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The 13C n.m.r. chemical shifts of several 2-substituted naphthalenes have been analysed by principal 
components data analysis. In addition, the shift values have been related to  the 13C n.m.r. chemical shifts of 
the corresponding monosubstituted benzenes by means of partial least-squares data analysis. This latter 
analysis showed that nearly all of the systematic variation in the naphthalene shift data set could be 
predicted from the shift data of the monosubstituted benzenes. Moreover, it is shown that the grouping 
of substituent effects noticed for most benzene derivatives is also present in the naphthalene data. The 
advantage of using partial least-squares data analysis compared with the conventional dual substituent 
parameter analysis is also demonstrated. In fact, the overall description of the 13C shifts using the C T ~ ,  CT, 

dual-substituent parameter correlation is not improved compared with the use of the mean values of 0, 

and CT, for the donor, acceptor, alkyl, and halogen subclasses. Finally, two existing methods for the 
determination of the relevant number of substituent parameters is discussed. A slightly conservative 
cross-validation method is argued to be better than methods where the variance is explained as being 
due to the experimental error. 

The mechanisms for the transmission of substituent effects have 
been an important aspect of physical organic chemistry for a 
long time.'q2 A major breakthrough for these types of studies 
came with the improvements in I3C FT-n.m.r. technology in the 
early 1970s. By measuring ' 3C substituent chemical shifts (SCS) 
not only at certain probe positions, but also along the molecular 
framework at intermediate positions, multivariate information 
about transmission mechanisms is obtained. 

Unfortunately, the problem is normally approached by con- 
sidering one position at a time. Hence, the shift data are usually 
analysed using a fixed, predetermined dual-substituent para- 
meter (DSP) model such as in equation (l), where oR is one out 

of four mesomeric scales (oR-, oR0, oRBA, or oR+). The practice 
is to perform four separate correlations, each with a different 
resonance scale, and then pick the scale that affords the best fit 
to the experimental 

However, as we previously pointed out, there are certain 
limitations with the use of multiple regression (MR).3 First, it 
must be assumed that all independent variables (o values) are 
precisely known and relevant to the shift variables studied. 
Secondly, MR analysis demands almost orthogonal substituent 
scales, if the regression coefficients, in this case called trans- 
mission coefficients (p), should be used to separate the con- 
tributing effects. The third problem is concerned with the choice 
and spread of substituents. This topic has been considered by 
some workers in this field, and several substituent basis sets 
have been suggested, representing as wide a range as possible of 
the substituent However, the most commonly 
quoted minimum substituent basis sets are all very similar and 
contain only second-row elements, except for one halogen (Cl or 
Br) and hydrogen. Other non-second row elements are only 
included occasionally, but a misfit of one or two such sub- 
stituents would be hard to detect using MR. If the regression 
parameters are to be used for interpretation purposes, a fun- 
damental requirement of any statistical model is the existence of 
a homogeneously distributed data set. Hence, before performing 
the data analysis, it should be checked that the data are 
uniformly and continuously distributed in the variable space. If 

data are clustered, separate local models should preferably be 
used for each cluster or subset. 

In an early study of the 13C n.m.r. SCS of 4-substituted 
styrenes, we analysed the SCS data by a principal component 
(PC) data analytical method using all the reported shift data of 
4-substituted  styrene^.^ The choice of n.m.r. variables was based 
on two objectives: (1) to separate three classes of 4-substituted 
styrenes (a-H, a-Me, and a-Bu', seven derivatives in each class); 
and (2) to study to what extent each variable takes part in the 
modelling of each class. 

The C-1, C-p, and the two p-hydrogens were the variables 
that best fulfilled these demands. One component (substituent 
parameter) was found to be statistically significant by cross- 
validation. This work was later criticised5 and it was claimed 
that the loss of the expected second component was caused by 
the applied preprocessing of our n.m.r. data (global scaling, ie., 
giving each variable a variance equal to unity). Recently, this 
argument was reconsidered by the same authors and the data 
matrix used in our study was re-analysed using a PC method. It 
was argued that scaling was unimportant for the discrepancies 
between these two analyses. The major cause of the discrepancy 
was suggested instead to be the way the number of components 
was determined and, that in our analysis, with the limited 
number of derivatives at hand, hydrogen was excluded (A6 
values were used) and Bu' was chosen instead of CN in the 
substituent set. In this paper, we consider this criticism in more 
detail and explain the different philosophies behind the two 
different methods used to determine the number of relevant 
factors: cross-validation and percentage trace (PT) methods as 
advanced by Malinowski and H ~ w e r y . ~  

The second proposition indicates a heavy dependence of the 
number of significant components in the resulting model on the 
choice of substituents. This has already been discussed, to some 
extent, using a larger shift matrix, the ''C chemical shifts of 
monosubstituted  benzene^.^" The initial hypothesis was that the 
indicated dependence of the parameterization on the selection 
of substituents in the styrene might be caused by a grouping of 
the SCS data. If one group, such as acceptors, is under- 
represented, this might explain the collapse of the DSP model 
into a single-parameter model. In a similar vein, the generality of 
DSP models to account for the SCS in alternate conjugated 
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systems could have been biased by a selection of substituents, 
mainly from three substituent clusters, alkyls, donors, and 
acceptors. Three clusters in an M-dimensional variable space 
can always be explained by a plane, i.e., by a two-parameter 
model. 

A PC analysis was thus performed on the chemical shifts of 82 
monosubstituted  benzene^,^" where only second-row elements 
were selected to be the directly substituted atoms, except for 
some halogens and hydrogen. ca. 90% of the substituents were 
shown to belong to four clusters, acceptors, donors, alkyls, and 
halogens. Most subclasses showed extensions in space that were 
not parallel. In fact, single-parameter models for the subclasses 
gave better predictions than any two- or three-component 
models based on the total data set (global model). 

The objective of this paper is to extend this study to another 
alternant system, where more remote positions can be in- 
cluded. It is of interest to see whether the clustering observed in 
the benzene data is also prevalent in this system, and, if so, 
whether this grouping can be predicted from the ''C n.m.r. SCS 
in the benzenes. As already mentioned, we will also discuss our 
views on variable scaling in multivariate data analysis and some 
approaches to the determination of the appropriate number of 
components or parameters in the applied model. 

Methods 
Choice of Data.-The "C n.m.r. chemical shifts of 21 2- 

substituted naphthalenes and the corresponding monosubsti- 
tuted benzenes were taken from the literature. The substituents 
in (1) used were in the order: H, Me, But, CH2Br, F, C1, Br, I, 
COMe, CHO, C02H, CN, NO2, NH,, NMe2, OMe, OH, 
NHCOMe, and OCOMe. The shift values of the 2-substituted 
naphthalenes were collected from reference 8b, except for the 
following: But and C02H from reference 8a; CHO from refer- 
ence 8c; and CH2Br from reference 8d. All shift data of 
monosubstituted benzenes were from reference 2d. 

The shift data include all reported derivatives to date 
conforming to the selection criteria discussed below. Shift values 
obtained in CDCl, were used throughout the data analysis. In a 
more inert medium, such as cyclohexane, aggregation effects 
and solubility limitations may affect the accuracy of the 
chemical shift values. To test the relevance of the clustering 
found for the "C SCS data of monosubstituted benzenes, the 
substituents were selected as in the former analysis.'" Except for 
H, C1, Br, and I only such substituents have been included that 
have second-row elements as the directly attached atoms. The 
choice conforms to the pattern given in the minimum basis sets 
and our data set contains most of the substituents used in linear 
free energy relationships (LFER).9 

Data Analysis.-Principal components analysis. Principal 
components data analysis" has been used to model the sys- 
tematic 3C SCS ofthe 2-substituted naphthalenes [equation (2)] 

a =  1 

where yjk is the scaled SCS value of variable i (position in the 
naphthalene system) and object k (substituent), j i  is the mean of 
variable i, cia is the component loading, and u,k is the score or 
component value. The cia and U,k are estimated by minimizing 
the sum of squared residuals, XeZik. The appropriate number of 

terms, A, is estimated by a cross-validation procedure described 
below. The resulting components will, by definition, be 
orthogonal, i.e., if interpreted as 'substituent effects', truly 
independent. 

In a geometric description, each 2-substituted naphthalene is 
represented by a point in an M-dimensional space spanned by 
the ten "C SCS axes. A PC model with A = 1 then constitutes a 
line, while a model using A = 2 will be represented by a plane in 
this SCS M-space. 

Partial least-squares analysis. In the partial least-squares 
(PLS) data analysis," the scaled data were divided into two 
matrices, X( ' 3C SCS of monosubstituted benzenes) and Y (l 'C 
SCS of 2-substituted naphthalenes) and the two X and Y blocks 
were then related to one another in a PC-like manner. The 
naphthalene matrix is modelled as in equation (2) and the 
benzene matrix Xis modelled as in equation (3). 

The two matrices are related as given in equation (4)  where ra 

uak = ratak f o k  (4) 

is the least-squares inner regression coefficient and f , k  the 
residual. In normal PC data analyses, separately performed on 
Y and X,  the t and u vectors are eigenvectors to XX' and YY', 
respectively, while in the PLS analysis, these vectors are 
eigenvectors to the matrices YY'XX' and XX'YY'. This 
approach introduces a relation between the two SCS blocks, 
while still preserving most of the PC projection properties of the 
resulting components. As in PC, the relevant number of 
components, A, is determined by cross-validation. 

Preprocessing of Shvt Data for PC Analysis.-Bilinear least- 
squares methods, such as PC analysis, are dependent on the 
scaling of the analysed variables.12 The applied scaling should 
reflect the information in each variable. This information is a 
function of both the experimental error of the variable and its 
coherence to the common pattern of all the variables. A global 
scaling where each variable is given a variance of unity over the 
whole data set is by far the most commonly applied scaling 
using PC methods. Reynolds et aL6 scaled the data so that the 
variables have equal 'experimental' accuracy (see below). It 
should be mentioned that factor analyses, as defined by statis- 
ticians, are scaling independent.' ' 

In this analysis, where the experimental errors are the same 
for each variable, global scaling will introduce noise into the 
analysis, owing to the increased importance of variables having 
a small initial variance. In spite of this limitation, this is done to 
avoid a dominating influence of the ipso- and ortho-like posi- 
tions. These positions have the largest initial variance, which 
can hide systematic variation in the other positions. We have 
retained the scaling parameters from the global analysis in the 
analysis of the subclasses. This was done to facilitate a com- 
parison between the global and subclass modelling. The signifi- 
cance of clustering would be further enhanced if the subclasses 
were scaled separately. We mention at this point that the 
preprocessing of observed data is connected to the criteria used 
to determine the appropriate number of parameters in the 
model used. 

Determination of the Relevant Number of Components.--In all 
our PC analyses, a cross-validation method has been used to 
estimate the number of significant components. This approach 
differs fundamentally from the PT methods based on the 
residual standard deviation that have recently been sugges- 
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ted.6v7 The latter descriptive methods correspond to the use of 
enough components to reproduce the data matrix down to the 
experimental error, thereby justifying the choice of the afore- 
mentioned scaling,6 i.e., giving equal ‘experimental’ accuracy to 
the variables. The cross-validation method is, contrary to the 
PT criteria, based on the predictive ability of the model. 
Consequently, if the aim is to find models that can be used to 
predict properties, i.e., reactivity, chemical shifts, etc., of new 
compounds, cross-validation is the preferred approach. l4  In the 
physical organic field, as in other areas of chemistry, the 
essential demand on a model, whether empirical or theoretical, 
is that it should have the power to predict properties of new 
compounds in the series. 

The experimentalist normally has a tendency to underestimate 
the experimental error and, more seriously, often ignores the 
fact that there always exists a model error. This emphasizes the 
need to use a slightly conservative criterion, that does not lead 
to the inclusion of components that only account for random 
noise. The danger with PT criteria, leading to models that 
explain the variance down to the experimental error, is thus 
obvious. Especially in the LFER area, where the flood of sub- 
stituent scales is more than adequate, PT criteria could be 
counterproductive. Several new ‘effects’ are likely to be pro- 
posed since many short-range substituent effects are substituent 
specific (anisotropy, steric, ‘heavy atom’ effects, etc.). Moreover, 
spurious or misassigned peaks, aggregation, or steric effects in 
a minority of compounds might show up as new ‘effects’. In this 
context it must be stressed that all parameters claimed to be of 
chemical significance must also be statistically significant. 

The cross-validation in the PC analysis proceeds as follows.’ 
A group of data elements, with representatives from all rows and 
columns in the data matrix, is left out from the data matrix, for 
instance 1/4 of the matrix. With these elements held out, the PC 
parameters with a given number of components A are estimated 
from the remaining data. The estimated parameters are then 
used to calculated predictions for the deleted elements. The 
procedure is repeated by excluding another part of the matrix, 
and estimating parameters from the remaining data matrix, etc. 
Enough rounds are made (in this case four) as one needed to 
keep each data element out once and only once. Hence, a 
measure of the predictive error for the PC model for a given A is 
then obtained. This is compared with the residual standard 
deviation with A = A - 1.  If the prediction error is 
significantly smaller than the residual standard deviation, this 
component is added to the model. This procedure of adding 
components one at a time is repeated for as long as the 
components are statistically significant. 

A similar scheme is used in the cross-validation in the PLS 
analysis. 

Results and Discussion 
PC Analysis of SCS Data of 2-Substituted Naphthalenes.- 

Initially the 3C n.m.r. SCS of 2-substituted naphthalenes were 
analysed by the PC method. According to cross-validation, 
three components were needed to model the SCS data (A = 3). 
This global model describes 87% of the chemical shift variance. 
By comparing the component plots in the naphthalene system 
with the corresponding plot for monosubstituted benzenes, a 
similarity in clustering is indicated (Figure 1). 

In order to test if this clustering is statistically significant, 
the mean values were calculated and a comparison was made 
between the residuals from: (1) the whole naphthalene data 
set, except such substituents that were found to be outliers in 
the PC analysis of the benzenes (numbers 1, 14, 15, 20, 21);3u 
and (2) the four subsets formed by separating the SCS into 

( b )  

- 5  1 
Figure 1. (a) Plot of the three significant components from the PC model 
derived from the SCS data of the 2-substituted naphthalenes. (6) Plot of 
the three significant components from the PC model derived from the 
SCS data of the corresponding monosubstituted benzenes. (.k) a m p  
tors, ( +) alkyls, (A) donors, ( x ) halogens, and (0)  ‘outliers’ 

alkyls (numbers 2-5), halogens (6-9), acceptors (1&13), and 
donors (16-19). 

The residual variance in these two analyses was then com- 
pared by an approximate F-test, equation (5). 

F = sI2(whole)/s,*(pooled) = 3.06 (5) 
Fcrit. = 1.53 (p = 0.01) 

A statistically significant clustering is also thus verified in 
the case of 2-substituted naphthalenes. Contrary to the prior 
analysis of the benzene data set, the number of substituents in 
each subclass is too few at present to justify a derivation of 
local PC models for each subset. 

PLS Relationship between Substituted Naphthalenes and Ben- 
zenes.-A single global model. It would also be interesting to 
know whether the substituent positions in the naphthalene 13C 
SCS space could be predicted from the SCS behaviour in the 
benzenes. To relate these two data matrices, we used the PLS 
method described above. As a first step, the data set formed by 
all 21 2-substituted naphthalenes and the corresponding ben- 
zene data set were compared. 83% of the variance in the 
naphthalene shift data was described by the three-component 
model derived from the PLS analysis (A = 3) (compared with 
87% in the PC analysis). In other words, nearly all the 
systematic information explained by the PC model in the 
naphthalene SCS can be predicted from the benzene data. This 
indicates that the relative location of the clusters in the 
naphthalenes is similar to that in the benzenes. The ‘outliers’ 
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Table. Pooled and residual variances of the PLS and DSP analysis 

Position 
I 

A 
\ 

Model 1 2 3 4 5 6 7 8 9 10 SpooledZ 

PLS,,., 0.03 0.05 0.04 0.05 0.42 0.03 0.09 0.05 0.03 0.03 0.101 
DSP 0.26 0.73 0.02 0.38 0.13 0.26 0.02 0.256 
DSPlnea,’ 0.27 0.63 0.09 0.36 0.12 0.18 0.06 0.242 

a Calculated for positions 4-10. a, and cRo values were taken from reference 17. The mean values of a1 and aR0 of each class were used. 

also have the same positions relative to the clusters in the 
naphthalene space as in the benzene space. This similarity in 
substituent behaviour in aromatic systems has been utilised to 
predict 13C n.m.r. shifts in 2-substituted naphthalenes and in 4- 
substituted p-terphenyls using the shifts of the corresponding 
monosubstituted benzenes.16 

It must be stressed, however, that both CN (number 14) and 
NO2 (number 15) were found within the acceptor group if 
proximate positions, the ipso- and ortho-like positions, were 
excluded in the analysis. It is known that magnetic anisotropy 
effects influence the positions close to these substituents. 

Separate local PLS models of each subset. Having confirmed 
the similar substituent clustering in the benzene and naph- 
thalene SCS data, we wanted to investigate the relationship 
between the SCS within each subclass in the two aromatic 
systems. The 13C SCS data were thus divided into four subsets, 
as above, each described by a single component ( A  = 1). 

The descriptions of the naphthalene 13C SCS data by these 
four local models and by a global three-component model were 
subsequently compared by an approximate F-test, equation (6), 

F = sY2(whole)/sy2(pooled) = 1.99 (6) 
Fcri,. = 1.84 (p = 0.01) 

i.e., a better description using simple ‘one effect’ ( A  = 1) local 
models is obtained compared with a ‘complicated’ ( A  = 3) 
global model. This means that the positions of the substituents 
within each cluster is similar in both the naphthalene and 
benzene space. However, it should be pointed out that the local 
models are only approximate descriptions of the local sub- 
stituent behaviour, owing to the limited number of substituents 
in each subclass. 

Comparison between Local PLS Models and a Global DSP 
Model.-To demonstrate the potency of the present PLS ap- 
proach in comparison with the more conventional DSP analy- 
sis, we have compared the application of these two methods to 
the scaled naphthalene data. 

Since DSP models cannot account for substituent effects in 
positions proximate to the substituents, the ipso- and ortho-like 
positions were excluded. If these positions are differently af- 
fected, this will disfavour PLS relative to DSP, since they were 
included in the derivation of the PLS models. The fact that the 
significance of the parameters in the DSP model was disre- 
garded will also favour the DSP model. 

An inspection of the Table reveals that the PLS method 
gives a better description of all but two positions (numbers 6 
and lo), where the DSP model gives a slightly, but not signi- 
ficantly, better description. The F-test of the pooled variances 
is given in equation (7). Hence the local PLS models are 

F = Sm2/Sp,z = 2.53 (7) 
Fcrit. = 1.84 (p = 0.01) 

significantly better than the DSP model. 
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Figure 2. Plot of a, oersus aR0 for the 21 substituents used. The same 
symbols are used as in Figure 1 

Relevance of the DSP Parameters for the Intra-class 
Substituent ESfects.-To test to what extent the oI and oR values 
model the subgroup behaviour, i.e., the differences in 
substituent effects within each substituent cluster, such as 
donors, acceptors, erc., we have compared the conventional DSP 
treatment with the simplified ‘clustering’ model obtained by 
only using the mean of o1 and oR for each subclass. The residual 
variance of the two treatments in each position is reported in 
the Table. Interestingly, an F-test clearly shows that there is no 
significant improvement in the overall modelling by the use of 
the ol and oR for the given substituent set, relative to the use of 
the mean values of o1 and oR in each subclass, equation (8). 

F = S,pZ/S,p2(mean) = 1.06 (8) 
Fcri,. = 1.65 (p = 0.01) 

These observations confirm our earlier findings that the 
existence of substituent clustering must be born in mind using 
MR methods, as with DSP. The correlation between 13C SCS 
obtained for various positions within a given structure could as 
a whole or in part be caused by a grouping of substituent effects. 
If a majority of the substituents actually studied were found to 
be within three classes, a two-parameter model defining a plane 
through the class means will approximately describe these 
classes.3o In such a case, and where the oI and oR values do not 
contain information of the intra-class behaviour, the use of the 



J. CHEM. soc. PERKIN TRANS. II 1985 

mean values of ( T ~  and ( T ~  should give a model almost as potent. 
This is observed in the analysis above. 

It is often argued that the o1 and oR scales are truly 
independent.6 This statement is rather meaningless if substitu- 
ents are clustered in their interactions with the molecular 
system. It is however important to show that this independence 
also persists if one or two of the indicated subclasses are deleted 
from the analysis, or more drastically, that the ‘fundamental’ 
properties of (T, and oR also could be identified in each subclass. 
A plot of these scales as in Figure 2 does not clearly reveal such 
an independence of the field and mesomeric effects within the 
subclasses. 

Conclusions 
To conclude, we have shown that the I3C SCS of 2-substituted 
naphthalenes are clustered and positioned in the shift space 
in an analogous way to the corresponding monosubstituted 
benzenes. Thus, the use of statistical methods, aimed at relating 
matrices of this kind, such as PLS, is far better to predict ”C 
SCS in general than the more conventional DSP approach. We 
note that both the PLS and DSP analyses need a ‘calibration 
set’ of compounds to determine the model parameters, b, c, and r 
in PLS, and p, and pR in DSP. Hence, the DSP analysis is not 
more ‘fundamental’ than PLS from the theoretical information 
point of view. 

Finally, we have discussed the methods used to determine the 
relevant number of parameters in the substituent effect models. 
A descriptive philosophy where the aim is to explain all variance 
as being due to the experimental error will most likely create 
more ‘effects’ than an approach based on cross-validation. In 
the latter method the predictive power of the model is actually 
tested. Using PT criteria, there is a risk that model errors, 
underestimated experimental errors, misassigned peaks, unfore- 
seen solvent or bulk effects, anisotropy effects, etc., will appear as 
extra parameters. 

If, for interpretative purposes, a universal model is desirable, 
clustering of SCS should be avoided, still maintaining maximum 
spread in substituent behaviour. At least 20% of the analysed 
SCS data should be taken from ‘non-second row’ derivatives, if 
the model is claimed to be of any generality, i t . ,  hydrogen and 
substituents having sulphur atoms, Group IV elements etc. 
directly attached to the carbon framework should be included. 
This problem will be considered in a future paper. 

An easy test to confirm the absence of grouping would be to 
exclude donors or acceptors from the analysis once, to confirm 
that the transmission coefficients (p) do not vary significantly. If 
they are unchanged upon such deletion, the generality of the 
found effects is more reliably demonstrated. 
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