ₄ ·F	0.150	-0.287	0.030	15.6	$32 \cdot 9$	30.8	16.4
p -Br· C_6H_4 ·F	0.231	0.004	0.051	$13 \cdot 1$	$36 \cdot 2$	34.3	18.3
p-Cl·C ₆ H ₄ ·Cl	0.284	-0.225	0.080	$22 \cdot 4$	37.4	36.4	25.8
p-Br·C ₆ H ₄ ·Cl	0.317	0.031	0.087	$20 \cdot 1$	40.4	$39 \cdot 9$	29.9
p-Cl·C ₆ H ₄ ·I	0.450	0.199	0.103	$27 \cdot 6$	$46 \cdot 4$	44.5	$50 \cdot 1$
p-Br·C ₆ H ₄ ·Br	0.334	0.196	0.089	21.0	43.1	$42 \cdot 6$	38.1
p -I·C ₆ H_4 · I	0.428	0.365	0.114	26.7	$53 \cdot 3$	$53 \cdot 9$	66.7

Discussion

Applicability of Existing Carbon-Halogen Polarisabilities.—Molar Kerr constants were calculated from polarisability semi-axes for the C_6H_4 group ($b_1=b_2=9.86$; $b_3=6.05$ *) and those previously found for C-X bonds in various types of molecular environment.

Exaltations of refraction (the differences between the $R_{\rm D}$ values in Table 2 and those computed from the Tables of Vogel et al. 10) are generally very small and within the experimental errors in the observed $R_{\rm D}$ values; accordingly, in our calculations consideration of the directional properties of exaltation has not been attempted.

Results are shown in Table 3, where values in columns A, B, C, and D refer, respectively, to the $_{\text{M}}K$ values predicted using C-X bond parameters drawn from $\text{CH}_{3}X$, $(\text{CH}_{3})_{2}\text{CHX}$, $(CH_3)_3CX$, and C_6H_5X (refs. 11 and 12). Comparison of the observed and calculated $_mK$ values suggests that C-X in ρ -X·C₆H₄·X is less anisotropically polarisable than in C₆H₅X; some quantitative estimates of the modifications involved are made in the following section.

TABLE 3 Calculated molar Kerr Observed constants * (\times 10⁻¹²) $_{\infty}(_{\mathrm{m}}K_{\mathrm{2}})$ \times 10^{12} Solute D \mathbf{B} C 11.9 10.6 9.8p-F•C₆H₄•F p-Cl·C₆H₄·F p-Br·C₆H₄·F 18.6 16.4 12.4 25.318.3 p-Cl·C₆H₄·Cl $22 \cdot 2$ 27.233.225.8 12.9 p-Br•C₆H₄•Cl 27.743.229.931.1 56.8 50.1p-Cl·C₆H₄·I *p*-Br•Č₆H₄•Br 34.0 43.353.738.1 p-I·C₆ H_4 ·I $24 \cdot 1$ 41.967.189.066.7 * Assuming $\mu = 0$.

Estimation of Carbon-Halogen Polarisabilities.—In the case of the four symmetrically substituted benzenes, it is possible to calculate polarisability semi-axes for the C-X bonds by the use of various assumptions. Since these compounds are non-polar, and since there appear to be no measurements in the literature of refractive indices along specific crystal axes, b_1 , b_2 , and b_3 cannot be calculated directly from experiment; this would be so even if reliable light scattering data were available. If, however, we assume that $b_{
m T}$ and $b_{
m V}$ for the C-X bonds in these molecules are equal, in turn, to those in (CH₃)₂CHX, (CH₃)₃CX, and C₆H₅X (noting that columns B, C, and D of Table 3 are in closest accord with observation), then the usual equations (ref. 4) can be solved to yield, in each case, the apparent $b_{\rm L}$ (C-X). A further assumption can be made, viz, that $b_{\rm T}=v_{\rm V}$ for the C-X bond in $p-X\cdot C_{\mathbf{g}}H_{\mathbf{d}}\cdot X$. Calculation of the two unknowns, $b_{\mathbf{L}}$ and $b_{\mathbf{T}}$, then requires both the experimental $_{m}K$ and $_{\mathbb{E}}P$. For p-dichloro-, p-dibromo-, and p-di-iodo-benzene, the $_{\mathbb{E}}P$ values were calculated from bond values given by Le Fèvre and Steel, 3 yielding 34.57,

^{*} Molecular and group polarisabilities are quoted throughout in 10^{-24} c.c. units.

 $^{^{10}}$ Vogel, Cresswell, Jeffery, and Leicester, J., 1952, 514.

Le Fèvre, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.
 Chen and Le Fèvre, unpublished data.

¹³ Le Fèvre and Steel, Chem. and Ind., 1961, 670.

TABLE 4 Estimated polarisability semi-axes for C-X bond in p-X·C₆H₄·X

\mathbf{Bond}	\mathbf{A}	${f B}$	С	D	E
	$b_{f L}$	$b_{f L}$	$b_{\mathbf{L}}$	$b_{f L}$	$b_{\mathbf{T}} \; (=b_{\mathbf{V}})$
C-F	-	-	0.5_{1}	0.9_{7}	0.4_{5}
C-Cl	3.9	3.8	$3 \cdot 7$	4.1	1.8
C-Br	5.9	$5 \cdot 7$	$5 \cdot 3$	5.7	$2 \cdot 6$
C-I	$9 \cdot 3$	8.8	8.0	8.6	4.0

39.98, and 49.69 c.c., respectively. For p-diffuorobenzene, Timmerman's refractivity dispersion data 14 were extrapolated to infinite wavelength by means of the formula quoted by Le Fèvre (p. 18 ref. 3), giving $_{\rm E}P=24.80$ c.c. Table 4 lists the $b_{\rm L}$ values, obtained by the procedures described above, under the headings Λ [using $b_T(C-X)$ and $b_{\rm V}({\rm C-X})$ from $({\rm CH_3})_2{\rm CHX}$], B [from $({\rm CH_3})_3{\rm CX}$], C [from ${\rm C_6H_5X}$], and D [$b_{\rm T}({\rm C-X})$ = Column E lists $b_{\rm T}(=b_{\rm V})$ for the C-X bonds derived in the calculation of column D.

Some test of the validity of these values is obtained by using them, together with the corresponding b_T and b_V in each case, to calculate ${}_{m}K$ values for the $p-X \cdot C_6H_4 \cdot Y$ molecules, and by comparing these values with the observed $_{m}K$ values, as shown in Table 5.

TABLE 5

		Observed			
Solute	Ā	В	С	D and E	$_{\infty}(_{\mathrm{m}}K_{\mathrm{2}}) \times 10^{12}$
<i>p</i> -Cl•C ₆ H ₄ •F		-	15.7	16.6	16.4
p-Br•C ₆ H ₄ •F		-	19.4	20.7	18.3
p-Br•C ₆ H ₄ •Cl	$31 \cdot 1$	$31 \cdot 2$	31.1	$32 \cdot 1$	29.9
p-Cl·C ₆ H ₄ ·I	43.3	$43 \cdot 2$	$43 \cdot 6$	44.2	$50 \cdot 1$

* Assuming zero dipole moment.

It is to be noted that the observed mK values are quite small and may be subject to errors as high as 10%, and that a moment of 0.25 D for ρ -chloroiodobenzene would make the $_{\rm m}K$ predicted, e.g., by the fourth procedure (44.2), equal to the observed value. From Table 5, it can be seen that the calculated mK values are relatively insensitive to small changes in the semi-axes of the C-X bonds. Thus, it seems more reasonable, particularly in view of the approximations in estimating $_{\rm E}P$ [and hence in the evaluation of absolute values of $b_i(C-X)$], to compare the effect of different environments on the anisotropy of the C-X bond. The anisotropy, defined by Smith and Mortensen ¹⁵ as $(2b_{\rm L}-b_{\rm T}-b_{\rm V})/2$ is accordingly computed for the C-X bond in CH₃X, C₆H₅X, and p-X·C₆H₄·X (in the latter case, using the semi-axes of columns D and E of Table 4). The results are summarised in Table 6.

TABLE 6 Anisotropy of C-X bonds * (in 10-24 c.c.)

Anisotropy of C A boilds (in 10 c.c.)						
Environment	C-F	C-Cl	C-Br	C-I		
CH ₃ X	0.8^{2}	0.9^3	1.6	1.9		
C_6H_5X	0.2°	$2 \cdot 5$	3.9	4.8		
p-X·C ₆ H ₄ ·X	$\boldsymbol{0.5_2}$	$2 \cdot 3$	$3 \cdot 1$	$4 \cdot 6$		

* b_i for C-X in CH₃X and C₆H₅X from ref. 10, except CH₃I in which b_L^{CI} and b_T^{CI} have recently ¹⁶ been redetermined as 6.7 and 1.9, respectively.

Conclusions.—Table 6 shows (as would a comparison of Table 4 of this Paper with Table 1 of ref. 10) that carbon-halogen bonds in p-disubstituted benzenes are less anisotropically polarisable than in the related mono-derivatives of benzene. Such a result seems reasonable since the electropolar characters represented (in Ingold's symbolism) by +M, +E,

¹⁴ Timmerman, "Physico-chemical Constants of Organic Compounds," Elsevier, Amsterdam, 1950.

<sup>Smith and Mortensen, J. Chem. Phys., 1960, 32, 502.
Le Fèvre and Orr, unpublished data.</sup>

and -I run as F > Cl > Br > I, and a 1,4-orientation is therefore one in which these "effects" of the substituents are in opposition; mesomeric displacements in particular are thought ¹⁷ to affect strongly the longitudinal polarisabilities of bonds attached to conjugated systems.

We gratefully acknowledge the assistance of Dr. M. J. Aroney in this work, and the award of a Commonwealth Research Scholarship to M. L. K.

UNIVERSITY OF SYDNEY, SYDNEY, N.S.W., AUSTRALIA. [Received, September 14th, 1964.]

 17 Ingold, "Structure and Mechanism in Organic Chemistry," Cornell Univ. Press, Ithaca, 1953, p. 137.