# The Squaric Acid Molecule: a Hydrogen Bond Study of Dimethylammonium Hydrobis(hydrogen squarate) $\left(\mathrm{H}_{2} \mathrm{NMe}_{2}\right)^{+}\left[\mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)_{2}\right]^{-}$ 

By Y. Wang and Galen D. Stucky,* School of Chemical Sciences, University of Illinois at Urbana-Chaupaign, Urbana, Illinois 61801, U.S.A.
The title compound has been synthesized and studied by $X$-ray diffraction methods. Crystals are orthorhombic, space group Pccn. with $Z=4$ in a unit cell of dimensions: $a=6 \cdot 080(3), b=15 \cdot 739(14), c=11 \cdot 883(9) \AA$. The structure was solved by direct methods and the final weighted discrepancy factor was 0.050 , after anisotropic full-matrix least-squares refinement on 2369 unique reflections measured on a diffractometer. Strong intermolecular hydrogen bonding interactions, both symmetric [ $0 \cdots 02 \cdot 435$ (2) $\AA$ ] and asymmetric [ $0 \cdot \cdots 02 \cdot 582(2) \AA$ ] $]$ exist between squaric acid molecules, two of which are linked via one hydrogen atom, with a dihedral angle $26.5^{\circ}$ between two $\mathrm{C}_{4} \mathrm{O}_{4}$ planes.

A neutron and $X$-ray diffraction study of the structure of squaric acid, $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}$, was recently reported, ${ }^{1}$ and strong asymmetric hydrogen bonds were found between the molecules. Furthermore, in contrast to the dianion, $\mathrm{C}_{4} \mathrm{O}_{4}{ }^{2-},{ }^{2-4}$ which is considered to be an aromatic anion with an unusual amount of resonance energy, $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}$ was found to contain partially localized double bonds in the four-membered ring, a result which is consistent with a recent interpretation of the singlecrystal Raman study of squaric acid. ${ }^{5}$ The strong hydrogen bonding in $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}$ suggests that highly associated $\left[\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}\right]_{n}$ aggregates might exist in solution and that proton dissociation could proceed step-wise according to the equation: $\left[\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}\right]_{n} \rightarrow m \mathrm{H}^{+}+$ $\mathrm{H}_{2 n-m}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)_{n}^{-m}$. In order to investigate further the step-wise dissociation and the asymmetric doubleminimum potential well between the oxygen atoms and the localized bonding in squaric acid, the hydrobis(hydrogen squarate) ion, $\mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)_{2}{ }^{-}$, was synthesized and studied by $X$-ray diffraction techniques.

## EXPERIMENTAL

Synthesis and Characterization.-Excess of squaric acid was added to $N N$-dimethylacetamide and the solution heated until the squaric acid had completely dissolved. The salt was obtained as crystals by diffusing benzene into the solution (Found: C, $44.0 ; \mathrm{H}, 3.9$; N, 5.25. $\mathrm{C}_{10} \mathrm{H}_{11^{-}}$ $\mathrm{NO}_{8}$ requires C, 43.95; H, 3.65; N, $5 \cdot 15 \%$ ).

The i.r. spectrum ( KBr pressed disk) can be compared with that of squaric acid. ${ }^{5}$ Two strong peaks at 2770 and $2975 \mathrm{~cm}^{-1}$, not observed in the squaric acid, are assigned to the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}^{+}-\mathrm{H}$ stretching frequencies of the dimethylammonium ion. ${ }^{6}$ The small peak at $2430 \mathrm{~cm}^{-1}$ is assigned as an $\mathrm{N}^{+-} \mathrm{H} \cdots \mathrm{O}^{-}$symmetric stretching frequency and indicated that the compound did contain the dimethylammonium ion as well as a squaric acid unit. A mass spectrometric study gave a spectrum similar to that of squaric acid, ${ }^{7}$ except for some extra peaks around $m / e 46$, which is the mass of the dimethylammonium ion.

X-Ray Intensity Measurements.-A rectangular crystal with dimensions of $0.3 \times 0.3 \times 0.35 \mathrm{~mm}$ was mounted on a
${ }_{74}{ }^{1}$ Y. Wang, J. Williams, and G. D. Stucky, J.C.S. Dalton, 1974, 35.
${ }^{2}$ M. Ito and R. West, J. Amer. Chem. Soc., 1963, 85, 2580.
${ }^{3}$ R. West and D. L. Powell, J. Amer. Chem. Soc., 1963, 85, 2577.
© W. M. Macintyre and M. S. Werkema, J. Chem. Phys., 1964, 42, 3563 .
${ }_{5}{ }^{5}$ F. G. Baglin and C. B. Rose, Spectrochim. Acta, 1970, 26A, 2293.
${ }^{6}$ J. Bellanato, Spectrochim. Acta, 1960, 16, 1344.
glass fibre with the [032] direction parallel to the axis for diffractometer data collection. A computer-controlled four-circle Picker diffractometer equipped with a highly oriented graphite monochromator ( $\mathrm{Mo}-K_{\alpha}$ radiation) was used for data measurements. Integrated intensities were collected, by the $\theta-2 \theta$ scan technique at a scan rate of $1^{\circ} \min ^{-1}$. Each reflection was measured by using a dispersion corrected $1.6^{\circ}$ scan on $2 \theta$ with 10 s background counts taken at both sides of the peak. The take-off angle was $1 \cdot 6^{\circ}$. 2369 Unique reflections were collected to a maximum $2 \theta$ angle of $70^{\circ}$. Intensities were corrected for background, Lorentz, and polarization effects. Scattering factors for all atoms were taken from ref. 8.

Crystal Data.- $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{8}, M=273 \cdot 11$. Orthorhombic, $a=6.080(3), \quad b=15.739(14), \quad c=11.883(9) \quad \AA, \quad U=$ $1137.12 \AA^{3}, D_{\mathrm{c}}=1.595, Z=4, D_{\mathrm{o}}=1.582$ (5) (flotation in benzene-1,3-dibromobenzene); $\quad F(000)=568$. Space group Pccn $\left(D_{2 h}\right):$ Mo- $K_{\alpha}$ radiation, $\lambda=0.7107 \AA$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=1.51 \mathrm{~cm}^{-1}$.

Solution and Refinement.-The structure was solved by the application of direct methods, by use of the FAME-MAGIC-LINK-SYMPL ${ }^{9}$ programs. These results led to a three-dimensional $E$ map calculated with 208 data and a satisfactory trial structure. All six hydrogen atoms were located in the difference Fourier synthesis after several cycles of least-square refinement. ${ }^{10}$ The weighted factor $R^{\prime}\left[=\left(\Sigma w\left|F_{0}-F_{\mathrm{c}}\right|^{2} / \Sigma w F_{0}^{2}\right)^{1 / 2}\right]$ was 0.131 after isotropic thermal parameter factor refinement without hydrogen atoms, and 0.117 with six hydrogen atoms refined isotropically with positional parameters. The weight $w$ was taken as $1 / \sigma^{2}(F)$ where $\sigma(F)=\frac{F}{21}\left[C N+0.25\left(T_{\mathrm{\sigma}} / T_{\mathrm{B}}\right)^{2}\left(B_{1}+\right.\right.$ $\left.\left.B_{2}\right)+p^{2} I^{2}\right]$, where $C N=$ total integrated peak counts, $B_{1}, B_{2}=$ background counts at both sides of the peak, $T_{\mathrm{B}}=$ background scan time ( $=10 \mathrm{~s}$ ), $T_{\mathrm{O}}$ total scan time (s), $I=$ net peak count, $p=$ constant $=0.02$. The inclusion of anisotropic thermal parameters for all non-hydrogen atoms gave final discrepancy factors of $R^{\prime} 0.050$ (all data), and $R 0.054$ (observed data only). Observed reflections had $I>3 \sigma(I)$ where $\sigma(I)=\left[C N+\left(T_{\mathrm{O}} / T_{\mathrm{B}}\right)^{2}\left(B_{1}+B_{2}\right)\right]^{1 / 2}$. A final difference Fourier map showed no peaks $>0.46 \mathrm{e}^{\AA}{ }^{-3}$.
${ }^{7}$ S. Skujins, J. Delderfield, and G. A. Webb, Tetrahedron, 1968, 24, 4805.
${ }^{8}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040 .
${ }_{9}$ R. Dewar and A. Stone, FAME-MAGIC-LINK-SYMPL, a series multiphase automatic generation from intensities in centric crystal, personal communication, 1966.
${ }^{10}$ W. R. Busing, K. O. Martin, and H. A. Levy, ORFLS, a Fortran Crystallographic Least Śquares Program, U.S.A.E.C. Report ORNL-TM-305; ORFFE, a Fortran Crystallographic Function and Error Program, U.S.A.E.C. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1962.

Table 1
Fractional atomic co-ordinates $\left(\times 10^{4}\right)$ and thermal parameters *

|  | $x$ | $y$ | $z$ | $10^{4} \beta_{11}$ | $10^{4} \beta_{22}$ | $10^{4} \beta_{33}$ | $10^{4} \beta_{12}$ | $10^{4} \beta_{13}$ | $10^{4} \beta_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C(2) | 2081(2) | -1197(1) | 3415(1) | $80(3)$ | 17(5) | 46(1) | $-1(1)$ | -1(2) | 2(1) |
| C(3) | 1217(2) | -397(1) | 3678(1) | 94(3) | 17(1) | 42(1) | 2(1) | -1(2) | $-1(1)$ |
| C(4) | 3405(2) | -11(1) | 3781(1) | 102(3) | 21 (1) | 42(1) | 2(1) | -1(2) | $-0(1)$ |
| C(1) | 4323(2) | -866(1) | 3505(1) | 96(4) | 18(1) | 46(1) | 1(1) | 1 (2) | 0 (1) |
| $\mathrm{O}(2)$ | 1197(2) | -1912(1) | 3169(1) | $99(3)$ | 17(0) | 87(1) | -4(1) | -5(1) | -4(1) |
| $\mathrm{O}(3)$ | -751(2) | -69(1) | 3777(1) | 88(3) | 23(1) | 66(1) | 12(1) | -1(1) | -6(1) |
| $\mathrm{O}(4)$ | 4166(2) | 691 (1) | 3956(1) | 149(3) | $21(0)$ | 88(1) | -8(1) | -11(2) | -10(1) |
| $\mathrm{O}(1)$ | 6198(2) | -1163(1) | 3363(1) | $82(3)$ | $25(0)$ | 76(1) | 5(1) | 5(1) | $-5(1)$ |
| N | 2500 | 2500 | 3476(2) | 204(6) | 37(1) | 60(2) | -6(2) |  |  |
| C(5) | 611(4) | 2215 (1 | 4162(2) | 208(6) | 34(1) | 84(2) | 7(2) | 25(3) | 4(1) |
| $B\left(\times 10^{2}\right)$ |  |  |  |  |  |  |  |  |  |
| $\mathrm{H}(4)$ | -468(34) | 1980(13) | 3657(18) | $3 \cdot 00(55)$ |  |  |  |  |  |
| H(5) | 1095(36) | 1789(16) | 4730(21) | $4 \cdot 80$ (64) |  |  |  |  |  |
| $\mathrm{H}(6)$ | 117(30) | 2707(13) | 4552(16) | $1 \cdot 88(48)$ |  |  |  |  |  |
| $\mathrm{H}(3)$ | 2923(43) | 2082(13) | 3000 (18) | $4 \cdot 61$ (68) |  |  |  |  |  |
| $\mathrm{H}(2)$ | 25 | -25 | 3142(28) | 5-33(86) |  |  |  |  |  |
| H(1) | 8176(37) | -535(14) | 3669 (20) | 4.89(67) |  |  |  |  |  |
| * $\beta$ values are in the form: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$. |  |  |  |  |  |  |  |  |  |

The intensities of all unobserved reflections were taken to be $\sigma(I)$ with an estimated standard deviation of $2 I_{\min } / \sqrt{ } 45$, where $I_{\text {min }}=3 \sigma(I) .^{11}$ During refinement, all unobserved reflections with $F_{\mathrm{o}}>F_{\mathrm{c}}$ were given zero weight. The estimated standard deviation of an observation of unit weight $S=\left(\Sigma w\left|F_{0}-F_{\mathrm{c}}\right|^{2} / N_{\mathrm{o}}-N_{\mathrm{v}}\right)^{1 / 2}=1.47$ with $N_{\mathrm{o}}=$ 2369 and $N_{\mathrm{v}}=109$. Positional and thermal parameters from the last cycle of least-squares refinement are in Table 1, and bond distances and angles, with their errors, ${ }^{10}$ in Table 2. Structure factors of observed and unobserved

Table 2
Bond distances and angles
a) Distances ( $\AA$ )

| $\mathrm{C}(4)-\mathrm{C}(3)$ | $1.467(2)$ | $\mathrm{N}-\mathrm{C}(5)$ | $1.478(2)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{C}(3)-\mathrm{C}(2)$ | $1.400(2)$ | $\mathrm{N}-\mathrm{H}(3)$ | $0.9787(30)$ |
| $\mathrm{C}(2)-\mathrm{C}(1)$ | $1.462(2)$ | $\mathrm{C}(5)-\mathrm{H}(4)$ | $0.963(21)$ |
| $\mathrm{C}(1)-\mathrm{C}(4)$ | $1.494(2)$ | $\mathrm{C}(5)-\mathrm{H}(5)$ | $0.995(25)$ |
| $\mathrm{C}(4)-\mathrm{O}(4)$ | $1.215(2)$ | $\mathrm{C}(5)-\mathrm{H}(6)$ | $0.951(20)$ |
| $\mathrm{C}(3)-\mathrm{O}(3)$ | $1.308(2)$ | $\mathrm{O}(2)-\mathrm{H}(2)$ | $1.218(1)$ |
| $\mathrm{C}(2)-\mathrm{O}(2)$ | $1.282(2)$ | $\mathrm{O}(3)-\mathrm{H}(1)$ | $0.989(23)$ |
| $\mathrm{C}(1)-\mathrm{O}(1)$ | $1.238(2)$ | $\mathrm{H}(1)-\mathrm{O}(1)$ | $1.603(23)$ |

(b) Non-bonded contacts ( $\AA$ )

| $\mathrm{O}(2) \cdots \mathrm{O}\left(2^{\mathrm{I}}\right)$ | $2 \cdot 435(2)$ | $\mathrm{H}\left(3^{\mathrm{I}}\right) \cdots \mathrm{O}\left(\mathbf{1}^{\mathrm{II}}\right)$ | $2 \cdot 411(23)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O}(1) \cdots \mathrm{O}(3)$ | $2 \cdot 582(2)$ | $\mathrm{H}(3) \cdots \mathrm{O}(4)$ | $2 \cdot 582(21)$ |
| $\mathrm{H}\left(3^{\mathrm{I}}\right) \cdots \mathrm{O}\left(2^{\mathrm{II}}\right)$ | $2 \cdot 439(25)$ |  |  |

(c) Angles (deg.)

| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 90.8(1) | $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 135.2(1) |
| :---: | :---: | :---: | :---: |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 92.9(1) | $\mathrm{H}(2)-\mathrm{C}(2)-\mathrm{C}(2)$ | 113.6(4) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(1)$ | 87.0(1) | $\mathrm{H}(1)-\mathrm{O}(3)-\mathrm{C}(3)$ | 107.4(13) |
| $\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(2)$ | 89-3(1) | $\mathrm{H}(3)-\mathrm{N}-\mathrm{H}\left(3^{\text {I }}\right.$ ) | 102.2(29) |
| $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(3)$ | 133.2(1) | $\mathrm{H}(3)-\mathrm{N}-\mathrm{C}(5)$ | 110.3(16) |
| $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(1)$ | 136.0(1) | $\mathrm{C}(5)-\mathrm{N}-\mathrm{C}\left(5^{1}\right)$ | 113.0(3) |
| $\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(2)$ | 135.8(1) | $\mathrm{H}(6)-\mathrm{C}(5)-\mathrm{H}(4)$ | $113 \cdot 6(16)$ |
| $\mathrm{O}(3)-\mathrm{C}(3)-\mathrm{C}(4)$ | 131.2(1) | $\mathrm{H}(5)-\mathrm{C}(5)-\mathrm{N}$ | 110.4(13) |
| $\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(3)$ | 137.3(1) | $\mathrm{O}\left(\mathbf{4}^{1}\right)-\mathrm{H}(2)-\mathrm{O}(2)$ | 177.0(31) |
| $\mathrm{O}(4)-\mathrm{C}(4)-\mathrm{C}(1)$ | 135.6(1) | $\mathrm{O}(1)-\mathrm{H}(1)-\mathrm{O}(3)$ | 169.4(21) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(4)$ | 135.4(1) |  |  |

reflections are listed in Supplementary Publication No. SUP 20942 (2 pp.).*

## DISCUSSION

Both the 1.r. and mass spectrum of this compound indicated that the structure of the $\mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)_{2}^{-}$fragment
*See Notice to Authors No. 7 in J.C.S. Perkin II, 1973, Index issue.
${ }^{11}$ W. Hamilton, Acta Cryst., 1955, 8, 185.
was similar to that of squaric acid. This is confirmed by the crystallographic results (Figure 1). The corresponding carbon-carbon distances in the ring are essentially the same for the two structures (see Figure 2),




Figure 1 The molecular structure
with $\mathrm{C}(3)-\mathrm{C}(2)[1 \cdot 400(2) \AA]$ being the shortest and $\mathrm{C}(1)-\mathrm{C}(4) \quad[1 \cdot 494(2) \AA]$ the longest. Both $\mathrm{C}(2)-\mathrm{C}(1)$ $[1 \cdot 462(2) \AA]$ and $C(4)-C(3)[1 \cdot 467(2) \AA]$ are a little longer than the corresponding distances in the acid. However, some of the corresponding carbon-oxygen distances
are obviously different ( $X$-ray parameters): $\mathrm{C}(4)-\mathrm{O}(4)$ is shortened from $1 \cdot 232(2)$ to $1 \cdot 215(2)$ in the anion, and $\mathrm{C}(1)-\mathrm{O}(1)$ from $1 \cdot 257(2)$ to $1 \cdot 238(2)$, whereas $\mathrm{C}(3)-\mathrm{O}(3)$ is lengthened from $1 \cdot 259(2)$ to $1 \cdot 308(2) \AA$; $C(2)-O(2)$
ammonium ions are, in fact, inserted between atoms $O(4)$ and $O(2)$ in the squaric acid structure (see Figure 3 ). This insertion shortens $\mathrm{O}(4) \cdots \mathrm{O}(2)$ so as to form a single minimum potential well, and the hydrogen atom

(a)

(b)

Figure 2 (a) $\left[\mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)_{2}\right]_{n}$ in $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)\left[\mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)_{2}\right]$, and (b) $\left[\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}\right]_{n}$ in squaric acid
$[1 \cdot 285(2) \AA$ ] stays the same $[1 \cdot 282(2) \AA]$. Figure 2 shows that the anion has a configuration closer to that of a 1,2 -dione than does the squaric acid molecule. The


Figure 3 Crystal packing along one of the $a b$ planes in the unit cell
structural data for squaric acid ${ }^{1}$ suggests that $\mathrm{O}(4) \cdots \mathrm{O}(2)$ forms a weaker hydrogen bond than does
is bonded symmetrically between $\mathrm{O}(4)$ and $\mathrm{O}(2)$ $\left\{\mathrm{O}(4) \cdots \mathrm{O}\left(2^{\prime}\right)^{*}\right.$ in $\left.\left(\mathrm{H}_{2} \mathrm{NMe}_{2}\right)^{+}\left[\mathrm{H}_{3}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)_{2}\right]^{-}\right\}$. Further, one of the squaric acid molecules changes into its tautomeric isomer because of the shift of hydrogen atoms. The shortening of $\mathrm{C}(4)-\mathrm{O}(4)$ is expected as a result of the insertion of the ammonium ion between $\mathrm{O}(4) \cdots \mathrm{O}\left(4^{\prime}\right)$. The blue shift of carbonyl stretching frequency in the i.r. absorption (from 1643 to $1720 \mathrm{~cm}^{-1}$ ) is in agreement with this shortening. The negative charge is believed to be delocalized between two bonded squaric acid molecules. However, the distances $\mathrm{C}(1)-\mathrm{O}(1), \mathrm{C}(4)-\mathrm{O}(4)$, and $\mathrm{C}(2)-\mathrm{C}(3)$ are close to those expected for a double bond while the remaining distances correspond reasonably well to single bonds as previously noted for the squaric acid structure. ${ }^{12}$

A two-fold symmetry axis parallel to the $c$ axis passes through the nitrogen atom in the dimethylammonium ion, as well as through the symmetrically bonded



Figure 4 A stereo-view showing the molecular packing
$\mathrm{O}(3) \cdots \mathrm{O}(1)$ (Figure 2). The breaking of a hydrogen bond by the ammonium ion would therefore be expected to occur between $\mathrm{O}(4)$ and $\mathrm{O}(2)$. The dimethyl-

* A primed atom $\mathrm{A}\left(n^{\prime}\right)$ represents the atom generated by the
two-fold axis, parallel to $c$ axis through atom N .
hydrogen atom in the anion. The nitrogen atom is in a tetrahedral environment with $\mathrm{H}-\mathrm{N}-\mathrm{H} \quad 102 \cdot 2(3)^{\circ}$, less than the tetrahedral value. From Figure 3, it is

[^0]obvious that the repeat unit is one dimethylammonium ion and two squaric acid molecules linked by one hydrogen atom. As in the infinite planar structure of squaric acid, the $\mathrm{C}_{4} \mathrm{O}_{4}$ unit is still planar, but the dihedral angle between two $\mathrm{C}_{4} \mathrm{O}_{4}$ planes in $\mathrm{H}_{3}\left[\mathrm{C}_{4} \mathrm{O}_{4}\right]_{n}$ is $26.5^{\circ} . \mathrm{O}(2), \mathrm{H}(2)$, and $\mathrm{O}\left(2^{\prime}\right)$ are on a line parallel to the $b$ axis with $\mathrm{O}(2)-\mathrm{H}(2)-\mathrm{O}\left(2^{\prime}\right) 177 \cdot 0(3)^{\circ}$. A stereo-view of the molecular packing in the unit cell is shown in

Figure 4. Ionic forces apparently predominate between the cation and the anion; the closest distance between ions is $>2.4 \AA$ for $\mathrm{O}-\mathrm{H}$, which would represent an extremely weak hydrogen bond.
The support of the National Science Foundation is gratefully acknowledged.
[3/1958 Received, 24th September, 1973]


[^0]:    ${ }^{12}$ S. Cohen, J. R. Lacker, and J. D. Park, J. Amer. Chem. Soc., 1959, 81, 3480.

