Molecular Structure in the Solid State (X-Ray Crystallography) and in Solution (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Nuclear Magnetic Resonance Spectroscopy) of 1,3Diazetidines and Pentasubstituted Biguanides. X-Ray Molecular Structure of 2,4-Bis-(6-methyl-3-methylthio-5-oxo-4,5-dihydro-1,2,4-triazin-4-yl)-5,5-pentamethylene-1,3-diphenylbiguanide and 1,3-Bis-(p-chlorophenyl)-5-dimethylamino-2,4-bis-(6-methyl-3-methylthio-5-oxo-4,5-dihydro-1,2,4-triazin-4-yl)biguanide

Rosa Ma Claramunt ${ }^{\text {• }}$
Departamento de Química Orgánica, Facultad de Ciencias, UNED Ciudad Universitaria, 28040 Madrid, Spain María de la Concepción Foces-Foces " and Félix Hernández Cano
U.E.I. de Cristalografía, Instituto de Química Física 'Rocasolano,' CSIC, Serrano, 119, 28006 Madrid, Spain Alain Fruchier
Laboratoire de Chimie Organique, ENSCM, 8, rue de l'Ecole Normale, 34075 Montpellier, France
Pedro Molina,* Mateo Alajarín, and Carmen López Leonardo
Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario de Espinardo, 30071 Murcia, Spain
José Elguero
Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spaín

Abstract

The molecular structures of a hexa- and a penta-substituted biguanide have been solved by X-ray crystallography: compound (9c) disubstituted at $N(5)$ by (as) a piperidine ring, and compound (11b) monosubstituted at $N(5)$ by a dimethylamino group. The X-ray structures can be used to explain the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR behaviour observed for these and related compounds. Consideration of the intramolecular hydrogen bonds between the NH and $\mathrm{C}=0$ groups is essential for the determination of the structure and spectroscopic properties of biguanides. In addition, the precursor diazetidines have also been studied by NMR spectroscopy: the Z, Z-isomer is always the most abundant, but minor quantities of the E, E-isomer can be observed.

In two previous papers, we have discussed the formation of (Z, Z)-1,3-diazetidine-2,4-diimines from iminophosphoranes and aryl isocyanates ${ }^{1}$ and the reaction of the diazetidines with amines to yield $N^{1}, N^{2}, N^{3}, N^{4}, N^{5}$-pentasubstituted biguanides. ${ }^{2}$ These papers dealt mainly with chemical aspects; physicochemical methods (X-ray and NMR) being used to establish the structure of these unexpected compounds.

We will now describe two new molecular structures of two biguanides and a careful ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR study of a selected set of diazetidines and biguanides. As we will discuss afterwards, assignment problems in these series are by no means trivial. The synthetic sequence and the products' numbering schemes are shown in Scheme 1.

Ring opening of diazetidines by methylamine, 1,1-dimethylhydrazine, and piperidine yields biguanides series (a), (b), and (c), respectively. Compounds (1'), (4), (8), (10a), and (10b) have been prepared especially for this work; details of the remaining compounds can be found in the quoted references. ${ }^{1.2}$

Results and Discussion \dagger

Crystal Structure of Biguanides (9c) and (11b).-Table 1 shows the selected geometrical parameters for both compounds, following the numbering system displayed in Figures 1 and $2 .{ }^{3}$ Two independent molecules are present in compound (9c). The main differences between them are those concerning the conformation of the piperidine ring [see Figure $1(a, b)$ and Table 1], the puckering parameters ${ }^{4}$ being $Q=0.559(6)$ and $0.565(6) \AA$ and $\Theta=179.4(7)$ and $3.7(6)^{\circ}$ for molecules A and B,
respectively. This is equivalent to a 180° rotation around $\mathrm{C}(7)-\mathrm{N}(5)$. No significant differences have been found between the two compounds except for those involving intramolecular hydrogen bonds, which restrict the conformation of the molecules around the $\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{N}(5)$ central part so as to give a pseudobinary axis through the $\mathrm{C}(20) \cdots \mathrm{C}(23)$ atoms in the case where two hydrogen bonds are present [compound (11b) and ref. 2]. This situation is also characterized by torsions $\mathrm{N}(8)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{N}(2)$ and $\mathrm{N}(5)-\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{N}(26)$ in compound (11b) and ref. 2, which are similar owing to the presence of H -bonds.

NMR Assignments of Starting Amine (1) and Iminophosphorane (2).-The use of compound (1') and heteronuclear COSY experiments allowed us to assign all the signals of the protons and carbons of the heterocyclic parts of compounds (1) and (2) (Table 2). Carbon assignments were based on chemical shifts and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ coupling constants. Amongst the latter, the largest coupling showed by the SMe and SCH_{2} carbons compared with that of the CMe and $\mathrm{CH}_{2} \mathrm{Me}$ carbons is well documented. ${ }^{5 a}$ Carbon $\mathrm{C}(3)$ was unambiguously identified by its change of multiplicity in compounds (1) and (1^{\prime}), and carbon $C(6)$ by its large ${ }^{2} J$ coupling constant and the absence of coupling with ${ }^{31} \mathrm{P}$ in compound (2). The signals of C-Me and S -

[^0]

(1')
(3) $\mathrm{Ar}=\mathrm{Ph}$
(4) $\mathrm{Ar}=p-\mathrm{FC}_{6} \mathrm{H}_{4}$
(5) $\mathrm{Ar}=p-\mathrm{CiC}_{6} \mathrm{H}_{4}$
(6) $\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
(7) $\mathrm{Ar}=m-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
(8) $\mathrm{Ar}=m-\mathrm{MeC}_{6} \mathrm{H}_{4}$
(9a) $\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}$
(9c) $\mathrm{Ar}=\mathrm{Ph}, \mathrm{RR}^{1}=-\left[\mathrm{CH}_{2}\right]_{5}^{-}$
(10a) $\mathrm{Ar}=p-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}$
(10b) $\mathrm{Ar}=\mathrm{p}-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{Me}_{2} \mathrm{~N}, \mathrm{R}^{1}=\mathrm{H}$
(11a) $\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}$
(11b) $\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{Me}_{2} \mathrm{~N}, \mathrm{R}^{1}=\mathrm{H}$
(12a) $\mathrm{Ar}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}$
Scheme 1. Reagents: i, ArNCO; ii, RR'NH.

Figure 1. Molecular structure of compound (9c) with the numbering system used in the crystallographic work.

Figure 2. Molecular structure of compound (11b) with the numbering system used in the crystallographic work.
$\mathrm{Me}(\mathrm{Et})$ groups in the ${ }^{1} \mathrm{H}$ NMR spectra were assigned through $2 \mathrm{D}\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ experiments.

The most surprising result, which could have led to incorrect assignments, was that the formation of the iminophosphorane affects position 6 more than position 3. For instance, when the chemical shifts of compounds (1) and (2) are compared, the C(6) signal is shifted (2.7 ppm) to a greater extent than those of $\mathrm{C}(3)$ and $\mathrm{C}(5)(<1.3 \mathrm{ppm})$. The same happens in the ${ }^{1} \mathrm{H}$ NMR spectra where the S-Me signal is unaffected whereas the $\mathrm{C}-\mathrm{Me}$ signal is shifted by 0.2 ppm .

NMR Spectroscopy of (Z,Z)-1,3-Diazetidine-2,4-diimines.The spectra of these compounds were only tentatively assigned ${ }^{1}$ since they are of considerable complexity. Two aspects should be considered: (i) the assignment of the heterocyclic signals including the quaternary diazetidine carbon $\mathrm{C}(\mathrm{a})$; (ii) the assignment of the Ar signals with special attention paid to identification of the aryl groups near to ($\mathrm{Ar}-Z$) and distant from ($\mathrm{Ar}-E$) the heterocycles.

The first assignment was based on compound (4) which was prepared for this purpose. Heterocyclic carbons were identified by their ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ coupling constants, including the absence of coupling for $\mathrm{C}(\mathrm{a})$. A COSY experiment identified the ${ }^{1} \mathrm{H}$ NMR signals of the $\mathrm{C}-\mathrm{Me}$ and S -Me groups (the shielding of the $\mathrm{C}-\mathrm{Me}$ protons being related to the proximity of $\mathrm{Ar}-Z$; see later). The ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ coupling constants are very characteristic of the relative positions of both nuclei in benzenes. ${ }^{5 b}$ It was possible to identify pairs of signals belonging to carbons ipso [C(1)], ortho $[\mathrm{C}(2)$ and $\mathrm{C}(6)]$, meta $[\mathrm{C}(3)$ and $\mathrm{C}(5)]$, and para $[\mathrm{C}(4)]$ (with regard to the diazetidine ring). The COSY experiment related

Table 1. Selected geometrical parameters.

Bond angles (${ }^{\circ}$)

Compound	(9c)		(11b)
	Mol. A	Mol. B	
$\mathrm{Me}-\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{N}(8)$	178.5(4)	-175.0(4)	-170.0(3)
$\mathrm{Me}-\mathrm{S}(2)-\mathrm{C}(27)-\mathrm{N}(26)$	-177.0(5)	-172.3(4)	-176.4(3)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{N}(8)-\mathrm{C}(9)$	135.7(4)	131.4(4)	129.9(3)
$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{N}(26)-\mathrm{C}(27)$	127.0(5)	126.6(5)	122.2(3)
$\mathrm{N}(8)-\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{N}(2)$	-16.8(7)	-17.2(7)	164.6(3)
$\mathrm{N}(5)-\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{N}(26)$	163.2(4)	165.7(4)	173.4(3)
$\mathrm{C}(7)-\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{N}(2)$	-32.7(6)	-43.0(6)	-37.2(4)
$\mathrm{H}(2)-\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{N}(3)$	-31(4)	-18(4)	-29(3)
$\mathrm{C}(32) / \mathrm{H}(5)-\mathrm{N}(5)-\mathrm{C}(7)-\mathrm{N}(3)$	-36.4(7)	-30.9(7)	-20(4)
$\mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(7)-\mathrm{N}(5)$	-44.9(6)	-48.1(6)	-49.9(4)
$\mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(20)-\mathrm{C}(25)$	131.5(5)	125.6(5)	$129.7(3)$
$\mathrm{C}(7)-\mathrm{N}(3)-\mathrm{C}(20)-\mathrm{C}(21)$	130.3(5)	126.4(5)	125.8(3)
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(15)$	145.2(5)	136.3(5)	141.3(3)
$\mathrm{C}(36) / \mathrm{N}(32)-\mathrm{N}(5)-\mathrm{C}(7)-\mathrm{N}(3)$	158.5(5)	174.4(4)	173.4(3)
$\mathrm{N}(5)-\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	-55.3(7)	58.2(7)	
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	54.3(7)	-57.7(7)	
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	-54.0(8)	54.6(8)	
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{N}(5)$	54.6(7)	-53.1(7)	
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{N}(5)-\mathrm{C}(32)$	-57.2(6)	55.1(6)	
$\mathrm{C}(36)-\mathrm{N}(5)-\mathrm{C}(32)-\mathrm{C}(33)$	57.9(6)	-57.5(6)	
$\mathrm{N}(2) \cdots \mathrm{O}(2)$	2.843(5)	2.746(6)	2.854(4)
$\mathrm{N}(2)-\mathrm{H}(2)$	0.90(6)	0.89(5)	0.95(5)
$\mathrm{H}(2) \cdots \mathrm{O}(2)$	2.00(6)	1.88(5)	2.01(5)
$\mathrm{N}(2)-\mathrm{H}(2) \cdots \mathrm{O}(2)$	156(6)	164(4)	151(4)
$\mathrm{N}(5) \cdots \mathrm{O}(1)$			$2.909(4)$
$\mathrm{N}(5)-\mathrm{H}(5)$			0.92(5)
$\mathrm{H}(5) \cdots \mathrm{O}(1)$			2.05(5)
$\mathrm{N}(5)-\mathrm{H}(5) \cdots \mathrm{O}(1)$			154(4)
$\mathrm{O}(3) \cdots \mathrm{N}(10)$	3.12(2)		
$\mathrm{O}(4) \cdots \mathrm{N}(11)$	2.89(2)		

protons of the $\mathrm{AA}^{\prime} \mathbf{B B}^{\prime} \mathbf{X}$ systems to their linked carbons ($\sim \sim$) (Scheme 2).

An homonuclear COSY experiment (\longleftrightarrow) showed the relationship between aromatic protons: the $\delta_{\mathrm{H}} 6.84$ and 7.02 multiplets, on one hand, and the $\delta_{\mathrm{H}} 7.18$ and 7.78 multiplets, on the other, belong to the same Ar substituent. A COLOC experiment, using a value of $J 7 \mathrm{~Hz}$, related carbons and protons separated by three bonds ($\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{H}$) $(\leftarrow--\rightarrow)$, allowing us to assign the ipso and para carbons.

For all the remaining compounds of Table 3, $\operatorname{COSY}\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right)$ and (${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$) spectra were obtained enable us to assign the remaining signals. Thus, the signals belonging to each Ar

Table 2. Chemical shifts, coupling constants (Hz), and 2D correlations ($\sim \sim$) of starting materials in CDCl_{3}.

Compound	nucleus	C-Me	S-Me(Et)		NH_{2}	C-3	C. 5	C-6
(1)	$\left\{{ }^{1} \mathrm{H}\right.$	$\stackrel{2.47}{\xi}$	$\stackrel{2.59}{\xi}$		4.88			
	${ }^{13} \mathrm{C}$	$\begin{aligned} & 17.33 \\ & \left.{ }_{(1}{ }^{J} 129.8\right) \end{aligned}$	$\begin{aligned} & 14.20 \\ & \left({ }^{1} J 142.1\right) \end{aligned}$			$\begin{aligned} & 160.38 \\ & \left({ }^{3} J 3.5\right)^{a} \end{aligned}$	$\begin{aligned} & 152.57 \\ & \left({ }^{3} J 2.9\right) \end{aligned}$	$\begin{aligned} & 154.11 \\ & \left({ }^{2} J 7.1\right) \end{aligned}$
(1')	$\left\{{ }^{1} \mathrm{H}\right.$	$\stackrel{2.46}{\$}$	$\begin{gathered} 1.42\left(\mathrm{CH}_{3}\right) \\ \vdots \end{gathered}$	$\stackrel{3.22}{ }\left(\mathrm{CH}_{2}\right)$	4.89			
	${ }^{13} \mathrm{C}$	$\begin{aligned} & 17.06 \\ & \left({ }^{1} J 130.0\right) \end{aligned}$	$\begin{aligned} & 15.31 \\ & \left(\begin{array}{l} 1 J 128.5, \\ 3 \\ { }^{3} J 3.0 \end{array}\right) \end{aligned}$	$\begin{aligned} & 25.33 \\ & \left({ }^{J} J 143.4,\right. \\ & \left.{ }^{3} J 4.5\right) \end{aligned}$		$\begin{aligned} & 159.74 \\ & \left({ }^{3} J 3.7\right)^{b} \end{aligned}$	$\begin{aligned} & 152.41 \\ & \left({ }^{3} J 2.9\right) \end{aligned}$	$\begin{aligned} & 153.71 \\ & \left({ }^{2} J 7.2\right) \end{aligned}$
(2)	$\left\{{ }^{1} \mathrm{H}^{c}\right.$	$\stackrel{2.26}{3}$	$\stackrel{2.52}{3}$					
	${ }^{13} \mathrm{C}$	$\begin{aligned} & 17.52 \\ & \left.{ }^{1} J 129.6\right) \end{aligned}$	$\begin{aligned} & 14.88 \\ & \left({ }^{1} J 141.9\right) \end{aligned}$			$\begin{aligned} & 161.67 \\ & \left(\begin{array}{l} 3 J 3.7, \\ 3 \\ 3 \\ \left.{ }^{3} 11.3^{d}\right) \end{array}\right) \end{aligned}$	$\begin{aligned} & 153.52 \\ & \left(\begin{array}{l} 3 \\ { }^{3} J .0, \\ { }^{3} J 3.8^{d} \end{array}\right) \end{aligned}$	$\begin{aligned} & 151.38 \\ & \left({ }^{2} J 7.1\right) \end{aligned}$

${ }^{a}$ Quartet (SMe). ${ }^{b}$ Triplet (SEt). ${ }^{c}$ The $\mathrm{Ph}_{3} \mathrm{P}$ protons appear between δ 7.4-7.9. ${ }^{d}$ Couplings with ${ }^{31} \mathrm{P}$.
residue were identified (normal vs. bold characters, respectively, in Scheme 2), but which residue was Ar- Z and which was Ar-E remained to be determined. To solve this, NOESY and NOE differential spectra were recorded.
Unfortunately, for both compounds (3) and (4), these experiments were inconclusive. In all probability the ortho and meta protons of the Ar residues are mutually too close together to enable us to observe an NOE effect when the methyl groups of the heterocycles are irradiated. ${ }^{6}$ To avoid this problem, compounds (7) and (8) with a substituent, MeO or Me , in the meta position were analysed. If the molecular geometry of compound (5), determined by X-ray crystallography, ${ }^{1}$ is maintained in the meta analogues (7) and (8), the C-methyl group of the heterocycle would be much closer to $\mathrm{R}^{3}-Z$ than to $\mathbf{R}^{3}-E$, while the reverse is true for the S-methyl group. An examination of the off-diagonal spots in the NOESY spectra showed that this is clearly the case in compound (7).
The following sequence of experiments allowed us to identify the $\mathrm{Ar}-Z$ and $\mathrm{Ar}-E$ substituents for all compounds mentioned in Table 3 (Scheme 3).

Scheme 3. (\Leftrightarrow NOESY).
Thus, from these results concerning the structure of the 1,3-diazetidine-2,4-diimines in solution, the following conclusions can be drawn:
(i) The most abundant compound is always the Z, Z-isomer, but in some spectra signals corresponding to the E, E-isomer can be seen (signals for only one aryl group). For instance, in the

(6)
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for compound (6).
case of compound (6), we have identified all the signals of the minor isomer.

The values for the nuclei of the Ar residue in the E, E-isomer are intermediate between those of $\mathrm{Ar}-Z$ and $\mathrm{Ar}-E$ in the Z, Z isomer. They are very near the averaged values for protons and carbons of all positions, except for the ortho signals (2 and 6) where the chemical shifts of $\mathrm{Ar}-Z$ are abnormal.
(ii) In the Z, Z-isomer, the Ar- Z group cannot rotate freely, but due to the 'symmetry' of its environment (see Figure 3) ${ }^{1}$ the ortho and meta protons and carbons are isochronous. Reciprocally, when Ar- Z is para substituted, both Het residues are also equivalent.
(iii) The spatial relationships depicted in Figure 3 explain why the C-Me groups appear shielded in Z, Z-diazetidines (3)-(8) (averaged value of Table 3, $\delta 2.00$) compared with the starting amine (1) ($\delta 2.47$, Table 2) and with the E, E-isomer [$\delta 2.14$; structure (6)] while the S-Me groups are rather insensitive to these changes ($\delta 2.61 \pm 0.02$). Reciprocally, the proximity of both heterocycles shielded all the protons ($\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{Me}$, $\mathrm{C}-\mathrm{OMe}$) of $\mathrm{Ar}-Z$. This was particularly important for the ortho protons.

NMR Spectroscopy of Biguanides.-Contrary to that for diazetidines, ${ }^{1}$ the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR study of the biguanides had been carefully carried out in our previous work. ${ }^{2}$ The most striking observation was that ortho and/or meta protons and carbons of the $\mathrm{N}(3)$-Ar residue are anisochronous in these compounds due both to restricted rotation and to chirality of
Table 3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-values for (Z, Z)-1,3-diazetidine-2,4-diimines in CDCl_{3}.

No.	Nucleus	C-Me	S-Me	C. 3	C-5	C-6	C-a	Ar-E						Ar-Z					
								1	2	3	4	5	6	1	2	3	4	5	6
(3)	$\int{ }^{1} \mathrm{H}$	1.95	2.63						7.81	7.47	7.27	7.47	7.81		6.98	7.14	7.24	7.14	6.98
	$\left\{{ }^{1} \mathrm{H}^{a}\right.$	1.97	2.59						7.84	7.60	7.37	7.60	7.84		7.10	7.25	7.33	7.25	7.10
	$\left\{{ }^{13} \mathrm{C}\right.$	17.02	14.33	157.24				134.10	118.01	129.39	125.60	129.39	118.01	130.31	126.56	128.79	130.29	128.79	126.56
		($\left.{ }^{1} J 130.0\right)$	$\left({ }^{1} J 143.5\right)$	$\left({ }^{3} \mathrm{~J} 4.2\right)$	$\left({ }^{3} \mathrm{~J} 3.1\right)$	$\left({ }^{2} J 7.2\right)$	(s)												
(4)	$\int^{1} \mathrm{H}$	2.05	2.63						7.78	7.18		7.18	7.78		7.02	6.84		6.84	7.02
								$\left({ }^{3} J_{\mathrm{HH}} 9\right.$	$01,{ }^{3} j_{\mathrm{HF}}$	$30,{ }^{4} J_{\mathrm{HH}}$	$2.26,{ }^{4} J_{\mathrm{HF}}$			${ }^{3} J_{\mathrm{HH}} 8.9$	${ }^{3}{ }^{3} J_{\mathrm{HF}} 7$.	, ${ }^{4} \mathrm{JHH}^{2} 2$	$27,{ }^{4} J_{\mathrm{HF}}$		
	$\left\{{ }^{13} \mathrm{C}\right.$	$\begin{aligned} & 17.06 \\ & \left({ }^{1} J 130.1\right) \end{aligned}$	$\begin{aligned} & 14.35 \\ & \left({ }^{1} J 143.5\right) \end{aligned}$	$\begin{aligned} & 157.15 \\ & \left({ }^{3} J 4.2\right) \end{aligned}$	$\begin{aligned} & 148.13 \\ & \left({ }^{3} J 3.1\right) \end{aligned}$	$\begin{aligned} & 154.18 \\ & \left({ }^{2} J 7.1\right) \end{aligned}$	$\begin{aligned} & 153.07 \\ & (\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 130.7 \\ & \left({ }^{4} J 2.8\right) \end{aligned}$	$\begin{aligned} & 120.16 \\ & \left({ }^{J} J 8.2\right) \end{aligned}$	$\begin{gathered} 116.41 \\ J 22.9)\left({ }^{1} .\right. \end{gathered}$	$\begin{aligned} & 160.21 \\ & I 246.4)^{b} \end{aligned}$	116.41	120.16	$\begin{gathered} 126.18 \\ \left({ }^{4} J 3.6\right) \end{gathered}$	$\begin{aligned} & 128.95 \\ & J 9.1)\left({ }^{2} J\right. \end{aligned}$	$\begin{gathered} 115.97 \\ 23.0)\left({ }^{1} J\right. \end{gathered}$	$\begin{array}{r} 162.99 \\ 254.5)^{b} \end{array}$	115.97	128.95
(5)	$\left\{{ }^{1} \mathrm{H}\right.$	1.96	2.62						7.75	7.44		7.44	7.75		6.92	7.11		7.11	6.92
	$\left\{{ }^{13} \mathrm{C}\right.$	17.01	14.33	157.17	148.08	154.32	152.56	132.58	119.43	128.01	129.78	128.01	119.43	128.72	129.69	129.13	132.49	129.13	129.69
(6)	$\int^{1} \mathrm{H}$	2.03	2.60						7.69	6.98	3.82	6.98	7.69		6.93	6.59	3.69	6.59	6.93
											$(\mathrm{OMe})^{\text {c }}$						$(\mathrm{OMe})^{\text {c }}$		
	$\left\{{ }^{13} \mathrm{C}\right.$	$\begin{gathered} 16.89 \\ \left({ }^{1} J 129.9\right) \end{gathered}$	$\begin{aligned} & 14.12 \\ & \left({ }^{1} J 143.3\right) \end{aligned}$	$\begin{aligned} & 157.09 \\ & \left({ }^{3} J 4.2\right) \end{aligned}$	$\begin{aligned} & 148.03 \\ & \left({ }^{3} J 3.1\right) \end{aligned}$	$\begin{aligned} & 153.96 \\ & \left({ }^{2} J 7.1\right) \end{aligned}$	$\begin{aligned} & 154.02 \\ & \text { (s) } \end{aligned}$	126.95	120.02	114.42	157.28	114.42	120.02	122.30	127.98	113.70	160.54	113.70	127.98
(7)	$\int^{1} \mathbf{H}^{d}$	2.01	2.62						7.44	3.86	6.83	7.38	7.42		6.52	3.67	6.79	7.02	6.56
										$(\mathrm{OMe})^{e}$						$(\mathrm{OMe})^{5}$			
	$\left\{{ }^{13} \mathrm{C}\right.$	$\begin{aligned} & 16.98 \\ & \left({ }^{1} J 130.0\right) \end{aligned}$	$\begin{aligned} & 14.25 \\ & \left({ }^{1} J 143.3\right) \end{aligned}$	$\begin{aligned} & 157.08 \\ & \left({ }^{3} J 4.1\right) \end{aligned}$	$\begin{aligned} & 148.00 \\ & \left({ }^{3} J 3.0\right) \end{aligned}$	$\begin{aligned} & 154.19 \\ & \left({ }^{2} J 7.0\right) \end{aligned}$	$\begin{aligned} & 153.01 \\ & \text { (s) } \end{aligned}$	134.98	103.75	160.17	111.52	130.20	110.11	131.13	111.25	159.46	116.83	129.39	118.31
(8)	$\int{ }^{1} \mathrm{H}$	1.98	2.62						7.63	2.43	7.08	7.38	7.63		6.78	2.17	7.03	7.03	6.78
	$\left\{{ }^{13} \mathrm{C}\right.$									(Me) ${ }^{\text {g }}$						(Me) ${ }^{\boldsymbol{h}}$			
	$\left\{{ }^{13} \mathrm{C}\right.$	$\begin{gathered} 16.95 \\ \left({ }^{1} J 129.9\right) \end{gathered}$	$\begin{aligned} & 14.22 \\ & \left({ }^{1} J 143.4\right) \end{aligned}$	$\begin{aligned} & 157.11 \\ & \left({ }^{3} J 4.2\right) \end{aligned}$	$\begin{aligned} & 148.01 \\ & \left({ }^{3} J 3.0\right) \end{aligned}$	$\begin{aligned} & 154.06 \\ & \left({ }^{2} J 7.2\right) \end{aligned}$	$\begin{aligned} & 153.26 \\ & \text { (s) } \end{aligned}$	133.92	118.42	139.42	126.31	129.09	115.07	130.72	126.70	139.17	128.45	130.14	123.09

[^1]Table 4. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-values of biguanides in CDCl_{3}.

No.	Nucleus	C-Me	S-Me	C-3	C-5	C-6	C-a	C-b	Ar-2					
									1	2	3	4	5	6
(9a)	$\left\{{ }^{1} \mathrm{H}^{a}\right.$	2.45 2.47	$\begin{aligned} & 2.17 \\ & 2.18 \end{aligned}$							7.684	7.424	7.175	7.424	7.684
	$\left\{{ }^{13} \mathrm{C}\right.$	17.63 17.69	$\begin{aligned} & 13.59 \\ & 1364 \end{aligned}$	$\begin{aligned} & 158.91 \\ & 159.23 \end{aligned}$	$\begin{aligned} & 150.76 \\ & 151.48 \end{aligned}$	$\begin{aligned} & 152.95 \\ & 153.13 \end{aligned}$	153.03 (s)	$\begin{aligned} & 156.38 \\ & \left({ }^{3} J 3.6\right) \end{aligned}$	138.51	120.51	129.10	124.26	129.10	120.51
(9c)	$\int^{1} \mathrm{H}$	2.58 2.04	$\begin{aligned} & 2.21 \\ & 2.46 \end{aligned}$							7.1	7.1	7.02	7.1	7.1
	$\left\{{ }^{13} \mathrm{C}\right.$	17.41 17.83	$\begin{aligned} & 13.50 \\ & 14.20 \end{aligned}$	$\begin{aligned} & 159.00 \\ & 157.85 \end{aligned}$	$\begin{aligned} & 151.44 \\ & 147.01 \end{aligned}$	$\begin{aligned} & 153.66 \\ & 153.79 \end{aligned}$	$\begin{aligned} & 153.08 \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & 158.22 \\ & (\mathrm{br}) \end{aligned}$	139.40	124.82	129.06	126.60	129.06	124.82
(10a)	$\left\{\begin{array}{l}{ }^{1} \mathrm{H} \\ { }^{13} \mathrm{C}\end{array}\right.$	$\begin{array}{r}2.46 \\ 2.47 \\ 17.63 \\ \hline 17.63\end{array}$	$\begin{array}{r} 2.21 \\ 2.22 \end{array}$						${ }^{3} J_{\text {HH }} 9$	$\begin{gathered} 7.63 \\ { }^{3}{ }_{\mathrm{HFF}}^{8.5}, \end{gathered}$	$\begin{gathered} 7.07 \\ { }^{7}{ }^{2.3,{ }^{4}} . \end{gathered}$	(F 4.6)	7.07 115.76	7.63 122.23
		17.63 17.63	13.65 13.69	$\begin{aligned} & 158.67 \\ & 159.09 \end{aligned}$	$\begin{aligned} & 150.70 \\ & 151.43 \end{aligned}$	$\begin{aligned} & 152.88 \\ & 153.17 \end{aligned}$	153.04 (s)	$\begin{aligned} & 156.32 \\ & \left({ }^{3} J 3.6\right) \end{aligned}$	$\begin{aligned} & 134.32 \\ & \left({ }^{4} J 2.8\right) \end{aligned}$	$\begin{gathered} 122.23 \\ J 7.9)\left({ }^{2} J\right. \end{gathered}$	$\begin{aligned} & 115.76 \\ & 2.5)\left({ }^{1} J 2\right. \end{aligned}$	$\begin{aligned} & 159.37 \\ & 4.2) \end{aligned}$	115.76	122.23
(10b)	$\left\{\begin{array}{l}1{ }^{1} \mathrm{H} \\ { }^{13} \mathrm{C}\end{array}\right.$	2.46 2.46 17.35	$\begin{aligned} & 2.22 \\ & 2.23 \end{aligned}$						$\left({ }^{3} \mathrm{JHH} 9\right.$	$\begin{gathered} 7.64 \\ { }^{3} J_{\mathrm{HF}} 8.6, \end{gathered}$	$\begin{array}{r} 7.08 \\ J_{\text {HH }} 2.2,{ }^{4} \end{array}$	(F.7)	7.08 11572	7.64 121.75
	$\left\{{ }^{13} \mathrm{C}\right.$	17.35 17.39	$\begin{aligned} & 13.49 \\ & 13.53 \end{aligned}$	$\begin{aligned} & 158.57 \\ & 158.94 \end{aligned}$	$\begin{aligned} & 150.70 \\ & 150.49 \end{aligned}$	$\begin{aligned} & 152.78 \\ & 152.87 \end{aligned}$	$\begin{aligned} & 152.64 \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & 154.22 \\ & \left({ }^{2} J 6.6\right) \end{aligned}$	$\begin{aligned} & 134.18 \\ & \left({ }^{4} J 2.7\right) \end{aligned}$	$\begin{aligned} & 121.75 \\ & J 7.9)\left({ }^{2} J\right. \end{aligned}$	$\begin{aligned} & 115.72 \\ & 2.7)\left({ }^{1} J 2\right. \end{aligned}$	$\begin{aligned} & 159.23 \\ & 4.3) \end{aligned}$	115.72	121.75
(11a)	$\left\{\begin{array}{l}1 \\ { }^{13} \mathrm{C}\end{array}\right.$	2.46 2.48 17.57	$\begin{aligned} & 2.23 \\ & 2.23 \end{aligned}$							7.61	7.33		7.33	7.61
	$\left\{{ }^{13} \mathrm{C}\right.$	17.57 17.61	$\begin{aligned} & 13.70 \\ & 13.74 \end{aligned}$	$\begin{aligned} & 158.46 \\ & 158.95 \end{aligned}$	$\begin{aligned} & 150.54 \\ & 151.40 \end{aligned}$	$\begin{aligned} & 152.83 \\ & 152.97 \end{aligned}$	$\begin{aligned} & 152.77 \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & 156.05 \\ & \left({ }^{3} J 3.5\right) \end{aligned}$	136.84	121.63	129.03	129.32	129.03	121.63
(11b)	$\left\{{ }^{1} \mathrm{H}\right.$	2.46 2.47	$\begin{aligned} & 2.23 \\ & 2.24 \end{aligned}$							7.62	7.34		7.34	7.62
	$\left\{{ }^{13} \mathrm{C}\right.$	17.48 17.44	$\begin{aligned} & 13.64 \\ & 13.67 \end{aligned}$	$\begin{aligned} & 158.40 \\ & 158.86 \end{aligned}$	$\begin{aligned} & 150.71 \\ & 150.39 \end{aligned}$	$\begin{aligned} & 152.78 \\ & 152.88 \end{aligned}$	$\begin{aligned} & 152.31 \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & 154.01 \\ & \left({ }^{2} J 6.7\right) \end{aligned}$	136.73	121.22	129.04	129.27	129.04	121.22
(12a)	$\left\{\begin{array}{l}1 H^{b} \\ { }^{13} \mathrm{C}^{\text {c }}\end{array}\right.$	2.45 2.47 17.58	$\begin{aligned} & 2.18 \\ & 2.19 \end{aligned}$							7.60 122.24	$\begin{array}{r}6.92 \\ \hline 14.24\end{array}$		6.92 114.24	$\begin{array}{r}7.60 \\ \\ \hline 122.24\end{array}$
	$\left\{{ }^{13} \mathrm{C}^{c}\right.$	17.58 17.58	$\begin{aligned} & 13.58 \\ & 13.61 \end{aligned}$	$\begin{aligned} & 159.02 \\ & 159.25 \end{aligned}$	$\begin{aligned} & 150.97 \\ & 151.50 \end{aligned}$	$\begin{aligned} & 152.85 \\ & 153.03 \end{aligned}$	$\begin{aligned} & 153.52 \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & 156.78 \\ & \left({ }^{3} J 3.6\right) \end{aligned}$	131.67	122.24	114.24	156.47	114.24	122.24

${ }^{a}$ Couplings constants, Ar-2, $J_{2.3}=J_{4.5}=8.21, J_{2.4}=J_{4.6}=1.12, J_{2.5}=J_{3.6}=0.53, J_{2.6} 2.08, J_{3.4}=J_{4.5}=7.45, J_{3.5} 1.84$; Ar-3, $J_{2.3} 7.88, J_{2.4}$ 55.49. Italicized values indicate the signals of Ar-3 which split.

Figure 3. A lateral view (ca. 90° from the previous figures) of a diazetidine (black circles, methyl groups).
the biguanide [helical conformation of the $\mathrm{N}(3)-\mathrm{C}(\mathrm{a})-\mathrm{N}(3)-$ $\mathrm{C}(\mathrm{b})-\mathrm{N}(5)$ central part]. However, some problems remained unsolved:
(i) If the identification of $\mathrm{N}(2)-\mathrm{Ar}$ and $\mathrm{N}(3)-\mathrm{Ar}$ signals was successfully achieved using a symmetric compound with $\mathrm{N}(5)$
bearing the same Ar residue as $\mathrm{N}(2)$, the assignment of ortho and meta nuclei in both aryl groups was based only on substituent effects.
(ii) On changing R from methyl (a series) to dimethylamino (b series) why does the splitting of some signals in the ${ }^{1} \mathrm{H}$ NMR spectrum change and do these changes involve the ortho and meta positions of the $\mathrm{N}(3)-\mathrm{Ar}$ residue or the $\mathrm{N}(2)-\mathrm{Ar}$ and $\mathrm{N}(3)-\mathrm{Ar}$ residues?
(iii) Why, when $\mathbf{R R}^{\prime}=-\left[\mathrm{CH}_{2}\right]_{5^{-}}$(piperidine, \mathbf{c} series), are some signals broadened in the ${ }^{1} \mathrm{H}$ NMR spectrum (those of the piperidine ring) and why, in the ${ }^{13} \mathrm{C}$ NMR spectrum, are the signals corresponding to the aryl residues considerably shifted without splitting?

These questions had to be answered first and so we decided:
(i) To record the NMR spectra of series (9) and (10) and to use the coupling with the para substituent, \mathbf{H} or F , to assign the remaining signals.
(ii) To determine the X-ray structure of compound (11b) and to use the p-fluoro derivative (10b) for NMR purposes.
(iii) To determine the X -ray structure of the piperidine derivative (9c).

Table 4 summarizes the NMR results obtained. Homo- and hetero-nuclear COSY experiments will not be discussed, and we will only, as an illustration, comment that the anisochronous protons and carbons of compound (11b) are related in the following manner: $6.58 \leadsto 123.79$ and $6.68 \leadsto \sim 124.20$. The only rigorous analysis of the spin systems was carried out on compound (9a). For the remaining compounds the values of Table 4 correspond to first-order analysis of the 200 and 300 MHz spectra and to heteronuclear COSY experiments.

The data in Table 4 shows that:

Ar-3						NH		$\mathrm{N}(5)-\mathrm{R}$
1	2	3	4	5	6	2	5	
134.51	6.825 122.93	7.088 128.94	7.045 128.01	7.114 128.94	6.820 122.97	$\begin{aligned} & 9.55 \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & 7.49 \\ & \left({ }^{3} J 4.9\right) \end{aligned}$	Me 3.13 (${ }^{3} J 4.9$) Me 30.00
136.05	6.89 121.35	7.08 128.33	6.95 125.51	7.08 128.33	6.89 121.35	9.71 (s)		$\begin{gathered} \text { piperidine } 4.08(\alpha, \text { eq }), 3.37(\alpha, \text { ax }), 1.89(\beta) \\ 4.27(\alpha, \text { eq), } 3.72(\alpha, \text { ax }), 1.71(\beta) \\ \text { piperidine } 48.74(\alpha), 25.25(\beta), 24.74(\gamma) \\ 49.09(\alpha), 27.59(\beta) \end{gathered}$
	6.76	6.69		6.72	6.75	$\begin{aligned} & 9.53 \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & 7.50 \\ & \left({ }^{3} J 4.8\right) \end{aligned}$	$\begin{aligned} & \text { Me } 3.13 \\ & \left({ }^{3} J 4.8\right) \end{aligned}$
$\begin{aligned} & 130.54 \\ & \left({ }^{4} J 3.1\right) \end{aligned}$	$\begin{aligned} & 124.83 \\ & J 8.7)\left({ }^{2} J\right. \end{aligned}$	$\begin{aligned} & 116.00 \\ & 3.3)\left({ }^{1} J 2\right. \end{aligned}$	$\begin{aligned} & 161.17 \\ & 9.5) \end{aligned}$	116.00	124.88			30.00
	6.64	6.75		6.75	6.75	$\begin{aligned} & 9.62 \\ & (\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 8.50 \\ & \text { (s) } \end{aligned}$	$\mathrm{Me}_{2} \mathrm{~N} 2.73$
$\begin{aligned} & 130.06 \\ & \left({ }^{4} J 3.1\right) \end{aligned}$	$\begin{aligned} & 124.35 \\ & J 8.7)\left({ }^{2} J\right. \end{aligned}$	$\begin{aligned} & 115.99 \\ & \left({ }^{1} J 2\right. \end{aligned}$	$\begin{aligned} & 161.12 \\ & 0.5) \end{aligned}$	115.99	124.78			$\mathrm{Me}_{2} \mathrm{~N} 47.09$
	6.64	7.00		7.03	6.64	$\begin{aligned} & 9.63 \\ & (\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 7.52 \\ & \left({ }^{3} J 4.7\right) \end{aligned}$	$\begin{aligned} & \text { Me } 3.12 \\ & \left({ }^{3} J 4.7\right) \end{aligned}$
132.83	124.23	129.03	133.63	129.03	124.31			Me 30.00
	6.58	7.02		7.02	6.68	9.73 (s)	$\begin{aligned} & 8.52 \\ & \text { (s) } \end{aligned}$	$\mathrm{Me}_{2} \mathrm{~N} 2.73$
132.36	123.79	129.04	133.78	129.04	124.20			$\mathrm{Me}_{2} \mathrm{~N} 47.13$
	6.62	6.49		6.52	6.62	$\begin{aligned} & 9.35 \\ & \text { (s) } \end{aligned}$	$\begin{aligned} & 7.46 \\ & \left({ }^{3} J 4.8\right) \end{aligned}$	$\begin{aligned} & \text { Me } 3.12 \\ & \left({ }^{3} J 4.8\right) \end{aligned}$
127.43	124.51	114.06	158.80	114.20	124.51			Me 29.91

$1.11, J_{2.5} 0.49, J_{2.6} 2.71, J_{3.4} 7.50, J_{3.5} 1.85, J_{3.6} 0.53, J_{4.5} 7.48, J_{4.6} 1.13, J_{5.6} 8.13 \mathrm{~Hz}{ }^{6} \mathrm{MeO}$ groups at $\delta 3.64$ and $3.81 .{ }^{\text {c }} \mathrm{MeO}$ groups, both at δ

Figure 4.
(i) The assignment of protons in series (9) and (10) results from analysis of the spectra and from that of the corresponding carbons from heteronuclear COSY experiments and ${ }^{13} \mathrm{C}^{-19} \mathrm{~F}$ coupling constants [series (10)]. Thus, all the data in Table 4 are unambiguous.
(ii) It is clear that it is always the signals of Ar-3 which split. When the substituent on $\mathrm{N}(5)$ is a methyl group (a series) the splitting affects meta protons $\mathrm{H}(3)$ and $\mathrm{H}(5)(\delta 0.03)$ whereas when the substituent is a dimethylamino group (b series) the ortho protons $\mathrm{H}(2)$ and $\mathrm{H}(6)$ split off ($\delta 0.10$).

The proton chemical shift of the $\mathrm{N}(2)-\mathrm{H}$ signals changes by 0.1 ppm between the p-fluoro and p-chloro series and between the methyl and dimethylamino series, and that of $\mathrm{N}(5)-\mathrm{H}$ does so by 1.0 ppm between the methyl and dimethylamino series.

Comparison of the ${ }^{13} \mathrm{C}$ NMR spectra of compounds (10a), (10b), (11a), and (11b) shows some interesting features. Carbon $\mathrm{C}(\mathrm{b})$ is coupled with the methyl group (${ }^{3} J \simeq 3.6 \mathrm{~Hz}$) but not with the $\mathrm{N}(5)-\mathrm{H}$ proton (a series), whereas in the b series the only coupling observed is with the $\mathrm{N}(5)-\mathrm{H}$ proton $\left({ }^{2} J \simeq 6.6\right.$ $\mathrm{Hz})$. The effect of replacement of a methyl group by a dimethylamino group $[\Delta \delta=\delta(\mathbf{b})-(\mathbf{a})]$ is important only for $\mathrm{C}(\mathrm{b})(\Delta \delta-2.1 \mathrm{ppm})$, but it is worth noting that of the four ortho and meta carbons of $\mathrm{N}(3)-\mathrm{Ar}$ one of the anisochronous ortho carbons $C(2)$ is shifted much more ($\Delta \delta \simeq-0.48 \mathrm{ppm}$) than are the other three ($\Delta \delta \simeq-0.05 \mathrm{ppm})$.
(iii) Both the ${ }^{1} \mathrm{H}$ and the ${ }^{13} \mathrm{C}$ NMR spectra of compound (9c) show large differences compared with those of other biguanides (Table 4). In the ${ }^{1} \mathrm{H}$ spectrum, the most striking difference concerns the chemical shifts of the Het residues. One of them is quite normal (C-Me at $\delta 2.58$, S-Me at $\delta 2.21$) whereas the other is very different (C-Me at $\delta 2.04$, S-Me at $\delta 2.46$) and resembles values for the diazetidines given in Table 3. The signals of the Ar- 2 protons are slightly broadened. In the ${ }^{13} \mathrm{C}$ spectrum, besides the $\mathrm{S}-\mathrm{Me}$ signals at $\delta_{\mathrm{C}} 14.20$ (still of the diazetidine type) one of the phenyl groups [that on $\mathrm{N}(2)$] has all its signals slightly broadened (${ }^{3} J$ coupling constants cannot be measured) whereas the other phenyl group [that on $\mathrm{N}(3)$] shows well resolved signals. Finally, the piperidine signals, both in the ${ }^{1} \mathrm{H}$ and the ${ }^{13} \mathrm{C}$ spectra, are broad but this did not prevent us from observing that α and β signals are split. In summary, these spectra show compound (9c) to be a very different biguanide which retains a chiral element but where hindered rotations have most effect on the piperidine rather than on the Ar groups.

Relationships between the Molecular Structure of Biguanides

Table 5. Crystal-analysis parameters at room temperature.

Crystal data	(9c)	(11b)
Formula	$\underset{2\left(\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}_{2}\right) \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}}{ }$	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$
Crystal habit	Transparent plate	Yellow transparent prism
Crystal size/mm	$0.33 \times 0.20 \times 0.07$	$0.40 \times 0.27 \times 0.17$
Symmetry	Triclinic, PI	Monoclinic, $P 2_{1} / c$
Unit-cell determination	Least-squares fir from 88 reflections ($\theta<45^{\circ}$)	Least-squares fit from 97 reflections ($\theta<45^{\circ}$)
Unit-cell dimensions	$\begin{aligned} & 21.6952(11), 13.1043(5), 12.2197(5) \AA \\ & 98.154(4), 102.748(4), 77.327(5)^{\circ} \end{aligned}$	15.7349 (8), 12.201 0 (3), 16.944 3(7) \AA
		103.377(3)
Packing $V / \AA^{3}, Z$	$1309.9(3), 2$	$3164.7(2), 4$
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}, M, F(000)$	1.322, $1309.61,1380$	1.418, 675.61, 1400
μ / cm^{-1}	18.19	34.75
Experimental data		
Technique		
	Bisecting geometry	
	Graphite-oriented	nochromator: $\mathrm{Cu}-K_{\alpha}$
	$\omega / 2 \theta$ scans, scan width 1.6°	
Total measurements	Up to 60° in θ	Up to 65° in θ
Speed	$1 \mathrm{~min} / \mathrm{reflec}$.	$1 \mathrm{~min} / \mathrm{reflec}$.
Number of reflections		
Independent	9801	5387
Observed	6106 [3 $\sigma(I)$ criterion]	3722 [36(I) criterion]
Standard reflections		
	2 reflections every 90 min No variation	
Max-min transmission factors	$1.271-0.650$ (DIFABS ${ }^{8}$)	1.235-0.807 (DIFABS ${ }^{8}$)
Solution and refinement		
Solution	Direct methods	Direct methods
Refinement	LS on $F_{\text {obs }}, 7$ blocks	LS on $F_{\text {obs }}, 2$ blocks
Parameters	1074 (see text)	509
Number of variables	5032	3213
Degrees of freedom	5.7	7.3
Ratio of freedom	Difference synthesis	Difference synthesis
H Atoms	0.22	0.34
Final shift/error	Empirical as to give no trends in $\left\langle w \Delta^{2} F\right\rangle$ $U[\mathrm{C} 42] 0.255(9) \AA^{2}$	vs. $\langle \| F_{\text {obsl }}\| \rangle$ or $\langle\sin \theta / \lambda\rangle$
Weighting scheme		$U_{11}[\mathrm{C} 37] 0.155(6) \AA^{2}$
Max. thermal value	$0.74 \mathrm{e} \AA^{-3}$ near $\mathrm{O}(3)$	0.38 e \AA^{2}
Final ΔF peaks	0.060, 0.068	0.043, 0.051
Final R and R_{w}		
Computer and programs	VAX 11/750, XRAY76 System, ${ }^{9}$ Multan $80{ }^{10}$	
Scattering factors	Int. Tables for X-Ray Crystallography ${ }^{11}$	

(9c) and (11b) in the Solid State and their NMR Behaviour in Solution.-The structures of biguanides (9a) ${ }^{2}$ and (11b) (Figure 2) are almost identical: the torsion angles which characterize the central pseudo-five-membered ring [$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{N}(3)-\mathrm{C}(7)-$ $\mathrm{N}(5)$], the Het residues [$\mathrm{N}(1)-\mathrm{N}(8)$ and $\mathrm{N}(4)-\mathrm{N}(26)]$, and the aryl group on $\mathrm{N}(3)[\mathrm{N}(3)-\mathrm{C}(20)]$ are very close (less than 4° difference). Only the aryl group on $\mathrm{N}(2)$ has a different conformation, which changes from $\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(14)-\mathrm{C}(15)$ 129.9° in compound (9a) ${ }^{2}$ to 141.3° in compound (11b) (Table 1), but it is difficult to decide if this modification, concerning as it does a non-hindered aryl group, is of crystal-packing origin or if it is an effect of the nearby $\mathrm{N}(5)$-dimethylamino group.

Thus, if the differences in the NMR spectrum, which relate to ortho signals of $\mathrm{N}(3)-\mathrm{Ar}$ and the coupling between $\mathrm{C}(\mathrm{b})$ and $\mathrm{N}(5)-\mathrm{H}$, do not correspond to a conformational effect, the only other possible explanation is an electronic effect. The replacement of a methyl group on $\mathrm{N}(5)$ by a dimethylamino group increases the acidity of $\mathrm{N}(5)-\mathrm{H},{ }^{7}$ which in turn becomes more tightly bonded to $\mathrm{O}(1)$. The strengthening of the intramolecular hydrogen bond (IMHB) explains why the $\mathrm{N}(5)-\mathrm{H}$ does not exchange with the solvent and why coupling with $C(b)$ is observed in ${ }^{13} \mathrm{C}$ NMR spectrum. The Het residue on $\mathrm{N}(1)$ [to
which $O(1)$ belongs] is modified by the IMHB and it, in turn, probably modifies the neighbouring $\mathrm{N}(3)-\mathrm{Ar}$.

The molecular structures (two independent molecules in the unit cell) of compound (9c) (Figure 1) are very different from those of the biguanides (9a) and (11b): the IMHB N(5)$\mathrm{H} \cdots \mathrm{O}(1)=\mathrm{C}(13)$ is broken and this results in a dramatic modification of the structure.

The Het residue on $\mathrm{N}(1)$ changes its configuration about the $\mathrm{N}(1)-\mathrm{C}(6)$ double bond from Z in compound (11b) [$\mathrm{N}(8)-$ $\left.\mathrm{N}(1)-\mathrm{C}(6)-\mathrm{N}(2) 164.6^{\circ}\right]$ to E in compound (9c) [N(8)-N(1)-$\left.\mathrm{C}(6)-\mathrm{N}(2)-17.0^{\circ}, \Delta \varphi 181.6^{\circ}\right]$. The breaking of one of the IMHBs considerably modifies the signals belonging to the Het residue on $\mathrm{N}(1)$, whereas the other Het residue, that on $\mathrm{N}(4)$, still hydrogen-bonded to $\mathrm{N}(2)-\mathrm{H}$, is much less affected. In Figure 4 are gathered the more significant $\Delta \delta$-values in ppm [$\Delta \delta$ $\delta(9 \mathrm{c})-\delta(9 \mathrm{a})$; in parentheses, ${ }^{1} \mathrm{H}$ NMR; otherwise, ${ }^{13} \mathrm{C}$ NMR].

The carbons of the carbonyl groups C(5), of compound (9c) appear at $\delta_{\mathrm{C}} 151.4$ (IMHB) and $\delta_{\mathrm{C}} 147.0$, similar to those of diazetidines (Table 3) where no IMHB exists. The aryl group on $\mathrm{N}(2)$ presents signals slightly broadened due to a 'slow' rotation about the $\mathrm{N}(2)-\mathrm{C}(14)$ bond (Figure 1). The situation is very different from that found in 'normal' biguanides, such as

Table 6. Final atomic co-ordinates for compound (9 c).

Atom	x	y	z	Atom	x	y	z
S(1)A	$0.33075(6)$	$0.54602(11)$	$0.66313(11)$	$\mathrm{O}(1) \mathrm{B}$	0.834 32(18)	$0.78376(29)$	$0.70753(30)$
$\mathrm{S}(2) \mathrm{A}$	-0.022 44(7)	0.924 48(13)	0.835 20(13)	$\mathrm{O}(2) \mathrm{B}$	$0.63178(18)$	0.802 68(29)	0.578 66(36)
O(1)A	$0.33027(17)$	0.898 60(28)	0.859 65(33)	N(1)B	$0.82196(17)$	0.827 62(29)	0.489 22(33)
$\mathrm{O}(2) \mathrm{A}$	0.195 56(18)	0.952 68(28)	$1.04297(31)$	N(2)B	0.743 44(18)	0.724 26(28)	0.498 82(37)
N(1)A	0.270 94(17)	0.727 99(29)	$0.76885(31)$	N(3)B	0.714 53(17)	0.897 47(27)	$0.46040(32)$
N(2)A	$0.27652(19)$	$0.76573(30)$	0.969 20(31)	N(4)B	$0.59945(18)$	$0.93125(33)$	$0.40308(34)$
N(3)A	0.179 74(17)	0.78890 (28)	$0.84154(29)$	N(5)B	$0.66039(20)$	$0.83431(34)$	$0.28374(36)$
N(4)A	0.098 54(20)	$0.84134(33)$	$0.95451(35)$	C(6)B	$0.76488(22)$	$0.81043(33)$	$0.48417(38)$
N(5)A	$0.16116(22)$	0.678 08(32)	$0.96035(35)$	C(7)B	$0.65633(22)$	0.889 11(34)	0.385 22(40)
C(6)A	0.246 57(21)	$0.75835(33)$	0.859 56(37)	N(8)B	0.872 58(17)	0.754 08(28)	0.544 96(33)
C(7)A	0.144 44(23)	0.773 25(37)	0.919 94(40)	C(9)B	0.923 46(22)	$0.71159(36)$	$0.49183(42)$
N(8)A	$0.33711(17)$	0.727 08(30)	0.785 42(31)	N(10)B	0.975 37(19)	0.649 38(33)	$0.53770(37)$
C(9)A	0.373 47(22)	$0.64072(38)$	$0.73719(39)$	N(11)B	0.979 62(21)	0.623 86(35)	0.644 83(39)
N(10)A	$0.43578(20)$	$0.62886(36)$	$0.74454(38)$	C(12)B	0.933 49(25)	$0.66430(39)$	0.69970 (44)
N(11)A	0.466 27(21)	$0.70731(41)$	$0.80663(43)$	C(13)B	$0.87625(23)$	$0.73915(37)$	$0.65579(42)$
C(12)A	0.432 98(25)	0.792 98(45)	0.845 93(47)	C(14)B	0.778 65(22)	$0.62029(35)$	$0.50714(42)$
C(13)A	0.363 33(24)	$0.81507(41)$	$0.83232(42)$	C(15)B	$0.76966(28)$	0.566 20(42)	$0.59006(50)$
C(14)A	0.336 99(22)	$0.70747(37)$	1.015 99(38)	C(16)B	$0.80174(34)$	$0.46154(49)$	$0.59788(61)$
C(15)A	0.375 99(26)	$0.75682(41)$	1.104 28(43)	C(17)B	$0.84207(32)$	$0.41401(46)$	$0.52559(66)$
C(16)A	$0.43467(26)$	$0.70064(48)$	$1.15428(48)$	C(18)B	$0.85129(28)$	$0.46903(43)$	0.444 64(56)
C(17)A	0.455 30(26)	0.597 66(47)	$1.11645(47)$	C(19)B	0.818 80(25)	$0.57016(38)$	0.433 78(46)
C(18)A	$0.41620(26)$	$0.54895(39)$	1.028 66(44)	$\mathrm{C}(20) \mathrm{B}$	$0.72326(20)$	$1.00113(33)$	$0.51451(38)$
C(19)A	$0.35713(23)$	$0.60375(37)$	0.979 22(40)	C(21)B	$0.74007(23)$	$1.01525(38)$	$0.63011(42)$
C(20)A	$0.14576(21)$	0.838 32(34)	$0.74125(36)$	C(22)B	$0.74737(27)$	$1.11428(44)$	0.682 25(46)
C(21)A	$0.16712(24)$	$0.92138(39)$	$0.71294(44)$	C(23)B	$0.73812(31)$	$1.19633(42)$	0.617 60(57)
C(22)A	0.135 34(27)	$0.96871(45)$	$0.61652(53)$	C(24)B	0.722 21(31)	$1.18122(42)$	$0.50235(57)$
C(23)A	$0.08178(27)$	0.934 62(51)	$0.55144(50)$	C(25)B	0.714 46(24)	$1.08253(39)$	$0.44963(42)$
C(24)A	0.060 08(25)	$0.85412(46)$	$0.58085(44)$	N(26)B	$0.59665(18)$	$0.96573(32)$	$0.51767(34)$
C(25)A	$0.09276(23)$	$0.80337(37)$	$0.67646(41)$	C(27)B	0.567 29(22)	1.068 51(40)	$0.53874(43)$
N(26)A	$0.09589(19)$	$0.94555(31)$	$0.93418(33)$	N(28)B	0.556 44(22)	$1.10837(38)$	$0.63874(43)$
C(27)A	$0.03856(26)$	0.998 04(43)	0.879 26(45)	N(29)B	$0.57656(24)$	$1.04545(43)$	$0.72633(41)$
N(28)A	0.027 84(26)	$1.09631(42)$	$0.86180(42)$	$\mathrm{C}(30) \mathrm{B}$	$0.60204(27)$	0.947 61(50)	$0.70771(51)$
$\mathrm{N}(29) \mathrm{A}$	$0.07681(30)$	$1.15135(39)$	$0.90415(46)$	C(31)B	$0.61105(23)$	0.897 27(42)	$0.59790(47)$
C(30)A	$0.13093(32)$	$1.10645(44)$	$0.96453(50)$	C(32)B	$0.71476(28)$	0.829 20(46)	$0.22683(48)$
C(31)A	0.145 26(25)	$0.99711(39)$	0.986 32(42)	C(33) B	$0.72753(34)$	0.723 32(50)	$0.16137(53)$
C(32)A	$0.18117(26)$	$0.57988(40)$	0.893 66(47)	C(34)B	0.668 40(42)	$0.70294(52)$	0.075 67(55)
C(33)A	0.128 78(30)	0.515 64(46)	0.868 43(53)	C(35)B	$0.61305(36)$	0.711 16(49)	0.135 68(53)
C(34)A	$0.11029(38)$	0.497 03(52)	$0.97777(64)$	C(36)B	$0.60088(29)$	0.815 27(49)	$0.20679(52)$
C(35)A	$0.09241(33)$	$0.60083(53)$	$1.04602(55)$	C(37) B	0.938 44(34)	$0.63453(58)$	$0.81516(55)$
C(36)A	$0.14515(32)$	0.664 72(44)	$1.06783(46)$	C(38)B	0.984 47(29)	0.667 35(54)	$0.31204(57)$
C(37)A	$0.46780(32)$	0.877 06(58)	$0.91066(73)$	C(39)B	$0.62267(43)$	$0.88316(73)$	$0.80503(69)$
C(38)A	0.394 41(31)	$0.45200(50)$	0.612 64(57)	C(40)B	$0.52105(40)$	$1.27012(51)$	0.493 40(69)
$\mathrm{C}(39) \mathrm{A}$	$0.18283(37)$	$1.16851(53)$	$1.01599(66)$	C(41)	$0.61855(80)$	0.568 94(140)	$0.73034(144)$
C(40)A	$-0.08539(34)$	1.018 63(68)	$0.76270(62)$	C(42)	0.660 18(117)	0.474 68(210)	0.734 55(211)
S(1)B	0.913 03(6)	$0.74607(11)$	$0.35477(11)$	O(3)	$0.55678(78)$	$0.51275(132)$	0.647 16(143)
S(2)B	0.545 78(7)	$1.14286(11)$	0.424 24(13)	$\mathrm{O}(4)$	$0.60313(108)$	0.632 79(183)	0.822 15(204)

compound (9a), where the resolved signals are very narrow (very high rotational barriers). The piperidine ring shows anisochrony of pairs of signals belonging to α and β positions. Thus, the diastereotopy of the central pseudo-cycle remains with only one IMHB; this, and hindered rotation due to the proximity of $\mathrm{N}(2)-\mathrm{Ar}$, explains both the anisochrony and the broadening observed for the piperidine signals (mainly in the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum).

Experimental

M.p.s were determined with a Kofler hot-stage microscope and are uncorrected. Spectral studies were performed with the following instruments: IR, Nicolet FT-5DX; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, Bruker AC-200 (UNED), AC-250 (Montpellier), and Varian XL-300 (CSIC) (SiMe_{4} internal reference; all chemical shifts expressed as δ-values); mass (70 eV), Hewlett-Packard 5993C. Combustion analyses were performed with a Perkin-Elmer 240C instrument.

Crystal-structure Determination of Compounds (9c) and (11b).-The crystallographic analysis is summarized in Table 5. The oxygen atom of the ethanol molecule [compound (9c)] appears to be disordered, the population parameters being $0.62(2)$ and $0.38(2)$ for the $O(3)$ and $O(4)$ atoms, respectively. A model of disorder for the other atoms in the ethanol molecule could not be properly fitted. The hydrogen atoms of the molecule cannot be located. The final atomic co-ordinates are presented in Tables 6 and 7.*

Bidimensional NMR Experiments and Spectral Analyses.- ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (δ) are given with an accuracy of ± 0.01 and $\pm 0.1 \mathrm{ppm}$, respectively. Coupling constants (J) were measured with a digital resolution of 0.2 for ${ }^{1} \mathrm{H}$ NMR and 0.6

[^2]Table 7. Final atomic co-ordinates for compound (11b).

Atom	x	y	z
$\mathrm{Cl}(1)$	$0.71011(7)$	0.375 51(13)	0.017 46(9)
$\mathrm{Cl}(2)$	-0.084 54(6)	0.417 42(9)	0.109 15(6)
S(1)	$0.19616(6)$	0.314 37(8)	$-0.02811(5)$
S(2)	0.172 60(6)	0.540 51(8)	0.409 07(6)
O(1)	0.355 95(19)	$0.19206(21)$	0.242 25(16)
$\mathrm{O}(2)$	0.339 45(17)	0.663 89(20)	0.213 78(17)
N(1)	0.333 94(17)	$0.33057(22)$	$0.10934(16)$
N(2)	0.421 14(17)	$0.46901(22)$	0.174 48(17)
N(3)	0.299 87(16)	0.424 43(20)	0.223 37(15)
N(4)	$0.31741(17)$	0.536 39(23)	0.344 63(16)
N(5)	0.405 98(18)	$0.38912(23)$	0.338 36(17)
C(6)	$0.35102(19)$	$0.40309(25)$	$0.16765(19)$
C(7)	$0.34079(20)$	$0.45539(26)$	$0.30373(19)$
N(8)	0.274 24(16)	$0.24879(21)$	0.119 54(15)
C(9)	0.204 69(20)	$0.22801(25)$	0.055 28(18)
N(10)	0.147 85(19)	$0.15100(24)$	0.055 64(17)
N(11)	0.156 51(21)	0.087 38(25)	0.124 06(19)
C(12)	0.222 98(26)	$0.10027(29)$	0.184 86(22)
C(13)	0.290 79(24)	0.180 95(27)	$0.18713(20)$
C(14)	0.493 07(19)	$0.44590(26)$	$0.14022(18)$
C(15)	0.531 55(22)	$0.53052(29)$	$0.10684(22)$
C(16)	0.599 10(24)	$0.51047(34)$	0.070 52(24)
C(17)	0.628 73(21)	$0.40452(35)$	0.068 61(21)
C(18)	$0.59419(21)$	$0.31970(31)$	$0.10500(22)$
C(19)	0.526 66(21)	$0.34077(28)$	$0.14167(21)$
C(20)	$0.20630(19)$	0.422 50(24)	0.197 09(17)
C(21)	0.166 53(20)	$0.48096(25)$	$0.12845(18)$
C(22)	0.077 09(21)	$0.48007(28)$	0.102 54(19)
C(23)	0.028 19(20)	$0.41956(28)$	0.144 56(20)
C(24)	0.066 61(21)	$0.36030(29)$	$0.21301(20)$
C(25)	0.156 55(20)	$0.36196(26)$	0.239 42(19)
N(26)	0.254 32(17)	$0.60676(21)$	0.298 05(16)
C(27)	0.178 10(22)	$0.61791(27)$	0.324 03(21)
N(28)	0.114 48(21)	$0.68151(26)$	0.288 08(20)
N(29)	0.124 03(23)	$0.74113(26)$	$0.22176(20)$
C(30)	0.195 89(27)	0.737 17(29)	0.197 30(22)
C(31)	0.270 62(23)	0.66970 (26)	$0.23511(20)$
N(32)	0.459 55(20)	$0.41464(26)$	0.415 26(19)
C(33)	0.548 63(33)	$0.38410(56)$	0.415 99(43)
C(34)	$0.42713(45)$	$0.35710(47)$	$0.47847(31)$
C(35)	$0.23010(48)$	0.029 28(47)	$0.25765(29)$
C(36)	0.089 75(34)	0.274 49(42)	$-0.08527(30)$
C(37)	$0.20221(64)$	0.802 42(52)	$0.12476(39)$
C(38)	0.063 36(39)	0.572 42(61)	$0.41653(48)$

Hz for ${ }^{13} \mathrm{C}$ NMR spectra. The data-acquisition parameters for the heteronuclear (${ }^{1} \mathrm{H}^{13} \mathrm{C}$) 2D-correlation experiments performed on a Bruker AC-200 were: F_{1} domain (SI1 256W, SW1 1000 Hz , relaxation delay D1 2s); F_{2} domain (SI2 2K, SW2 10000 Hz), number of transients per FID, NS 128; number of preparatory dummy transients per FID, DS 2. For (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$) COSY and NOESY in the same instrument they were: F_{1} domain (SI1 1K, SW1 900 Hz , relaxation delay D1 1s);n F_{2} domain (SI2 2K, SW2 1800 Hz), number of transients per FID, NS 32; number of preparatory dummy transients per FID, DS 2. All parameters were processed with a sine-bell window.
Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of compound (9a) (two phenyl groups, one appearing as an $\mathrm{ABB}^{\prime} \mathrm{CC}^{\prime}$ system and the other as an ABCDE system) was carried out using the PANIC software from Bruker (RMS error < 0.07).
4-Amino-3-ethylthio-6-methyl-1,2,4-triazin-5(4H)-one (1') was prepared by the same method described ${ }^{12}$ for the preparation of compound (1), but using ethyl bromide as the alkylating agent, in 45% yield, as white prisms from ethanol, m.p. $118-121^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 38.8 ; \mathrm{H}, 5.3 ; \mathrm{N}, 30.2 . \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{OS}$ requires C, 38.70; N, 5.41; N, 30.08\%); $v_{\text {max }}$ (Nujol) 3 300s, 3200 s ,
$1670 \mathrm{vs}, 1635 \mathrm{~s}, 1540 \mathrm{~s}, 1485 \mathrm{vs}, 1430 \mathrm{~m}, 1345 \mathrm{~s}, 1315 \mathrm{~m}, 1280 \mathrm{~s}$, $1250 \mathrm{vs}, 1160 \mathrm{~s}, 1095 \mathrm{~s}, 1000 \mathrm{~m}, 970 \mathrm{~s}$, and $765 \mathrm{vs} \mathrm{cm}^{-1}$.

1,3-Diaryl-2,4-bis[(6-methyl-3-methylthio-5-oxo-4,5-dihydro-1,2,4-triazin-4-yl)imino]-1,3-diazetidines (3)-(8) were prepared by a previously reported method ${ }^{1}$ from 6-methyl-3-methylthio-4-triphenylphosphoranylideneamino-1,2,4-triazin-5(4H)-one (2) and the appropriate aryl isocyanate.

Compound (4) $\left(\mathrm{Ar}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 59 \%$ yield, as prisms from dichloromethane-diethyl ether, m.p. $175-177^{\circ} \mathrm{C}$ (Found: C, 49.6; $\mathrm{H}, 3.4 ; \mathrm{N}, 23.9 . \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, $49.48 ; \mathrm{H}$, $3.46 ; \mathrm{N}, 24.04 \%$); $\mathrm{v}_{\max }$ (Nujol) $1698 \mathrm{vs}, 1630 \mathrm{vs}, 1602 \mathrm{vs}, 1506 \mathrm{vs}$, $1331 \mathrm{~s}, 1308 \mathrm{~s}, 1228 \mathrm{vs}, 1155 \mathrm{~m}, 1109 \mathrm{~m}, 1064 \mathrm{~m}, 985 \mathrm{~m}, 837 \mathrm{~s}$, and $752 \mathrm{~m} \mathrm{~cm}^{-1} ; m / z(\%) 291$ (68), 230 (37), 149 (13), 137 (29), 136 (21), 135 (53), 121 (52), 115 (90), 95 (20), 83 (65), 69 (41), and 47 (100).

Compound $(8)\left(\mathrm{Ar}=3-\mathrm{MeC}_{6} \mathrm{H}_{4}\right), 75 \%$ yield, as prisms, m.p. $186-188{ }^{\circ} \mathrm{C}$ (Found: C, 54.2; H, 4.6; N, 24.3. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{C}, 54.34 ; \mathrm{H}, 4.56 ; \mathrm{N}, 24.37 \%$); $\mathrm{v}_{\max }$ (Nujol) 1698 vs , $1631 \mathrm{vs}, 1495 \mathrm{~s}, 1330 \mathrm{~s}, 1318 \mathrm{~s}, 1303 \mathrm{vs}, 1218 \mathrm{vs}, 1$ 168m, 1069 m , $788 \mathrm{~m}, 749 \mathrm{~m}, 714 \mathrm{~m}$, and $692 \mathrm{~m} \mathrm{~cm}^{-1} ; m / z(\%) 288$ (8), 286 (60), 233 (15), 222 (94), 177 (5), 156 (6), 145 (13), 133 (54), 132 (36), 131 (37), 117 (30), 116 (28), 115 (100), 105 (22), 104 (50), 91 (42), 78 (30), and 47 (67).
$\mathrm{N}^{1}, \mathrm{~N}^{3}$-Diaryl- $\mathrm{N}^{2}, \mathrm{~N}^{4}$-bis-(6-methyl-3-methylthio-5-oxo-4,5-dihydro-1,2,4-triazin-4-yl)- N^{5}-substituted biguanides (9)-(12) were prepared following the method ${ }^{2}$ described in the literature.

Compound (10a) ($\mathrm{Ar}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}$) 38% yield, as prisms from ethanol, m.p. $224-226^{\circ} \mathrm{C}$ (Found: C, 49.0 ; $\mathrm{H}, 4.1 ; \mathrm{N}, 25.0 . \mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{2} \mathrm{~N}_{11} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, 48.93; $\mathrm{H}, 4.11 ; \mathrm{N}$, 25.11%); $v_{\text {max }}$ (Nujol) $3380 \mathrm{~m}, 3250 \mathrm{~m}, 1663 \mathrm{vs}, 1618 \mathrm{~s}, 1582 \mathrm{vs}$, $1558 \mathrm{vs}, 1504 \mathrm{vs}, 1411 \mathrm{~s}, 1307 \mathrm{~s}, 1286 \mathrm{~s}, 1217 \mathrm{~s}, 1154 \mathrm{~m}, 1074 \mathrm{~m}$, $969 \mathrm{~m}, 840 \mathrm{~s}, 781 \mathrm{~m}$, and $754 \mathrm{~m} \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z}(\%) 355(5), 300(6), 230$ (17), 212 (29), 151 (71), 136 (92), 135 (34), 122 (27), 115 (31), 111 (56), 110 (68), 109 (45), 95 (55), 83 (77), 69 (83), and 47 (100).

Compound (10b) ($\mathrm{Ar}=4-\mathrm{FC}_{6} \mathrm{H}_{4}, \mathrm{R}=\mathrm{Me}_{2} \mathrm{~N}, \mathrm{R}^{\prime}=\mathrm{H}$) 54% yield, as prisms from dichloromethane-diethyl ether, m.p. 185$187^{\circ} \mathrm{C}$ (Found: C, 48.7; H, 4.4; N, 26.1. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires C, $48.59 ; \mathrm{H}, 4.39 ; \mathrm{N}, 26.15 \%$); $\mathrm{v}_{\max }(\mathrm{Nujol}) 3250 \mathrm{~m}$, $3225 \mathrm{~m}, 1661 \mathrm{vs}, 1614 \mathrm{~s}, 1585 \mathrm{vs}, 1550 \mathrm{vs}, 1509 \mathrm{vs}, 1304 \mathrm{~s}$, $1286 \mathrm{~s}, 1228 \mathrm{~s}, 1210 \mathrm{~s}, 1158 \mathrm{~m}, 1076 \mathrm{~m}, 968 \mathrm{~m}, 838 \mathrm{~m}$, and 757 m $\mathrm{cm}^{-1} ; m / z(\%) 353$ (5), 303 (5), 260 (10), 235 (6), 230 (8), 193 (15), 157 (18), 136 (19), 135 (16), 116 (22), 110 (35), 95 (30), 83 (30), and 69 (100).

Acknowledgements

This work was partially financed by CICYT, Spain (Project No. PB87-0094-C02).

References

1 P. Molina, M. Alajarín, J. R. Sáez, M. C. Foces-Foces, F. H. Cano, R. M. Claramunt, and J. Elguero, J. Chem. Soc., Perkin Trans. 1, 1986, 2037.
2 P. Molina, M. Alajarin, C. López-Leonardo, M. C. Foces-Foces, F. H. Cano, R. M. Claramunt, and J. Elguero, J. Org. Chem., 1989, 54, 1264.

3 W. D. S. Motherwell, PLUTO, A Program for Plotting Crystal and Molecular Structures, Cambridge University, England, 1978.
4 D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354.
5 J. B. Stothers, 'Carbon-13 NMR Spectroscopy,' Academic, New York, 1972, (a) p. 337; (b) p. 362.
6 J. K. M. Sanders and B. K. Hunter, 'Modern NMR Spectroscopy,' Oxford University Press, Oxford, 1988, p. 175.
7 W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, 'Ab Initio Molecular Orbital Theory,' Wiley, New York, 1986, p. 356.
8 N. Walker and D. Stuart, 'DIFABS,' Acta Crystallogr., Sect. A, 1983, 39, 158.

9 J. M. Stewart, P. A. Machin, C. W. Dickinson, H. L. Ammon, H. Heck, and H. Flack, 'The X-Ray System,' Technical Report TR446, Computer Science Center, University of Maryland, USA, 1976.

10 P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J. P. Declercq, and M. M. Woolfson, Multan 80 System, University of York, England, 1980.

11 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England, 1974, vol. IV.
12 A. Dornow, H. Menzel, and P. Marx, Chem. Ber., 1964, 97, 2173.
Paper 0/01098G
Received 12th March 1990
Accepted 29th May 1990

[^0]: \dagger Throughout this and the Experimental section, NMR spectroscopic data for (9)-(12) refer to the crystallographic numbering scheme and not the systematic scheme shown in Scheme 1.

[^1]: ${ }^{a}$ In $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone. ${ }^{b}$ These couplings constants involving Ar-Z and Ar-E are ${ }^{13} \mathrm{C}-{ }^{19} \mathrm{~F}$ couplings. ${ }^{c}$ In the ${ }^{13} \mathrm{C}$ NMR spectrum, the methoxy group appears at $\delta_{\mathrm{C}} 55.32\left({ }^{1} J 144.0\right)$ and $55.39\left({ }^{1} J 144.7\right) .{ }^{d} \mathrm{The}{ }^{1} \mathrm{H}$ chemical shifts and proton-proton coupling constants of compound (7) have been calculated using the PANIC program (RMS error 0.05 Hz); Ar-E: $J_{2.4} 2.44, J_{2.6} 2.06, J_{4.5} 8.40, J_{4.6} 0.87, J_{5.6} 8.15$; Ar- 2 ${ }_{g} \mathrm{In}^{13}{ }^{13} \mathrm{C}$ NMR spectrum, this methyl group appears at $\delta_{\mathrm{C}} 21.45 .{ }^{\mathrm{h}} \mathrm{In}{ }^{13} \mathrm{C}$ NMR spectrum, this methyl group appears at $\delta_{\mathrm{C}} 20.60$.

[^2]: * Supplementary data available (see section 5.6 .3 of Instructions for Authors, January issue): Lists of thermal components, hydrogen parameters, and bond distances and angles have been deposited at the Cambridge Crystallographic Data Centre.

