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An equilateral, five-membered ring is described based on the assumption that during conformational 
changes the distances between atoms and the position of the centre of mass of the ring remain constant. In 
the course of pseudorotation the atoms move along three-dimensional curves whose projections on a 
mean plane of the ring are circles. Assuming a certain bond length of the initial regular pentagon, the 
model allows for high accuracy calculations of the geometry of any future conformations of the ring. Our 
model is compared with those of Kilpatrick and Adams. 

Five-membered rings are very common in nature, especially 
furanose rings in nucleic acids or the D ring in steroids. The con- 
formational flexibility of such rings plays an important role in 
the structure of entire molecules and consequently in their 
biological activity. 

Models for pseudorotation of five-membered rings may be 
divided into three groups. The first is that of Kilpatrick et af.,’ 
also used by other authors (Cremer and Pople ’), the second 
is that formulated by Altona et ~ l . , ~ - ~  and the third is that 
postulated by Adams et al.,’ hereafter referred to as AGB. 
Each model has its disadvantages. In Kilpatrick’s model, the 
endocyclic bond lengths do not remain constant during 
pseudorotation (Figure 1). Altona has contributed a descrip- 
tion rather than a model of pseudorotation; it contains 
merely mathematical relationships between the valency or 
torsional angles and the pseudorotation parameters P and 
r,,,, which are adequate only for small values of the puckering 
amplitude q ;  no attention is given to the nature of the pheno- 
menon. The AGB model, though lacking the disadvantages 
of Kilpatrick’s model, is based on strict requirements limiting 
its application to small out-of-plane dispIacements of the 
atoms (see Discussion section) and does not fulfill Eckart’s 
conditions. 

Dejinitiun of’ the Mudel.-The approach to pseudorotation 
presented in this work is based on the following assumptions: 
(a) the zJ co-ordinate of atoms in the five-membered ring satis- 
fies Kilpatrick’s I relation (1) whereg is the puckering amplitude 

and cp the phase angle and (b) the x j  and y j  co-ordinates depend 
on the pseudorotation parameters of equations (2) and (3) and 

functions Fand G are periodic with respect to cp. 
Thus we propose a parametric dependence on cp of the 

planar curve describing the motion of the projection of an 
atom on the plane of the unpuckered ring. In Kilpatrick’s 
model this curve is a point; in the AGB model an interval, 
while in this paper it is postulated to be an ellipse. This ellipse 
is easily described by an equation in a local reference system 
of the atom concerned. The local reference system is deter- 
mined by the two characteristic directions of the unpuckered 
five-membered ring, i.e. the direction defined by the geometri- 
cal centre of the planar ring and the atom in question, and the 
direction perpendicular to it. The first direction defines the p j  
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Figure 1. Distance between first and fifth atom of an equilateral 
ring of bond length 1.533 8, uersus phase angle cp for several 
values of Q = dmy, calculated according to Kilpatrick et al.’ 

axis of the new system, the second the q j  axis (Figure 2). The 
planar ring is described by the points of intersection of the 
trajectories of the atoms with the mean plane. In our model 
the geometry of this planar ring is required for establishing 
these trajectories. The model is limited to an equilateral five- 
membered ring. Hence, we assume that the planar ring is a 
regular pentagon and is described unequivocally by its bond 
length R. The origin of the system of thejth atom is given by 

(4) 
A 

the vector in equation (4) where rj’ is the radius vector of the 
j th atom in the planar ring, and aj = (rJ’/rJ)a, where a is the 
major axis of the ellipse. Theellipse described by the projection 
of the j th  atom during its motion is given by equations ( 5 )  

A &  

P j  = acos[t(cp)l ( 5 )  

4., = ~os[t(cp)l (6)  
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Figure 2. Elliptical trajectories of the atomic projections on the 
xy mean plane and local systems of co-ordinates (p , ,  qj) .  Small 
circles show the positions of the atoms in the planar ring. R is 
the bond length 

and (6) where b is the minor axis of the ellipse. Constants a 
and 6 must be independent of cp and dependent on 4.  They 
also must be different for different starting geometries of the 
planar ring, defined by the bond length R. 

The function t(q) was found on the basis of assumptions (7) 
and (8). It is given by equation (9). Hence substituting 

if lzj[ = max = 42/59 thenpj = -a (7) 

if lzjl = min = 0 thenpj 4 +a (8) 

equation (9) in equations ( 5 )  and (6), one can obtain a three- 
dimensional parametric curve described by the atom during 
pseudorotation in the local reference system (pj,gj,zj) [equa- 
tions (lo)]. 

yj = -bsin2(cp + 4nj/5) 1 Ob) 

Using the geometrical centre of the planar ring as the reference 
for the co-ordinate system, equations (10) became (1 1) where 

x ( j )  = -acos(2cpj)cosaj + bsin(2rpj)sinaj + rj" (lla) 

y ( j )  = -acos(2cp,)sinaj - bsin(2cp,)cosaJ + rjy  (1 1b) 

cpj = cp + 4n.1'15, Q = d2&, and is the maximum possible de- 
viation of atoms from the mean plane of the ring, aJ is the 
angle between vector rj  and the x-axis, and rjx and rjy  are the x 
and y co-ordinates of the origin of the (p j , g j , z j )  system. The 
values of rjx and rJy are given by equations (12). 

2 

Curve (10) is shown in Figure 3 and its projections on the 
planes of the (pj,qj,zj) reference system are shown in Figure 4. 

The description of curve (1 1) is incomplete without know- 
ledge of the values of constants a and 6. These values were 
calculated assuming that the bond lengths in the ring are 
constant on the pseudorotation path, that is by solving 

Figure 3. Trajectory of thejth atom given by equation (10) in the 
local reference system ( p j ,  q,, z j )  

I - b  

Figure 4. Projections of the trajectory of thej th  atom on: (a) the 
p J ,  ZJ plane; (b) the p j ,  qJ plane; (c) the 41, ZJ plane, in the (P,, 41, ZJ)  
reference system 

equation (1 3) with respect to a and b, provided that bond length 
R is independent of rp and 4. x( j ) ,y ( j ) ,  and z(j) were substituted 
from equations (1 1). 

Calculated values of a and 6 for various Q and R values are 
given in Table 1 ;  a and b are unequivocally defined for all 
values of Q and R. Thus there exists an unequivocal relation- 
ship between a and b. It was found to be very simple [equation 
(14)]. It was also found that equation (15) holds. The depen- 

b = 0.2361a (14) 

dence of a on Q and R was found using the least-squares 
method and is in the form of a polynomial equation (16). The 

a = AR - BQ 4- CQ2/R (16) 
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Table 1. Constants a and b calculated from equation (13) for various 
values of R and Q 

Qlnm 
I- \ 

R/nm 0.01 0.02 0.03 0.04 0.05 
0.140 lo-’ a = 

55 

13 
0.145 53 

13 
0.150 52 

12 
0.155 50 

12 
0.160 48 

11 

10-5 b = 

a and b in nm. 

224 

52 

216 
51 

209 
49 

202 
48 

195 
46 

517 

122 

498 
117 
480 
113 
463 
109 
448 
106 

956 

225 

917 
216 
882 
208 
849 
200 
819 
193 

1 5 8 5  

374 

1512 
3 57 

1 446 
341 

1387 
3 27 

1 3 3 3  
315 

Table 3. Dependence of the radius of the circle rc on Q and R 
values found using the least-squares method, according to the 
equation r, = AR - BQ + CQ2/R 

Q / R  range 
-7 Accuracy of 
from to A B C fit (nm) 
0.0 0.1 0.0 0.0 0.485 10-5 
0.1 0.2 0.0008 0.0145 0.5479 10-5 
0.2 0.3 0.0082 0.0843 0.7116 10-5 
0.3 0.4 0.0534 0.3741 1.1773 2 x 

Y ( j )  = -acos2(cp + 4nj/5)sinaj - bsin2(cp + 
4nj/5)cosaj + rjY + (a - ’) cos29 (20b) 

Table 2. Dependence of major axis of the ellipse on Q and R values 
found using the least-squares method, according to the equation 
a = AR - QB + CQ’IR 

QIR range 
r-+ Accuracy of 
from to A B C fit (nm) 
0.0 0.1 0.0 0.0015 0.7937 10-5 
0.1 0.2 0.0010 0.0195 0.8708 10- 5 

0.2 0.3 0.0115 0.1224 1.1239 10-5 
0.3 0.4 0.0820 0.5800 1.8693 2 x lo-’ 
0.4 0.5 0.9086 4.5205 6.5832 2 x low4 

One can thus unequivocally obtain the co-ordinates of thejth 
atom in the ring for all given values of parameters cp, q, and R 
from equations (20) using equations (12), (14), and (16). Cor- 
rection (17) introduces an additional rotation of the whole 
ring, and therefore does not affect the geometry of the ring, 
i.e. the interatomic distances and torsional and bond angles. 

It was also found that co-ordinates x ( j )  and y o )  satisfy 
equation (21). It can be seen that the planar curve, describing 

constants A-C are collected in Table 2. Substituting co- 
ordinates (1 1) and parameters a and b [equations (1 4), (1 6)] in 
equation (13), we found that on the pseudorotation path the 
bond lengths are constant with an accuracy of 

The model described by equation (11) does not fulfill 
Eckart’s conditions. During pseudorotation the centre of mass 
of the ring rotates in the x y  plane about the z axis in the direc- 
tion opposite to the direction of the motion of atomic pro- 
jections on the xy plane. The motion discussed is an artifact 
resulting from the fact that the trajectory of an atom intersects 
the mean plane at the apex of the planar pentagon [equation 
(8)]. Hence, when the atom crosses the mean plane it ‘ pulls ’ 
the whole ring towards the point of intersection. The motion of 
the centre of mass is eliminated by adding to equations (1 la and 
b) the corrections x, and y, ,  respectively [equations (17) where 

nm. 

x, = RC,sin2cp (174 

yc = Rc,cos2cp (1 7b) 

R,, is the radius of rotation of the centre of mass]. The radius 
R,, was found to depend on the constants a and b [equation 
IS)]. Hence, substituting equation (14) into (18) one obtains 

R,, = (a-b)/2 (18) 

R,, = 0.3820~~ (19) 

(19). When correction (17) is taken into consideration, the 
trajectory of thejth atom is given by equations (20). 

the motion of the projection of thejth atom on the mean plane, 
proves to be a circle rather than an ellipse. The circle and the 
ellipse have a common centre and the length of the radius of 
the circle is the average of the lengths of the major and minor 
axes of the ellipse. Equations (20)can thus be simplified to (22) 

where r, is the radius of the circle described by the projectiQn 
of thejth atom on the mean plane. The dependence of the 
radius rc on Q and R is similar to the dependence of a on Q 
and R [equation (23)]. The constants A-C are collected in 
Table 3. 

r, = AR - BQ + CQ2/R (23) 

An algorithm for cyclopentane geometry calculation with 
respect to bond length R and pseudorotation parameters q 
and cp is presented in the Appendix. 

The point of intersection of the trajectory of thejth atom 
with the mean plane is described by the radius vector, equation 

(24), and lies closer to the geometrical centre of the ring than 
the j th  apex of the planar pentagon by &,,. The foregoing 
eliminates the arbitrary assumption discussed beforehand. 
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Table 4. Comparison of torsion angle values and sums of valency 
angles in cyclopentane obtained with AGB and HR models for 
envelope and twist conformations ( R  0.1546 nm, q 4.35 x 
nm) 

cp 0" (envelope) cp 18" (twist) 
-7 r----h- 

AGB HR AGB HR 
KC(2)-[C(3)-C(4)]-C(5) (") 25.01 26.04 13.16 13.71 
-KC(3)-[C(4)-C(5)l-C(1) 40.27 41.99 34.34 35.77 
KC(4)-[C(5)-C(l)]-C(2) 40.27 41.99 42.29 44.13 
CC(5)-[C(l)-C(2)]-C(3) 25.01 26.04 34.34 35.77 
K C(l)-[C(2)-C(3)1-C(4) 0.0 0.0 13.16 13.71 
z01 522.30 520.33 522.30 520.33 

B 

Figure 5. Description of the position of thejth atom according to 
Adams et aZ.7 (AGB). Points 0 and A are in the xy plane. The xy 
plane is perpendicular to the plane of the diagram. 0 is the centre of 
the planar ring; A is the position of thejth atom in the planar ring; 
B is the momentary position of thejth atom in the puckered ring. 

Discussion 
Any geometrical features of the pentagon, such as atomic dis- 
tances, valence angles, and torsional angles may be analytic- 
ally established for all values of the pseudorotation parameters 
cp, Q, and R. Table 4 presents a comparison of some angle 
values obtained with the AGB model and the model described 
in the present paper, referred to as HR. They were calculated 
using R 0.1546 and Q 2.75 x nm (g 4.35 x lo-' nm) 
which correspond to the values used by Adams et a[.' Table 4 
shows that the absolute values of torsional angles are larger in 
the HR model, while the sum of valence angles is smaller.This 
result may be interpreted as a tendency of the HR model to 
increase the amplitude of puckering q or a tendency of the 
AGB model to diminish it. A more detailed analysis confirms 
the latter hypothesis. 

The basic quantity describing the displacement of the j th  
atom from the xy plane in the AGB model is the angular dis- 
placement of the vector Sj from this plane (Figure 5).  This 
displacement is given by equation (25).7 This approximation is 

a., = arctg(zj/So) (25) 

valid only for small values of the angle aj. The angle aj des- 
cribed by equation (25) is smaller than the actual angle aj' 
(see Figure 5); the amplitude of puckering q is thus diminished. 

All distances in the five-membered ring independent of cp, 
such as a and b or the mean non-bonded atom-atom distance, 
calculated in the frame of the HR model, satisfy relationship 

(26) where Xis  any distance independent of cp. All the angular 
quantities independent of cp, such as the sum of the valence 
angles or the sum of the squares of the torsional angles, satisfy 
the following relationship: X = f(Q/R). The relationships 
permit an easy approximation of the quantities X by means of 
the least-squares fit. They also show that puckering of the ring 

Table 5. Dependence of sum of valence angles on Q and R,  according 
to the equation CBi (") = A + BQ/R - CQ'IR' 

Q / R  range 
-7 Accuracy 
from to A B c offit (") 

0.08 610.11 lo-' 0.0 0.1 540.00 
0.1 0.2 539.75 2.94 -620.91 lo-' 
0.2 0.3 579.48 -314.67 0.00 1 
0.3 0.4 503.27 242.52 1019.55 1 

Table 6. Dependence of mean non-bonded atom-atom distance on 
Q and R values according to the equation RNB = A R  + BQ - 
CQ21R 

QlR range 
-7 Accuracy of 
from to A B C fit (nm) 
0.0 0.1 1.6180 0.0020 1.2782 10-5 
0.1 0.2 1.6161 0.0337 1.4178 10-5 
0.2 0.3 1.5964 0.2152 1,8601 10-4 
0.3 0.4 1.4911 0.9268 3.0389 2 x 

is better described by the ratio Q/R than by the puckering 
amplitude 4. Hence, the ratio Q / R  may be called the degree of 
puckering of the ring. 

Our approximations for the sum of valence angles in the 
ring and the mean non-bonded atom-atom distance are pre- 
sented in Tables 5 and 6. Our approximation for the sum of 
valence angles is more accurate than the formula proposed by 
Dunitz.* 

Conclusions 
The model proposed in this work describes most accurately 
pseudorotation in an equilateral five-membered ring. It 
ensures the constancy of the bond length for all values of the 
pseudorotation parameters cp and q. Unlike the Adams model,' 
ours fulfills Eckart's condition of immobility of the centre of 
mass. Furthermore, its application is not limited to small 
values of the puckering amplitude q. Our model permits a 
rapid calculation of the co-ordinates of the atoms in the ring 
for all given values of parameters cp, 4, and R. 

The model is being adapted to irregular five-membered 
rings. 

Appendix 
An algorithm for cyclopen tane geometry calculation with 
respect to bond length R and pseudorotational parameters 
q and cp is as follows : 

j = atom number 
cp = phase angle (") 
4 = amplitude of puckering (nm) 
R = bond length (nm) 
~ p j  = 1~<p/180 + 41~j/5 
t l j  = ~ / 1 0  + (6 - j ) 4 1 ~ / 5  
Q = 42154 
r, = R[A - BQ/R + C(Q/R)z] (A-C are listed in Table 3) 

rJx = {R/[2sin(n/5)] - 1.6179rc}costlj 
r j y  = (R/[2sin(n/S)] - 1.6179rc}sinaj 

x( j )  = +rc[sin(2cpj)sintlj - cos (2cpj)cosa,] + r," 
y( j> = -rc[cos(2cpj)sinaj + sin(2cpj)costlJ] + r jy  

x( j ) ,  y(j), and z(j) are Cartesian co-ordinates of thejth atom 
z(j) = Qcos(2cp,) 

(nm). 
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