The Squaric Acid Molecule: a Hydrogen Bond Study of Dimethylammonium Hydrobis(hydrogen squarate) $(H_2NMe_2)^+[H_3(C_4O_4)_2]^-$

By **Y. Wang** and **Galen D. Stucky**,* School of Chemical Sciences, University of Illinois at Urbana-Chaupaign, Urbana, Illinois 61801, U.S.A.

The title compound has been synthesized and studied by X-ray diffraction methods. Crystals are orthorhombic, space group *Pccn*, with Z = 4 in a unit cell of dimensions: a = 6.080(3), b = 15.739(14), c = 11.883(9) Å. The structure was solved by direct methods and the final weighted discrepancy factor was 0.050, after anisotropic full-matrix least-squares refinement on 2369 unique reflections measured on a diffractometer. Strong intermolecular hydrogen bonding interactions, both symmetric $[0 \cdots 02.435(2)$ Å] and asymmetric $[0 \cdots 02.582(2)$ Å] exist between squaric acid molecules, two of which are linked *via* one hydrogen atom, with a dihedral angle 26.5° between two C₄O₄ planes.

A NEUTRON and X-ray diffraction study of the structure of squaric acid, $H_2C_4O_4$, was recently reported,¹ and strong asymmetric hydrogen bonds were found between the molecules. Furthermore, in contrast to the dianion, $C_4 O_4^{2-}$,²⁻⁴ which is considered to be an aromatic anion with an unusual amount of resonance energy, $H_2C_4O_4$ was found to contain partially localized double bonds in the four-membered ring, a result which is consistent with a recent interpretation of the singlecrystal Raman study of squaric acid.⁵ The strong hydrogen bonding in H₂C₄O₄ suggests that highly associated $[H_2C_4O_4]_n$ aggregates might exist in solution and that proton dissociation could proceed step-wise according to the equation: $[H_2C_4O_4]_n \longrightarrow mH^+ +$ $H_{2n-m}(C_4O_4)n^{-m}$. In order to investigate further the step-wise dissociation and the asymmetric doubleminimum potential well between the oxygen atoms and the localized bonding in squaric acid, the hydrobis-(hydrogen squarate) ion, $H_3(C_4O_4)_2^-$, was synthesized and studied by X-ray diffraction techniques.

EXPERIMENTAL

Synthesis and Characterization.—Excess of squaric acid was added to NN-dimethylacetamide and the solution heated until the squaric acid had completely dissolved. The salt was obtained as *crystals* by diffusing benzene into the solution (Found: C, 44.0; H, 3.9; N, 5.25. $C_{10}H_{11}$ -NO₈ requires C, 43.95; H, 3.65; N, 5.15%).

The i.r. spectrum (KBr pressed disk) can be compared with that of squaric acid.⁵ Two strong peaks at 2770 and 2975 cm⁻¹, not observed in the squaric acid, are assigned to the C-H and N⁺-H stretching frequencies of the dimethylammonium ion.⁶ The small peak at 2430 cm⁻¹ is assigned as an N⁺-H · · · O⁻ symmetric stretching frequency and indicated that the compound did contain the dimethylammonium ion as well as a squaric acid unit. A mass spectrometric study gave a spectrum similar to that of squaric acid,⁷ except for some extra peaks around m/e 46, which is the mass of the dimethylammonium ion.

X-Ray Intensity Measurements.—A rectangular crystal with dimensions of $0.3 \times 0.3 \times 0.35$ mm was mounted on a

¹ Y. Wang, J. Williams, and G. D. Stucky, J.C.S. Dalton, 1974, 35.

² M. Ito and R. West, J. Amer. Chem. Soc., 1963, 85, 2580.
 ³ R. West and D. L. Powell, J. Amer. Chem. Soc., 1963, 85, 2577.

⁴ W. M. Macintyre and M. S. Werkema, J. Chem. Phys., 1964, 42, 3563.

⁵ F. G. Baglin and C. B. Rose, Spectrochim. Acta, 1970, 26A, 2293.

⁶ J. Bellanato, Spectrochim. Acta, 1960, 16, 1344.

glass fibre with the [032] direction parallel to the axis for diffractometer data collection. A computer-controlled four-circle Picker diffractometer equipped with a highly oriented graphite monochromator (Mo- K_{α} radiation) was used for data measurements. Integrated intensities were collected, by the θ —20 scan technique at a scan rate of 1° min⁻¹. Each reflection was measured by using a dispersion corrected 1.6° scan on 20 with 10 s background counts taken at both sides of the peak. The take-off angle was 1.6°. 2369 Unique reflections were collected to a maximum 20 angle of 70°. Intensities were corrected for background, Lorentz, and polarization effects. Scattering factors for all atoms were taken from ref. 8.

Crystal Data.— $C_{10}H_{11}NO_8$, $M = 273 \cdot 11$. Orthorhombic, $a = 6 \cdot 080(3)$, $b = 15 \cdot 739(14)$, $c = 11 \cdot 883(9)$ Å, $U = 1137 \cdot 12$ Å³, $D_0 = 1 \cdot 595$, Z = 4, $D_0 = 1 \cdot 582(5)$ (flotation in benzene-1,3-dibromobenzene); F(000) = 568. Space group *Pccn* (D_{2k}): Mo- K_{α} radiation, $\lambda = 0 \cdot 7107$ Å, μ (Mo- K_{α}) = 1 \cdot 51 cm⁻¹.

Solution and Refinement.—The structure was solved by the application of direct methods, by use of the FAME– MAGIC–LINK–SYMPL⁹ programs. These results led to a three-dimensional E map calculated with 208 data and a satisfactory trial structure. All six hydrogen atoms were located in the difference Fourier synthesis after several cycles of least-square refinement.¹⁰ The weighted factor $R' [= (\Sigma w | F_0 - F_c|^2 / \Sigma w F_o^2)^{1/2}]$ was 0.131 after isotropic thermal parameter factor refinement without hydrogen atoms, and 0.117 with six hydrogen atoms refined isotropically with positional parameters. The weight w was

taken as
$$1/\sigma^2(F)$$
 where $\sigma(F)=rac{F}{21}[CN+0.25(T_{
m C}/T_{
m B})^2(B_1+C)]$

 B_2) + p^2I^2], where CN = total integrated peak counts, B_1,B_2 = background counts at both sides of the peak, T_B = background scan time (= 10 s), T_0 total scan time (s), I = net peak count, p = constant = 0.02. The inclusion of anisotropic thermal parameters for all non-hydrogen atoms gave final discrepancy factors of R' 0.050 (all data), and R 0.054 (observed data only). Observed reflections had $I > 3\sigma(I)$ where $\sigma(I) = [CN + (T_0/T_B)^2(B_1 + B_2)]^{1/2}$. A final difference Fourier map showed no peaks >0.46 eÅ⁻³.

⁷ S. Skujins, J. Delderfield, and G. A. Webb, *Tetrahedron*, 1968, **24**, 4805.

⁸ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.

⁹ R. Dewar and A. Stone, FAME-MAGIC-LINK-SYMPL, a series multiphase automatic generation from intensities in centric crystal, personal communication, 1966.

¹⁰ W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, a Fortran Crystallographic Least Squares Program, U.S.A.E.C. Report ORNL-TM-305; ORFFE, a Fortran Crystallographic Function and Error Program, U.S.A.E.C. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1962.

		TABLE 1			
Fractional	atomic co-ordir	nates ($\times 10^4$)	and thermal	parameters	*
у	z	10 ⁴ β ₁₁	10 ⁴ β ₂₂	10 ⁴ β ₃₃	$10^{4}\beta_{12}$

				• •		-			
	x	У	z	10 ⁴ β ₁₁	$10^{4}\beta_{22}$	$10^{4}\beta_{33}$	$10^{4}\beta_{12}$	$10^{4}\beta_{13}$	$10^{4}\beta_{23}$
C(2)	2081(2)	-1197(1)	3415(1)	80(3)	17(5)	46(1)	-1(1)	-1(2)	2(1)
C(3)	1217(2)	-397(1)	3678(1)	94(3)	17(1)	42(1)	2(1)	-1(2)	-1(1)
C(4)	3405(2)	-11(1)	3781(1)	102(3)	21(1)	42(1)	2(1)	-1(2)	-0(1)
C(1)	4323(2)	-866(1)	3505(1)	96(4)	18(1)	46(1)	1(1)	1(2)	0(1)
O(2)	1197(2)	-1912(1)	3169(1)	99(3)	17(0)	87(1)	-4(1)	-5(1)	 4 (1)
O(3)	-751(2)	-69(1)	3777(1)	88(3)	23(1)	66(1)	12(1)	-1(1)	-6(1)
O(4)	4166(2)	691(1)	3956(1)	149(3)	21(0)	88(1)	-8(1)	-11(2)	-10(1)
O(1)	6198(2)	-1163(1)	3363(1)	82(3)	25(0)	76(1)	5(1)	5(1)	-5(1)
Ν	2500	2500	3476(2)	204(6)	37(1)	60(2)	-6(2)		
C(5)	611(4)	2215(1	4162(2)	208(6)	34(1)	84(2)	7 (2)	25(3)	4(1)
				$B~(imes 10^2)$					
H(4)	-468(34)	1980(13)	3657(18)	3.00(55)					
H(5)	1095(36)	1789(16)	4730(21)	4·80(64)					
H(6)	117(30)	2707(13)	4552(16)	1.88(48)					
H(3)	2923(43)	2082(13)	3000(18)	4.61(68)					
H(2)	25	-25	3142(28)	5.33(86)					
H(1)	8176(37)	-535(14)	3669(20)	4.89(67)					
	* (3 values are in th	e form: exp[-	$(\beta_1, h^2 + \beta_2, k^2)$	$^{2} + \beta_{a} l^{2} +$	$\beta_{1}hk + \beta_{1}$	$hl + \beta_{a}kl$		

The intensities of all unobserved reflections were taken to be $\sigma(I)$ with an estimated standard deviation of $2I_{\min}/\sqrt{45}$, where $I_{\min} = 3\sigma(I)$.¹¹ During refinement, all unobserved reflections with $F_o > F_o$ were given zero weight. The estimated standard deviation of an observation of unit weight $S = (\Sigma w | F_o - F_o|^2 / N_o - N_v)^{1/2} = 1.47$ with $N_o =$ 2369 and $N_v = 109$. Positional and thermal parameters from the last cycle of least-squares refinement are in Table 1, and bond distances and angles, with their errors,¹⁰ in Table 2. Structure factors of observed and unobserved

TABLE 2 Bond distances and angles

a) Distances (Å	.)		
C(4) - C(3)	1.467(2)	N-C(5)	1.478(2)
C(3) - C(2)	1.400(2)	N-H(3)	0.907(20)
C(2) - C(1)	1.462(2)	C(5) - H(4)	0.963(21)
C(1) - C(4)	$1 \cdot 494(2)$	C(5) - H(5)	0.995(25)
C(4) - O(4)	1.215(2)	C(5) - H(6)	0.951(20)
C(3) - O(3)	1.308(2)	O(2) - H(2)	1.218(1)
C(2) - O(2)	1.282(2)	O(3) - H(1)	0.989(23)
C(1) - O(1)	1.238(2)	H(1) - O(1)	1.603(23)
(b) Non-bonded	contacts (Å)		
$O(2) \cdots O(2^{I})$	2.435(2)	$H(3^{I}) \cdot \cdot \cdot O(1^{II})$	$2 \cdot 411(23)$
$O(1) \cdots O(3)$	2.582(2)	$H(3) \cdots O(4)$	2.582(21)
$\dot{\mathrm{H}(3^{1})}\cdots\dot{\mathrm{O}(2^{11})}$	2.439(25)		
(c) Angles (deg.	.)		
C(1)-C(2)-C(3)	90.8(1)	O(1) - C(1) - C(2)	$135 \cdot 2(1)$
C(2) - C(3) - C(4)	92.9(1)	H(2) - C(2) - C(2)	113.6(4)
C(3) - C(4) - C(1)	87·0(1)	H(1) - O(3) - C(3)	107.4(13)
C(4) - C(1) - C(2)	89·3(1)	$H(3) - N - H(3^{i})$	102.2(29
O(2) - C(2) - C(3)	$133 \cdot 2(1)$	H(3) - N - C(5)	110.3(16
O(2) - C(2) - C(1)	136.0(1)	C(5) - N - C(5I)	113.0(3)
O(3) - C(3) - C(2)	$135 \cdot 8(1)$	$\dot{H}(6) - C(5) - \dot{H}(4)$	113.6(16
O(3) - C(3) - C(4)	$131 \cdot 2(1)$	H(5) - C(5) - N	110.4(13)
O(4) - C(4) - C(3)	$137 \cdot 3(1)$	$O(4^{i}) - H(2) - O(2)$	177.0(31)
O(4) - C(4) - C(1)	135.6(1)	O(1) - H(1) - O(3)	169.4(21)
O(1) - C(1) - C(4)	$135 \cdot 4(1)$		
Roman nume	ral superscrip	te donoto the following	oquinalon

Roman numeral superscripts denote the following equivalent positions: I $\frac{1}{2} - x$, $\frac{1}{2} - y$, z; II \vec{x} , $\frac{1}{2} + y$, $\frac{1}{2} - z$.

reflections are listed in Supplementary Publication No. SUP 20942 (2 pp.).*

DISCUSSION

Both the 1.r. and mass spectrum of this compound indicated that the structure of the $H_3(C_4O_4)_2^-$ fragment * See Notice to Authors No. 7 in *J.C.S. Perkin II*, 1973, Index issue.

¹¹ W. Hamilton, Acta Cryst., 1955, 8, 185.

was similar to that of squaric acid. This is confirmed by the crystallographic results (Figure 1). The corresponding carbon-carbon distances in the ring are essentially the same for the two structures (see Figure 2),

FIGURE 1 The molecular structure

with C(3)-C(2) $[1\cdot400(2)$ Å] being the shortest and C(1)-C(4) $[1\cdot494(2)$ Å] the longest. Both C(2)-C(1) $[1\cdot462(2)$ Å] and C(4)-C(3) $[1\cdot467(2)$ Å] are a little longer than the corresponding distances in the acid. However, some of the corresponding carbon-oxygen distances

are obviously different (X-ray parameters): C(4)-O(4) is shortened from 1.232(2) to 1.215(2) in the anion, and C(1)-O(1) from 1.257(2) to 1.238(2), whereas C(3)-O(3) is lengthened from 1.259(2) to 1.308(2) Å; C(2)-O(2) ammonium ions are, in fact, inserted between atoms O(4) and O(2) in the squaric acid structure (see Figure 3). This insertion shortens $O(4) \cdots O(2)$ so as to form a single minimum potential well, and the hydrogen atom

FIGURE 2 (a) $[H_3(C_4O_4)_2]_n$ in $(Me_2NH_2)[H_3(C_4O_4)_2]$, and (b) $[H_2C_4O_4]_n$ in squaric acid

 $[1\cdot285(2)$ Å] stays the same $[1\cdot282(2)$ Å]. Figure 2 shows that the anion has a configuration closer to that of a 1,2-dione than does the squaric acid molecule. The

FIGURE 3 Crystal packing along one of the *ab* planes in the unit cell

structural data for squaric acid¹ suggests that $O(4) \cdots O(2)$ forms a weaker hydrogen bond than does

is bonded symmetrically between O(4) and O(2) $\{O(4) \cdots O(2') * in (H_2NMe_2)^+[H_3(C_4O_4)_2]^-\}$. Further, one of the squaric acid molecules changes into its tautomeric isomer because of the shift of hydrogen atoms. The shortening of C(4)-O(4) is expected as a result of the insertion of the ammonium ion between O(4) \cdots O(4'). The blue shift of carbonyl stretching frequency in the i.r. absorption (from 1643 to 1720 cm⁻¹) is in agreement with this shortening. The negative charge is believed to be delocalized between two bonded squaric acid molecules. However, the distances C(1)-O(1), C(4)-O(4), and C(2)-C(3) are close to those expected for a double bond while the remaining distances correspond reasonably well to single bonds as previously noted for the squaric acid structure.¹²

A two-fold symmetry axis parallel to the c axis passes through the nitrogen atom in the dimethylammonium ion, as well as through the symmetrically bonded

FIGURE 4 A stereo-view showing the molecular packing

 $O(3) \cdots O(1)$ (Figure 2). The breaking of a hydrogen bond by the ammonium ion would therefore be expected to occur between O(4) and O(2). The dimethyl-

* A primed atom A(n') represents the atom generated by the two-fold axis, parallel to *c* axis through atom N.

hydrogen atom in the anion. The nitrogen atom is in a tetrahedral environment with H–N–H $102\cdot2(3)^{\circ}$, less than the tetrahedral value. From Figure 3, it is ¹² S. Cohen, J. R. Lacker, and J. D. Park, *J. Amer. Chem. Soc.*, 1959, **81**, 3480.

obvious that the repeat unit is one dimethylammonium ion and two squaric acid molecules linked by one hydrogen atom. As in the infinite planar structure of squaric acid, the C_4O_4 unit is still planar, but the dihedral angle between two C_4O_4 planes in $H_3[C_4O_4]_n$ is $26\cdot5^\circ$. O(2), H(2), and O(2') are on a line parallel to the *b* axis with O(2)-H(2)-O(2') 177·0(3)°. A stereo-view of the molecular packing in the unit cell is shown in Figure 4. Ionic forces apparently predominate between the cation and the anion; the closest distance between ions is >2.4 Å for O-H, which would represent an extremely weak hydrogen bond.

The support of the National Science Foundation is gratefully acknowledged.

[3/1958 Received, 24th September, 1973]