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The equations, proposed by Hammett, Taft, and Nieuwdorp eta/.,  respectively, for the simultaneous 
description of the influence of reaction type and substituent on equilibrium and reaction rate constants 
are discussed. The latter equation represents an example of factor analysis. This mathematical-statistical 
technique has also been applied to describe simultaneously the influence of solvent and substituent and 
the influence of solvent and reaction type. It is thus a logical step to classify equilibrium and reaction rate 
constants with respect to three modes, solvent, reaction type, and substituent, and to try to describe the 
influence of these three variables by three-mode factor analysis. Two examples of the application of this 
technique to literature data are given. The first concerns data on ionization constants for 15 series of 
substituted compounds in three solvents. The second example concerns data on phase equilibrium 
constants of six series of substituted compounds in nine two-phase systems. The two-phase systems 
comprise gas-liquid as well as liquid-liquid and solid-liquid systems. The precision of the fit of the 
observations and the precision of the prediction of the missing data are discussed. In the first example 
237 data are missing. Among them are 90 data that cannot be predicted at all by the Hammett, Taft, or 
Nieuwdorp equations (viz., for reactions on which no measurements at all are available in a particular 
solvent). The standard deviation of the prediction of the latter data by three-mode factor analysis ranges 
from 0.1 to 0.2. In the second example nearly all missing data are for reactions on which no 
measurements at all are available in a particular solvent. They can be predicted by three-mode factor 
analysis with a standard deviation that ranges from 0.09 to 0.1 3. Further, it is shown that the number of 
parameters that is required to fit the observations by three-mode factor analysis is far less than the 
number of parameters in the corresponding regression analysis model, viz., the Taft model. 

Tbeory 
The description of the influence of the solvent on equilibrium 
and reaction rate constants is an important problem in chemis- 
try, especially in physical organic chemistry. A satisfactory 
solution of this problem has not yet been obtained. In this paper 
we present a new approach, and illustrate its merits by applying 
it to data on chemical equilibrium constants of 15 series of 
substituted aromatic compounds in three solvents, and to data 
on phase equilibrium constants of six series of substituted 
aromatic compounds in nine widely different two-phase 
systems. 

Our approach is an extension of the work by Nieuwdorp et 
af.' on the simultaneous description of the influence of the 
reaction type and substituents on equilibrium and reaction rate 
constants. It leads to the simultaneous description of the 
influence of solvent, reaction type, and substituents. Nieuwdorp 
et al.'s study, in its turn, is an extension of the well known 
Hammett and Taft approaches. 

The Hammett relationship is given in equation (1). The 

subscripts X and H refer to the substituted and the 
unsubstituted compounds, respectively, p is a parameter that 
depends on the reaction type, and o is a variable that depends 
on the substituent and its position (ie., whether it is m or p). It 
was soon ftcognized that the Hammett relation could describe 
substituent effects in only a relatively small area of reaction 
types. To widen the scope of applications Taft proposed 

equation (2). The subscripts I and R refer to the inductive effect 
and the resonance effect of a substituent, respectively. 

For each substituent only one o, value is given (independent 
of its position), but the oR value depends on the type of reaction. 
In a review of Ehrenson et aL4 four types of reactions, and thus 
four sets of oR values, were proposed: the well known og oR 
(benzoic acids), oR -, and oR + sets. 

Nieuwdorp et al. showed that data on the four reaction types 
that correspond with the above mentioned sets of oR values can 
be described with universal o values when a third term is added 
to the right-hand side of equation (2). In this equation each 
substituent has only one, universal o,, oR, and oE value, that is 
independent of its position. The subscript E refers to the direct 
(through, exalted) resonance effect of a substituent on the 
reaction centre. As in the Taft equation, the p parameters have 
different values for m- andp-substituted series. The wide scope of 
applicability of equation (3) has been demonstrated recently.' 

Further, Nieuwdorp et af. stressed the point that, in principle, 
in equations (1)-(3) both o and p are adjustable parameters. 
Previously, in the application of equations (1) and (2) reference 
reaction series were chosen to define a scale of o values. E.g., the 
o values in the Hammett equation (1) are defined by the 
ionization constants of benzoic acids in water at 25 "C, for 
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which, bydefinition,p E l.Thus, theovaluesinequation( l),and 
the o, and oR values in equation (2), are considered to be known 
a priori, i.e., o is considered as a variable instead of as a 
parameter, and equations (1) and (2) are applied in regression 
analysis. Nieuwdorp et al., on the other hand, considering both 
a and p as adjustable parameters, determined their optimal 
values by factor analysis6 of 570 data on 76 reactions and 17 
substituents. To do so, a procedure had to be developed for the 
application of factor analysis on data sets in which a large frac- 
tion of the data is missing.' [Of course, once optimal values of 
oI, aR, and aE have been calculated, they can be used in con- 
junction with equation (3) for regression analysis of other data.] 

In the language of factor analysis, equation (3) can be 
reformulated as (4). The symbol y stands for log(&/&), r' and s 

(4) 

denote the reaction and the substituent, respectively, and R and 
S are adjustable parameters, dependent on the reaction and the 
substituent, respectively. It is the purpose of factor analysis to 
give a precise description of the data y with a small number w of 
terms. For Nieuwdorp et al.'s data, three terms were sufficient to 
reduce the standard deviation to 0.03. 

In equation (4) reactions of different type (e.g., the ionization 
of phenols and of benzoic acids in water) and reactions of the 
same type in different solvents (e.g., the ionization of phenols in 
water and in 50% ethanol) are all considered as 'different' 
reactions. In other words, r' in equation (4) is a combination 
mode of reaction type and solvent. If we denote the reaction 
type by r and the solvent (or, for a phase-equilibrium constant, 
the two-phase system) byp, equation (4) can be reformulated as 
(5) .  Then, it is a logical step to classify the data y in three modes 

(with respect to solvent, rcaction type, and substituent, 
respectively) and to try to describe them by three-mode factor 
analysis. Extension of (5 )  to three modes is formulated in (6). 
The symbol P represents a solvent-dependent parameter and c 

Y V W  

Yp,r.s = ' ' ' cj,&,I p p , j  Rr.k ss,l (6) 
j = 1  k =  1 I =  1 

represents the elements of the so-called three-mode core matrix 
of scaling constants. As far as we know, equation (6) has only 
been applied in the field of the social sciences, and for the case 
where data exist for each combination ofp, and r, and s.* Two of 
the present authors have recently devised a method to estimate 
PP,& Rr,k, and S,,, for the case of missing data,' and the present 
investigation is one of the first applications of this method in the 
field of the natural sciences. 

We believe that it is obvious to try the merits of equation (6) 
for the simultaneous description of the influence of solvent, 
reaction type, and substituent on equilibria and reaction rates, 
for the following three reasons. (1) The influence of reaction type 
and substituent on y , ,  can be described simultaneously by two- 
mode factor analysis, i.e., by equation (9, with three factors.' (2) 
The influence of solvent and substituent on yP,, can also be 
described simultaneously by two-mode factor analysis, i.e., by 
equation (7). This was demonstrated by Weiner lo for data on 

the ionization of substituted benzoic acids in a variety of 
solvents; four factors were required to reproduce the data within 

the experimental precision of 0.01. (3) The combined influence 
of solvent and reaction type on yp,r has also been described by 
two-mode factor analysis, i.e., by equation (8), for data on the 

solvent dependence of the n.m.r. chemical shift of ' H, "C, and 
29Si nuclei in 36 solvents." Two factors were sufficient to 
reproduce the data within experimental error. Thus, it is logical 
to combine equations (9, (7), and (8) to obtain equation (6). It 
may be expected that not more than four factors for each mode 
are required to describe adequately the influence of solvent, 
reaction type, and substituent. 

It should be realized that the same data set (i.e., data on 
substituent effects on a number of reactions in a number of 
solvents) may be either described by three-mode factor analysis, 
equation (6), or by two-mode factor analysis, equation (5), or, if 
optimal values of the parameters have been estimated from 
other data, by regression analysis. In regression analysis, 
equation (5 )  is also used, but now w is fixed and is a variable. 
Roughly speaking, the difference between equation (9, whether 
used in factor analysis or in regression analysis, and equation 
(6) is that the parameters R(p,r),f in equation ( 5 )  are freely 
adjustable, whereas in equation (6) the constraint (9) is posed on 
their v a1 ues. 

Thus it can be expected that the residual standard deviation 
with equation ( 5 )  is smaller than with equation (6). What then is 
the advantage of equation (6)? It is twofold. (1) More important 
than the standard deviation 6 is the length of the prediction 
interval 1 This length is equal to 2tB, where the factor t increases 
with decreasing number of degrees of freedom DF. With 
equation (9, used in regression analysis, DF is equal to the 
number of observations minus the number of estimated 
parameters for a particular reaction in a particular solvent. 
Thus, DF may be quite small, and accordingly t may be rather 
large. With equation (a), DF is equal to the number of 
observations minus the number of estimated parameters in the 
whole data set, and this is likely t! be a large number. Thus, even 
if 6 is smaller with equation (9, Imay be smaller with equation 
(6). (2) If no observations are available in a particular solvent, 
they cannot be predicted with equation (9, whether used in 
factor analysis or in regression analysis. On the other hand, 
equation (6) offers the possibility to predict these missing data 
as well. An example will be worked out in the Discussion. 

Data 
We shall apply equation (6) to two cases. 

(1) The first comprises data on chemical equilibria, i.e., 
ionization constants of 15 series of substituted aromatic com- 
pounds in three (admittedly rather closely related) solvents. 
These data are given in Table 1. (2) The second includes data on 
phase equilibria of six series of substituted aromatic com- 
pounds, i.e., net retention volumes in reversed-phase h.p.1.c. and 
in gas liquid chromatography and partition coefficients in 
several widely different two-phase systems. These data are given 
in Table 2. It has been proved previously'' that data on the 
influence of substituents on phase equilibria are, in principle, 
equivalent with data on chemical equilibria, when a correction 
is applied for the influence of the substituent itself on the phase 
equilibrium constant. In other words, the left-hand side of 
equations (1) - (3)  reads for phase equilibria as in (10) where X 
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Table 1. (a) Investigated solvents 

Code Solvent 
1 water, 25 "C 
2 
3 

50 v/v % ethanol-water, 20-25 "C 
95 v/v % ethanol-water, 20-25 "C 

is a variable substituent, cp a common hydrocarbon skeleton, 
and Y a common reaction centre. It has been demonstrated also 
that data on liquid-liquid partition equilibria l 3  and retention 
data in gas chromatography l4 and in normal-phase and 
reversed-phase l 6  liquid chromatography can be fitted ex- 
cellently by equations (l), (2), or (3). 

Table 1. (b) Investigated reactions (ionization of the tabulated 
compounds) 

Code Compounds References 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 

rrans-4-X-cyclohexanecarbox ylic acids 
m-X-phenylacetic acids 
p-X-phenylacetic acids 
p-X-f3-phenylpropionic acids 
m-X-benzoic acids 1 8- 
p-X-benzoic acids 18- 
p-X-benzenephosphonic acids, first step 
p-X-benzenephosphonic acids, second step 
m-X-phenols 
p-X-phenols 
m-X- thiophenols 
p-X-thiophenols 
2-X-thiophene-5-carboxylic acids 
m-X-anilines 
p-X-anilines 

17 
1 8-2 1 
1 8-2 1 
22,23 

-20, 24-28 
-20,24-28 

29 
29 
30 
30 

30, 31 
31 
32 

33,34 
33,35 

Results and Discussion 
Case 1.-The results of three-mode factor analysis with 

missing data: applied to the data in Table lc, are presented in 
Table 3. The results of an analysis of variance, in which only the 
main effects of the solvents, reaction types, and substituents (but 
not their interactions) were taken into account, are also 
presented. An analysis of variance with first-order interactions is 
impossible because the number of parameters in the model (198) 
approaches the number of observations (213). 

It follows from the penultimate column of Table 3 that the 
present data can be fitted better by the factor analysis model 
(even with only one factor for each mode) than by an (additive) 
analysis of variance model. With two factors for each mode the 
residual standard deviation is 0.10 and this figure can be 
improved to 0.07 by introduction of a third factor for the 
reaction types and the substituents. 

However, the ability of a statistical model to fit observations 
is not its most useful property. Far more important is its ability 

Table 1. (c) Data on log (Kx/K,,), where K is an ionization constant 

Substi tuen t 

Solvent Reaction 
1 1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 

2 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
12 
13 
14 
15 

3 5 
6 
10 
11  
12 
13 

F c1 
0.32 
0.172 

0.066 0.122 
0.053 

0.338 0.373 
0.062 0.226 

0.31 
0.17 
0.32 
0.76 
0.54 
0.835 
0.480 

1 .09 1.13 
0.02 0.68 

0.50 
0.18 0.19 
0.1 1 0.19 

0.096 
0.53 
0.44 
0.44 
0.22 
0.27 
1.11 
0.68 
0.93 
0.72 

1.08 1.17 
0.02 0.64 

0.58 
0.43 
1.22 
0.88 
1.15 
0.87 

Br 

0.124 

0.391 
0.232 
0.34 

0.24 
0.83 
0.62 

0.595 

0.77 

0.19 
0.19 

0.58 
0.45 
0.43 
0.27 
0.25 
1.07 
0.78 
0.88 
0.78 
1.20 
0.76 

1-30 
0.98 
1.10 
0.95 

I 

0.153 
0.1 34 

0.352 

0.68 

0.86 

0.16 
0.22 

1.08 
0.87 
0.93 
0.79 
1.22 
0.92 

1.33 
1.06 
1.24 
1 .oo 

CH, 

- 0.05 1 
- 0.058 
- 0.024 
- 0.069 
-0.17 
-0.17 
-0.15 
-0.17 
- 0.20 

- 0.045 
- 0.205 
-0.11 
- 0.45 

- 0.09 
- 0.09 
- 0.053 
- 0.08 
- 0.20 
- 0.22 
-0.17 
-0.12 
-0.15 
- 0.33 
-0.21 
- 0.29 
-0.11 
- 0.49 

- 0.20 
- 0.20 
-0.17 
- 0.33 
- 0.24 
- 0.38 

NO, 

0.345 
0.46 1 
0.187 
0.710 
0.778 

0.59 
0.84 
1.50 
2.90 
1.374 
1.900 
2.12 
3.67 

0.49 
0.61 
0.323 
1.14 
1.27 

0.85 
0.84 

3.60 

2.79 

3.68 

1.35 
1.45 

3.04 

2.90 

CN 
0.42 

2.04 

1.83 
2.92 

0.66 
0.45 
0.52 

0.95 
1.10 

OCH, 
0.24 

- 0.048 
- 0.029 
0.1 15 

- 0.268 
- 0.27 

0.24 
- 0.23 
0.230 

-0.160 
0.39 

-0.73 

0.38 
0.04 

- 0.06 
- 0.034 

- 0.32 
-0.39 

0.29 

0.24 
- 0.24 

- 0.30 

0.17 
-0.27 
0.12 

- 0.44 

COCH, COOCH, 

0.376 
0.502 

1.88 

1.285 
1.03 

0.59 
0.70 
0.84 

0.85 
2.07 
0.85 
1.85 

0.99 
2.23 
0.97 
2.04 

0.24 

1.04 
2.14 

0.36 

0.64 
0.5 1 

0.78 
1.70 
0.80 
1.61 

0.87 
1.88 
0.92 
1.82 
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to predict missing data. The average standard deviation of the 
calculated values of the missing data can be computed by 
extension of the procedure, developed for the two-mode factor 
analysis case,38 to the three-mode situation. Using a linear- 
ization of the model around the true parameters, the dlpred = 
[variance of (new observation - prediction)] can be computed 
for all missing data. The square root of its average is given in the 
last column of Table 3. It follows that the factor analysis model 
(2,2,2) is the best one for the prediction of missing data, and that 
model (2,3,3) is of no use because it gives imprecise predictions. 
Detailed information on the fit of the observations by this model 
is given in Table 4. It appears that there are no large 
discrepancies in the fit for the individual solvents, reactions, and 
substituents. The rather large values of the root of the mean 
residual sum of squares for reaction 11 and for the NO, 
substituent correspond with the large substituent effects 
observed for this reaction and for this substituent. The residuals 
(i.e., observation-estimation), calculated by the factor analysis 
model (2,2,2), are given in Table 5. As can be expected from the 
discussion of Table 4, large residuals are found for the NO,- 
substituted compound in reaction 11, in the three solvents. For 
reaction 6 in solvent 1 all residuals are negative, but otherwise 

Table 2. (a) Investigated two-phase systems 

Code Two-phase system References 
4 50 v/v % methanol-water/octadecylsilylsilica at 

30 v/v % acetonitrile-water/octadecylsilylsilica at 

32.5 v/v % tetrahydrofuran-water/octadecylsilyl- 

helium/Apiezon M at 206 "C 
helium/polyethylene glycol 20,000 at 206 "C 
n-octanol/water 
50 v/v % methanol-water/n-hexadecane at 25 "C 
30 v/v %acetonitrile-water/n-hexadecane at 25 "C 
32.5 v/v % tetrahydrofuran-waterln-hexadecane 

25 "C 

25 "C 

silica at 25 "C 

at 25 "C 

16 

5 16, 36 

6 36 

7 
8 
9 

10 
11 
12 

14 
14 
37 
16 

16,36 
36 

Table 2. (b) Investigated reactions (partition of the tabulated 
compounds) 

Code Compounds Code Compounds Code Compounds 
16 m-benzoic acids 18 rn-phenols 20 m-anilines 
17 pbenzoic acids 19 p-phenols 21 p-aniline 

Table 2. (c) Data on AA log V,, where V, is a chromatographic net retention volume, and AAlog P, where P is a partition coefficient 

Substituent 

Solvent 
4 

Reaction 
16 
17 
18 
19 
20 
21 

16 
17 
18 
19 
20 
21 

16 
17 
18 
19 
20 
21 

18 
19 
20 
21 

r -  ~ 

F 
0.1 58 
0.144 
0.120 
0.028 
0.07 1 

- 0.005 

~~ 

c1 
0.162 
0.181 
0.154 
0.126 
0.1 17 
0.085 

Br 
0.100 
0.1 34 
0.099 
0.086 
0.08 1 
0.076 

I 
0.034 
0.148 
0.073 
0.080 
0.05 1 
0.060 

0.120 
0.142 
0.07 6 
0.073 
0.21 1 
0.205 

0.182 
0.247 
0.247 
0.2 16 
0.347 
0.270 

0.062 
0.049 
0.028 
0.05 1 

CH3 
- 0.024 
- 0.026 
-0.107 
- 0.096 
- 0.074 
- 0.065 

NO2 
0.229 
0.295 
0.363 
0.314 
0.317 
0.176 

CN 
0.258 
0.223 
0.368 
0.314 
0.351 
0.274 

OCH, 
0.150 
0.1 18 

- 0.03 5 
-0.158 
- 0.045 
-0.125 

0.076 
0.087 
0.036 

- 0.072 
0.040 

-0.152 

0.1 54 
0.059 
0.066 

-0.123 
0.028 
0.159 

0.023 
0.0 15 

-0.001 
- 0.034 

COCH, 
0.104 
0.151 
0.210 
0.146 
0.161 
0.105 

1 

COOCH, 

0.170 
0.186 

0.1 10 

5 0.126 
0.154 
0.166 
0.052 
0.239 
0.07 7 

0.223 
0.206 
0.269 
0.136 
0.321 
0.175 

0.056 
0.054 
0.030 
0.016 

0.129 
0.161 
0.072 
0.054 
0.244 
0.185 

0.228 
0.26 1 
0.274 
0.2 19 
0.347 
0.232 

0.065 
0.042 
0.029 
0.024 

0.125 
0.163 
0.108 
0.089 
0.244 
0.204 

0.224 
0.264 
0.257 
0.21 3 
0.350 
0.243 

0.05 1 
0.042 
0.029 
0.033 

- 0.003 
- 0.004 
- 0.078 
-0.068 

0.007 
-0.002 

- 0.006 

0.184 
0.237 
0.324 
0.276 
0.417 
0.3 17 

0.47 1 
0.590 
0.544 
0.497 
0.667 
0.460 

0.161 
0.21 1 
0.362 
0.284 
0.407 
0.332 

0.463 
0,564 
0.538 
0.42 1 
0.61 1 
0.45 1 

0.079 
0.102 
0.236 
0.128 
0.161 
0.014 

0.302 
0.40 1 
0.22 1 
0.066 
0.123 
0.136 

0.165 
0.129 

0.177 

6 

- 0.030 
-0.035 

0.057 
0.01 8 

0.030 
0.000 

-0.015 
- 0.025 

0.259 
0.237 

0.263 

0.104 
0.232 
0.093 
0.297 

0.108 
0.213 
0.092 
0.206 

18 
19 
20 
21 

16 
17 
18 
19 
20 
21 

0.130 
0.096 
0.135 
0.05 1 

0.140 
0.070 
0.3 30 
0.170 
0.260 
0.1 10 

0.166 
0.157 
0.158 
0.146 

0.140 
0.130 
0.310 
0.270 
0.340 
0.500 

0.158 
0.157 
0.146 
0.151 

0.140 
0.030 
0.350 
0.330 

- 0.045 
- 0.047 
- 0.028 
- 0.056 
- 0.060 
-0.160 
- 0.060 
- O.Os0 
- 0.060 
- 0.070 

0.299 
0.513 
0.265 
0.688 

0.240 
0.300 
0.820 
0.730 
0.750 
0.770 

0.258 
0.425 
0.213 
0.493 
0.180 
0.260 
0.810 
0.7 10 

-0.007 
- 0.056 

0.0 16 
- 0.08 5 

0.170 
0.1 10 
0.140 

-0.100 
0.050 
0.070 

0.150 
0.147 
0.146 
0.1 34 

0. loo 
0.070 
0.330 
0.220 
0.230 
0.160 

- 0.030 

0.480 
0.440 0.510 

0.662 0.688 
0.597 0.613 

0.360 0.024 
0.300 0.012 

0.7 11 0.810 
0.840 0.876 

18 
19 

0.741 
0.533 

0.782 
0.626 

0.802 
0.62 1 

0.749 
0.603 

- 0.074 
-0.091 

-0.1 19 
-0.133 

- 0.070 
-0.102 

1.344 
1.109 

0.643 
0.488 

0.930 
1.120 

1.221 
1.053 

0.654 
0.508 

1.010 
1.090 

0.264 
0.108 

- 0.369 
-0.334 

0.394 
0.391 

10 

11 

12 

18 
19 

18 
19 

0.126 

0.998 
0.847 

- 0.422 
0.204 
0.258 

0.893 
0.937 

-0.054 
0.151 

0.850 
1.058 

0.51 1 
0.054 

0.637 
0.665 
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Table 3. Summary of the results of an analysis of variance and of three-mode factor analysis of the data, presented in Table lc 

Model NFP NFR NFS NPAR D F  6 Opred 

Analysis of variance 26 187 0.68 
Three-mode factor analysis 1 1 1 26 187 0.24 0.27 
Three-mode factor analysis 2 2 2 52 161 0.10 0.13 
Three-mode factor analysis 2 2 3 61 152 0.10 0.17 
Three-mode factor analysis 2 3 2 66 147 0.08 0.16 
Three-mode factor analysis 2 3 3 77 136 0.07 0.36 

Number of observations: 213. Number of missing values: 237. NFP = number of factors for the solvents. NFR = number of factors for the reactions. 
NFS = number of factors for the substituents. NPAR = number of estimated parameters. DF = degrees of freedom. 6 = standard deviation of the 
model. 6iPred = average standard deviation of (new observation - prediction) for the missing data. 

Table 4. Fit of the three-mode factor analysis model (2,2,2) for the individual solvents, reactions and substituents 

Solvents Reactions Substituents 
r > r  

Code NO RMRSS 
1 84 0.09 
2 93 0.08 
3 36 0.10 

Code 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

NO 
8 

12 
I5 
8 

18 
18 
9 
7 
8 

19 
23 
18 
22 
13 
15 

1 1  

RMRSS 
0.09 
0.03 
0.00 
0.03 
0.05 
0.12 
0.10 
0.05 
0.06 
0.07 
0.15 
0.06 
0.12 
0.12 
0.08 

Symbol 
F 
C1 
Br 
I 
CH3 
NO* 
CN 
OCH, 
COCH, 
COOCH, 

NO = number of observations. RMRSS = (RSS/NO)* = root of the mean residual sum of squares. 

NO 
9 

36 
26 
17 
33 
27 
9 

26 
16 
14 

1 

RMRSS 
0.08 
0.06 
0.05 
0.06 
0.05 
0.16 
0.07 
0.1 1 
0.08 
0.1 1 

the signs of the residuals appear to be distributed randomly. It 
can thus be concluded that the model gives an adequate fit of the 
observations. The values, predicted by the factor analysis model 
(2,2,2) for the 237 missing data, are given in Table 6, together 
with their standard deviation. This Table gives a striking 
illustration of the merits of the proposed method. For, 90 of the 
missing data are from reactions on which no observations at all 
are available in solvent 3 (95 v/v % ethanol). The traditional 
way to give a mathematical-statistical description of the data is 
by the Hammett (l), Taft (2), or Nieuwdorp equation (3) ,  i.e., for 
each reaction and each solvent separately. Of course, this 
approach does not offer the possibility to predict data on a 
reaction in solvents where no measurements at all are available. 
Further, for 53 missing data that can be predicted by the 
Nieuwdorp equation, the 0.90 probability interval is larger than 
for the predictions by three-mode factor analysis, for reasons set 
forth in the theoretical part. In only 7 3  cases is the 0.90 
probability interval for predictions by the Nieuwdorp equation 
smaller. For 3 series only 3 data points are available, which 
makes it impossible to calculate the intervals for the 21 missing 
data in these series with the Nieuwdorp equation. 

We conclude from Tables 3 4  that the combined influence of 
solvent, reaction type, and substituent on chemical equilibrium 
constants can be described satisfactorily by equation (6), i.e., by 
the factor analysis model (2,2,2). The values of the factors and of 
the elements of the three-mode core matrix in this model are 
given in Tables 7 and 8, respectively. 

Case 2.--It must be admitted that the range of solvents in case 
1 is rather small: water, 50, and 95 v/v % ethanol. Therefore we 
applied equation (6) to a set of phase equilibrium constants 
where the range of two-phase systems is very large (see Table 

2a). The results of three-mode factor analysis with missing data, 
applied to these data (listed in Table 2c), are given in Table 9. 
Also given are the results of an analysis of variance. These 
results are analogous to the results shown in Table 3. Again the 
three-mode factor analysis model is better than the analysis of 
variance model. With the factor analysis model, and one factor 
for the reactions and two factors for the two-phase systems and 
for the substituents, the residual standard deviation of the 
observations is equal to 0.09, and the standard deviation of the 
predictions is equal to 0.10. Thus, even in this case where the 
phases range from a gas, via apolar liquids and water, to a solid, 
three-mode factor analysis gives a good description of the 
observations and an accurate prediction of the 37% missing 
data. The values of 6 and 6p,cd. for the (2,1,2) model are even 
better than those for the (2,2,2) model in Table 3.  

Regression analyses of the data in Table 2c with the Taft 
equation (2) yield a pooled value for the residual standard 
deviation that is equal to that obtained with the factor analysis 
model (2,1,2). However, the number of parameters in the factor 
analysis model is much less than that in the regression analysis 
model, viz., 39 oersus 76. 

Detailed information on the fit of the observations by the 
factor analysis model (2,1,2) is given in Table 10, No large 
discrepancies are noted in the fit for the individual solvents, 
reactions, and substituents. The residuals, calculated by the 
factor analysis model (2,1,2), are given in Table 11. The signs of 
the residuals appear to be distributed randomly. It can thus 
be concluded that the model gives an adequate fit of the 
observations. 

Nearly all missing data in this case are from reactions on 
which no observations at all are available in some two-phase 
systems. As mentioned above, these missing data cannot be 
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Table 5. Residuals [i.e., observation - estimation by the three-mode factor analysis model (2,2,2)] of the data in Table Ic 

Substi tuen t 

2 

3 

Solvent Reaction 
1 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

5 
6 

10 
11 
12 
13 

F 

- 0.02 

- 0.04 
-0.13 

0.15 
0.0 1 

0.0 1 
0.00 

- 0.09 
0.02 

CI 
- 0.06 

0.02 
- 0.02 
- 0.02 
- 0.0 1 
- 0.07 

0.02 
- 0.02 

0.1 1 
- 0.07 
-0.12 

0.09 
-0.13 

0.16 
0.08 

- 0.02 
- 0.0 1 

0.02 
0.01 
0.03 
0.08 
0.10 

- 0.02 
0.01 
0.0 1 

- 0.10 
- 0.05 
- 0.02 
- 0.09 
- 0.02 

0.02 
0.04 

- 0.01 
0.04 
0.05 
0.07 

Br 

- 0.03 

0.01 
- 0.08 

0.02 

0.01 
0.03 

-0.10 

- 0.06 

0.06 

-0.01 
0.0 I 

0.08 
0.07 
0.05 
0.02 

- 0.02 
-0.01 
- 0.07 
- 0.09 
- 0.02 
- 0.07 
- 0.02 

0.09 
0.07 
0.01 
0.09 

I 

- 0.0 1 
- 0.03 

- 0.04 

-0.10 

0.04 

- 0.05 
0.02 

- 0.02 
- 0.06 
- 0.06 
- 0.07 
- 0.09 

0.02 

0.09 
0.06 
0.12 
0.07 

CH, 

- 0.02 
0.00 
0.00 
0.00 

- 0.06 
- 0.03 
- 0.08 
- 0.08 
-0.12 

0.04 
0.05 
0.07 
0.00 

- 0.05 
- 0.02 
- 0.02 

0.02 
- 0.07 
- 0.05 
- 0.08 
- 0.02 

0.0 1 
0.03 

- 0.06 
0.01 
0.16 
0.0 1 

- 0.08 
- 0.06 

0.03 
0.06 

- 0.05 
- 0.05 

NO* 

- 0.02 
- 0.03 
- 0.05 
-0.12 
- 0.2 1 

- 0.07 
0.07 
0.09 
0.24 
0.02 

-0.36 
- 0.05 

0.17 

- 0.0 1 
0.0 1 
0.03 

- 0.03 
0.05 

0.04 
- 0.09 

0.45 

0.06 

-0.19 

0.01 
0.13 

-0.32 

- 0.03 

CN 
- 0.0 1 

-0.14 

0.05 
0.05 

- 0.06 
0.04 
0.03 

- 0.0 1 
0.10 

OCH, COCH, COOCH, 
0.05 0.13 

0.00 
-0.01 

0.04 0.02 
-0.19 -0.11 
-0.11 

- 0.06 

- 0.0 1 
0.11 0.09 

0.07 -0.17 
0.23 0.05 0.1 1 

- 0.03 - 0.05 

0.19 
0.03 0.07 

-0.01 
- 0.0 1 

0.04 0.12 
-0.23 -0.05 -0.14 
-0.20 -0.14 

-0.01 0.02 -0.05 
0.15 -0.05 -0.10 
0.01 0.02 -0.01 

- 0.03 0.09 0.10 

-0.11 -0.06 -0.15 
0.14 -0.02 -0.03 

-0.10 -0.05 -0.06 
-0.15 0.16 0.20 

predicted by the Hammett equation or its extensions. However, 
they can be predicted by the present approach, and the 
predictions by the factor analysis model (2,1,2) are given in 
Table 12, together with their standard deviation, which ranges 
from 0.09 to 0.13. The values of the factors and of the elements of 
the three-mode core matrix in the (2,1,2) model are given in 
Tables 13 and 14. It appears from Tables 9-12 that the 
combined influence of two-phase system, reaction type, and 
substituent on phase equilibrium constants can be described 
adequately by equation (a), even when the two-phase systems 
differ widely. We believe that an analogous conclusion holds for 
chemical equilibrium constants and reaction rate constants, in 
widely different solvents. 

It would be interesting to learn how the substituent factors S, 
in Tables 7 and 13 are related to the mechanisms by which the 
substituents are believed to exert their influence on equilibrium 
constants: induction, resonance between the substituent and the 
aromatic ring, and direct resonance between the substituent and 
the reaction centre. However, this is not easily possible for the 
following reason. The inductive and resonance effects of 
substituents are quantitatively described by the oI and a: values 
given by Taft or Nieuwdorp.’ The direct resonance effect is 
reflected in Nieuwdorp’s oE values, but not separately: the oE 
values contain unknown contributions of the inductive and 
resonance effect. In the author’s opinion a good measure for the 
direct resonance effect does not exist. 

So, if the regression of S, on 01,  oR, and oE is investigated, the 
values of the regression coefficients do not tell us the relative 
importance of the three mechanisms. Only if the regression 
coefficient of S, on 0, is zero would the ratio of the regression 
coefficients on 0 1  and 0, give the relative importance of the 
inductive and resonance mechanisms. However, this will clearly 
not be the case, as in most investigated reactions the direct 
resonance effect is definitely present. 

Conclusions 
Three-mode factor analysis is a good mathematical-statistical 
model for the simultaneous description of the influence of 
solvent, reaction type, and substituents on equilibrium con- 
stants. The residual standard deviation of the observations is of 
the same magnitude as obtained by a regression analysis model, 
oiz., by applying the Taft equation to each reaction in each 
solvent separately. However, the number of parameters in the 
factor analysis model is far less than that in the regression 
analysis model. The advantage of the factor analysis model is 
that it is better suited for the prediction of missing data. It can 
even predict data that cannot be predicted at all with the Taft 
equation, oiz., for reactions on which no data at all are available 
in a particular solvent. 
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Table 7. Values of the factors in the three-mode factor analysis model (2,2,2) 

Solvents Reactions Substituents 
r i r  1 1  \ 

Code Factor 1 Factor 2 Code Factor 1 Factor 2 Symbol Factor 1 Factor 2 
1 0.479 0.828 1 0.115 - 0.268 F 0.129 0.56 1 
2 0.594 -0.061 2 0.065 - 0.048 c1 0.186 0.360 
3 0.646 -0.557 3 0.079 0.01 5 Br 0.196 0.3 15 

4 0.038 0.001 I 0.209 0.293 

A L b 

5 0.153 -0.157 CH, - 0.065 0.060 
6 0.160 0.01 3 NO2 0.609 - 0.009 
7 0.188 0.103 CN 0.499 - 0.009 
8 0.106 0.01 1 OCH, - 0.040 0.364 
9 0.122 0.032 COCH, 0.370 - 0.45 

10 0.282 - 0.472 COOCH, 0.322 - 0.263 
11 0.414 0.199 
12 0.264 - 0.393 
13 0.358 0.100 
14 0.39 5 -0.364 
15 0.509 0.575 

Table 8. Elements of the three-mode core matrix of the model (2,2,2) 

P r 
1 1 
1 1 
1 2 
1 2 
2 1 
2 1 
2 2 
2 2 

S Element 
1 2 1.059 
2 0.019 
1 0.008 
2 -4.314 
1 - 0.057 
2 0.03 1 
1 1.299 
2 - 0.277 

Table 9. Summary of the results of an analysis of variance and of three-mode factor analysis of the data presented in Table 2c 

Model NFP NFR NFS NPAR DF 6 =pred. 

Analysis of variance 23 319 0.37 
Three-mode factor analysis 1 1 1 23 319 0.1 1 0.12 
Three-mode factor analysis 2 1 2 39 303 0.09 0.10 
Three-mode factor analysis 3 1 3 53 289 0.09 0.10 
Three-mode factor analysis 2 2 2 46 296 0.07 1.21 
Three-mode factor analysis 3 3 3 75 267 0.06 0.77 

Number of observations: 342. Number of missing data: 198. 

Table 10. Fit of the three-mode factor analysis model (2,1,2) for the individual two-phase systems, reactions and substituents 

Solvents Reactions Substituents 

Code NO RMRSS Code NO RMRSS Symbol NO RMSS 
b A b 

I i r  i f  -l 

4 
5 
6 
7 
8 
9 

10 
11 
12 

57 
57 
56 
48 
32 
32 
20 
20 
20 

0.06 
0.05 
0.09 
0.1 1 
0.08 
0.04 
0.06 
0.14 
0.09 

16 36 0.09 F 
17 34 0.10 c1 
18 85 0.08 Br 
19 86 0.08 I 
20 49 0.06 CH3 
21 52 0.09 NO2 

CN 
OCH, 
COCH, 
COOCH, 

38 
38 
38 
36 
37 
38 
36 
38 
26 
17 

0.09 
0.07 
0.06 
0.08 
0.04 
0.1 1 
0.09 
0.09 
0.10 
0.08 

NO = number of observations. RMRSS = (RSS/NO)* = root of the mean residual sum of squares. 
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Table 11. Residuals of the data in Table 2c, estimated by the three-mode factor analysis model (2,1,2) 

Subs tit uen t 

Solvent Reaction 
4 16 

17 
18 
19 
20 
21 

5 16 
17 
18 
19 
20 
21 

6 16 
17 
18 
19 
20 
21 

7 18 
19 
20 
21 

8 18 
19 
20 
21 

9 16 
17 
18 
19 
20 
21 

10 18 
19 

11 18 
19 

12 18 
19 

F 
0.12 
0.09 
0.05 

- 0.04 
0.00 

- 0.08 

0.05 
0.06 
0.03 

- 0.07 
0.1 1 

- 0.05 

0.09 
0.04 
0.03 

- 0.09 
0.08 

- 0.05 

0.03 
0.03 
0.00 

- 0.0 1 

0.04 
0.0 1 
0.04 

- 0.04 

0.0 1 
- 0.09 

0.09 
- 0.05 

0.02 
-0.11 

0.09 
- 0.08 

0.25 
-0.31 

0.03 
- 0.06 

C1 
0.09 
0.09 
0.02 
0.00 

- 0.02 
- 0.04 

0.04 
0.05 

-0.10 
-0.1 1 
0.07 
0.03 

0.06 
0.06 

- 0.02 
- 0.06 

0.05 
- 0.05 

0.00 
- 0.02 
- 0.03 
- 0.03 

-0.01 
- 0.01 
- 0.02 
- 0.02 

- 0.08 
-0.15 

0.00 
- 0.09 
-0.10 
-0.15 

0.07 
- 0.05 

0.10 
0.16 

0.02 
0.12 

Br 
0.03 
0.05 

- 0.03 
- 0.03 
- 0.04 
- 0.04 

0.03 
0.05 

- 0.06 
- 0.07 
0.07 
0.04 

0.06 
0.06 

- 0.05 
- 0.07 

0.05 
- 0.04 

0.00 
- 0.01 
- 0.03 
- 0.02 

0.01 
0.0 1 
0.00 
0.00 

- 0.04 
- 0.09 
- 0.0 1 
- 0.03 

0.02 
0.20 

0.05 
- 0.09 

- 0.09 
0.1 1 

-0.12 
0.15 

I 

0.05 
- 0.08 
- 0.06 
-0.10 
- 0.08 

- 0.05 

0.03 
0.03 

- 0.09 
- 0.08 

0.05 
0.05 

0.03 
0.05 

- 0.04 
- 0.05 

0.06 
0.0 1 

-0.01 
- 0.02 
- 0.04 
- 0.02 

- 0.02 
-0.01 
- 0.04 
- 0.02 

- 0.04 
- 0.20 

0.02 
0.02 

0.1 1 
0.00 

0.28 
-0.16 

- 0.03 
0.04 

CH, 
0.00 
0.00 

- 0.07 
- 0.06 
- 0.03 
- 0.03 

0.02 
0.02 

- 0.04 
- 0.04 

0.04 
0.03 

0.03 

0.03 
0.02 
0.1 1 
0.07 

0.05 
0.02 
0.0 1 

-0.01 

0.00 
0.00 
0.02 

-0.01 

- 0.02 
-0.11 

0.0 1 
-0.01 

0.0 1 
0.00 

0.03 
0.0 1 

-0.01 
- 0.03 

- 0.02 
- 0.05 

NO2 
0.04 
0.06 
0.02 
0.00 

- 0.02 
-0.14 

-0.01 
0.00 

- 0.02 
- 0.05 
0.07 

-0.01 

0.15 
0.19 

- 0.04 
- 0.05 

0.09 
- 0.08 

- 0.06 
0.08 

- 0.07 
0.14 

-0.11 
0.13 

-0.15 
0.30 

-0.15 
-0.18 

0.12 
0.07 
0.04 
0.1 1 

0.10 
- 0.06 

- 0.04 
-0.15 

-0.19 
0.07 

CN OCH, COCH, COOCH, 
0.08 
0.01 
0.05 
0.02 
0.03 

- 0.02 

- 0.02 
- 0.0 1 

0.03 
- 0.02 

0.08 
0.03 

0.16 
0.19 

- 0.0 1 
-0.10 

0.06 
- 0.07 

- 0.05 
0.07 

- 0.06 
0.06 

-0.13 
0.07 

0.13 
-0.17 

-0.19 
-0.19 

0.15 
0.09 

0.03 
- 0.06 

0.03 
- 0.08 

- 0.08 
0.07 

0.17 
0.14 

-0.01 
-0.13 
- 0.02 
-0.10 

0.07 
0.08 
0.02 

- 0.08 
0.03 

-0.16 

0.13 
0.03 
0.03 

-0.16 
-0.01 

0.12 

0.04 
0.03 
0.02 

- 0.02 

0.03 
- 0.03 

0.05 
- 0.06 

0.17 
0.1 1 
0.14 

-0.10 
0.05 
0.07 

0.08 
- 0.07 

-0.10 
- 0.08 

- 0.07 
- 0.05 

0.0 1 
0.04 
0.04 

- 0.0 1 
- 0.0 1 
- 0.05 

- 0.02 
- 0.02 

0.05 
- 0.04 
- 0.02 
-0.16 

0.13 
0.19 

- 0.09 
- 0.22 
-0.19 
-0.15 

0.12 
0.10 

- 0.04 
- 0.06 

0.09 
0.05 

0.00 
0.17 

0.05 
0.08 

0.00 

0.0 1 
- 0.02 

0.03 

- 0.02 
- 0.02 

0.00 

- 0.20 

0.23 

0.00 
- 0.03 

- 0.03 
- 0.04 

- 0.07 
0.06 
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Table 13. Values of the factors in the three-mode factor analysis model (2,1,2) 

Solvents Reactions Substituents 
f 7 - r  3 

Code Factor 1 Factor 2 Code Factor 1 Symbol Factor 1 Factor 2 
A L 

4 
5 
6 
7 
8 
9 

10 
11 
12 

0.132 
0.1 50 
0.256 
0.062 
0.160 
0.296 
0.587 
0.191 
0.630 

-0.169 
- 0.088 
-0.115 
-0.091 
-0.196 
- 0.223 
- 0.045 
- 0.75 1 

0.536 

16 0.261 F 
17 0.321 C1 
18 0.470 Br 
19 0.440 I 
20 0.471 CH, - 
21 0.440 NO, 

CN 
OCH, 
COCH, 
COOCH, 

0.277 
0.298 
0.3 15 
0.263 

-0.042 
0.507 
0.485 
0.086 
0.286 
0.288 

0.500 
0.189 
0.307 

0.1 13 
- 0.033 

-0.411 
- 0.349 

0.496 
-0.062 

0.257 

Table 14. Elements of the three-mode core matrix of the model (2,1,2) 

P r S Element 
1 1 1 8.817 
1 1 2 0 
2 1 1 0 
2 1 2 1.939 
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