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Identifying Functional Groups in IR Spectra Using an Artificial Neural Network 
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Artificial neural networks are capable of learning and are potentially superior to other computer programs 
at pattern recognition. We have used a simple two-layer, feed-forward neural network to obtain 
structural information from IR  spectra of organic compounds. The network was taught to recognize 
the presence and absence of selected functional groups and bond types by simply presenting it with 
I R spectra of training compounds. The back-propagation algorithm was used to adjust the weights 
of the network. Spectra of compounds not belonging to the training set were used for testing. The 
trained network was able to recognize the presence and absence of the functional groups and bond 
types in the spectra of previously unseen compounds. Percent transmittance vs. wavenumber was 
the most successful input data representation. Using both bond type and functional group 
identification in the output layer significantly reduced the number of incorrect classifications. 

Inspired by the structure and function of biological neural 
networks, the study of artificial neural networks is an 
exponentially growing interdisciplinary field of science.' 
Although artificial neural networks have various architectures 
and modes of operation, they all contain parallel, distributed 
information processing structures whose elements are inter- 
connected by unidirectional signal channels called connections. 
Each element or neuron contained in a connection has a local 
memory and can carry out localized information processing 
operations. I d  

Computer simulated neural networks are known to be able 
to learn and then recognize patterns. A classical pattern 
recognition problem in chemistry is the correlation of spectra 
with structure, i.e., the identification of functional groups in a 
compound on the basis of spectral information. There has been 
a great deal of work done in this area in past  decade^.^-^ The 
most advanced systems combine the information available from 
various spectral methods and suggest a complete structural 
description of the unknown compound. The two common 
features of these expert systems are that they contain a spectral 
knowledge base and a built-in reasoning system. The first of 
these features is a list of spectral characteristics (band position, 
band width, slope, chemical shift, etc.) of substructures of 
interest. The second is an approximation of the human thought 
process when a structural analysis is undertaken by an 
expert. 

Without undertaking the ambitious project of building a full 
structural interpeter, this work addresses a subproblem - the 
recognition of the functional groups in IR spectra. We were 
interested in seeing if it would be possible to use an artificial 
neural network to interpret IR spectra in such a way that neither 
a database containing the position and characteristics of the key 
absorption bands nor a set of rules for inferring the structure 
from the spectrum would be needed. Rather, we anticipated that 
the network would be able to learn by example, i.e. by simply 
presenting it with spectra of known structures. Since neural 
networks are capable of generalization, it was hoped that the 
trained network would be able to interpret the spectrum of a 
previously unseen compound to the extent it was taught to 
do so. 

There have been some recent applications of neural networks 
in spectroscopy. Meyer and co-workers l o  used this method to 
identify carbohydrates on the basis of their 'H NMR spectra. 
After the work described in this paper was completed a very 
detailed study of functional group identification in IR 

spectroscopy by a neural network was published by Robb and 
Munk.' ' There are, however, some major differences between 
their work and our approach. While Robb and Munk used a 
large number of compounds and functional groups, they also 
used a different network architecture, a one-layer network. This 
architecture was criticized in the famous book of Minsky and 
Papert l 2  because it can only find a perfect set of weights if the 
classes of the classification problem (functional groups, in this 
case) are linearly separable (in this case, in the wavenumber 
space). The linear activation function used by Robb and Munk 
imposes further limitations, namely, the output (functional 
group assignment) is assumed to be a linear function of the 
input (spectra), which is clearly an oversimplication of the 
problem. 

The approach presented here utilizes a net architecture which 
was developed' to overcome the limitations of the one-layer 
neural networks. Indeed, our results indicate that a better 
discrimination in the classification decisions is possible when 
this more advanced network is used. 

Other neural network applications in chemistry include 
models for knowledge representation (mainly for fault 
diagnosis) in chemical engineering,' several works on protein 
secondary structure analysis and predi~ t ion , '~  a model for 
DNA promoter site rec~gnition, '~ and for prediction of 
electrophilic aromatic substitution reactions.' 

Experimental 
Network Descriprim-For this work we used a two-layer, 

feed-forward neural network. Fig. 1 is a schematic diagram that 
shows the architecture of such a neural network. The first layer, 
called the input layer, is where the information is presented to 
the network. This layer is used only to present the network with 
its input. The input layer does not perform any computation 
and it is not therefore included in the layer count. The last or 
third layer, called the output layer, is where the response of the 
network is registered. The layer between the input and output 
layers is called the hidden layer. Each neuron of the input layer 
is fully interconnected with each neuron of the hidden layer 
which in turn is fully interconnected with each neuron of the 
output layer. There are no connections between the neurons 
within a layer nor any direct connection between those of the 
input and output layers. The weights (constant multipliers), or 
connection strengths, associated with each connection are 
adjusted during learning. 
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Schematic diagram of a simple two-layer, feed-forward neural 

After an input is presented to the network (i.e. the input 
layer is activated), the activity propagates forward according 
to the eqn. (1). 

aj,& = F(Ctcjijai,k- + bj) 

In eqn. ( l ) ,  aj.& represents the activation of thejth neuron in 
kth layer (the current layer) except for the input layer; F is the 
transfer (activation) function; wij  is the weight of the connection 
from the ith neuron of the previous (k  - 1)th layer (whose 
activity is ai,&- to thejth neuron on the current layer. The bj 
term is the bias term associated with the jth neuron of the 
current layer. 

Learning in these networks consists of adjusting the 
connection strengths to minimize the difference between the 
response of the network to a particular input and the expected 
(correct) answer (supervised learning). 

This study employed a commercial neural network software, 
BRAINMAKER, version 1.7, from California Scientific Soft- 
ware.* We used BRAINMAKER to create a fully connected, 
two-layer, feed-forward network. The maximum number of 
neurons (input, hidden, and output) the BRAINMAKER can 
handle is 5 12. For our study, this value placed a practical upper 
limit of the number of input neurons of ca. 470. This restriction 
required that each spectrum be sampled rather than inputted 
as a nearly continous analogue-type format. 

Input and Output IVeuiwi;. The meaning of the input and 
output neurons will be described later in this paper in our 
discussion of the input coding of the spectra and the output 
coding for functional group identification. The number of input 
neurons was varied between 13 and 462, while that of the output 
neurons was either six (one for each functional group under 
study) or nine (one for each functional group plus the three 
bond types; see Table 1). 

Hidden-layer Neurons.-We used networks with 18 hidden- 
layer neurons. This value is two times our usual number of 
output neurons. No systematic study of the effect of the number 
of hidden-layer neurons on the network performance was 
carried out. 

Transfer Function.-The sigmoid function, F(net) = [ l  - 
exp( -net)]-', was used in our network. This function has the 

* California Scientific Software, 160 E. Montecito #E, Sierra Madre, 
CA 9 1024, USA. 
1- Sec, P.K.. ref. l(c),  ch. 3. 

limits of0 in - m and 1 in + a. The steepest slope is at net = 0, 
where the derivative is 0.25. 

Learning.-The standard back-propagation algorithm t was 
used to adjust the weights of the connections between the 
neurons. The back-propagation learning rate was set to 1 and 
the momentum coefficient was 0.9. A bias term was added 
to each hidden and output layer neuron automatically by 
BRAINMAKER. The training tolerance was set at 0.1. This 
means that, for termination of a training session, each output 
neuron for each of the training spectra had to have a value of 
>0.9 if the correct answer was 1.0 or a value of <0.1 if the 
correct answer was 0.0. (See Tables 1 and 2.) 

Compounds Studied.-Forty eight liquid compounds were 
selected for the study. Each compound contained only one of 
five functional groups: hydrocarbon, alcohol, carboxylic acid, 
ester and ketone. In addition, each functional group class, except 
for the carboxylic acids, contained at least four compounds with 
an unsubstituted phenyl group, which was defined as a functional 
group for this study. Further, we defined hydrocarbon to be the 
functional group of those compounds without an oxygen- 
containing functional group. Cyclohexane was, therefore, 
classified as a hydrocarbon. Isopropylbenzene was classified as a 
hydrocarbon with a phenyl functional group. Cyclohexanol was 
classified as an alcohol, not a hydrocarbon without a phenyl 
group. Benzyl alcohol was classified as an alcohol, not a 
hydrocarbon with a phenyl group. The names and structures of 
the compounds used in this study, with the classification and 
coding of their functional groups, are listed in Table 2. 

Spectra.-The IR spectrum of each compound was obtained 
as a thin film using a Perkin-Elmer 1600 series FTIR 
instrument. The compounds were not specially purified for this 
study and no special care was taken in obtaining the spectra. 
The spectra were captured in digital format and then converted 
to ASCII code using a BASIC program supplied to us by the 
Perkin-Elmer Corporation. The raw spectrum was truncated to 
1668 data points, each point being a pair of values (cm-', %T). 
The frequency range of the truncated data was from 4000-666 
cm-'. The actual data used to train or test a neural network 
were selected as a subset from these digitized truncated 
spectra. 

Representation of Spectral Data for the Network.-The 
digitized truncated spectra was used in one of the following 
four forms: absorbance ( A )  us. pm; A us. cm-'; percent 
transmittance (%r> us. pm; or %T us. cm-'. The network input 
was created by equidistant wavelength (or frequency) sampling 
of the whole truncated spectrum. The absorption units, such as 
%T, from the selected wavelength points of the spectra were 
normalized to values between 0 and 1 using eqn. (2). 

Normalized %T = (%Tat sample point - min. %T)/ 
(max. %T - min. %T) (2) 

The number of samples was determined solely by the number 
of neurons in the input layer. In each case the whole truncated 
spectrum was sampled. No interpolation was performed be- 
tween two neighbouring digital values. We took the first point 
beyond the required pm or cm-' value. Since the original digital 
spectra are densely sampled, this procedure was satisfactory for 
our purposes. 

For a given training-testing session, all 48 spectra were 
processed in an identical manner. Therefore, each input neuron 
represented absorption of energy at a specific wavelength 
regardless of which compound's spectrum was input into the 
network. 
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Table 2 Names and structures of compounds used in this study 

Functional group 
and bond type 
coding 

1 2 3 4 5 6 7 8 9  

Hydrocarbons 
Cyclohexane, C6H12 
Cyclopentane, C,H 
Ethylbenzene, C,H,CH,CH, 
Heptane, CH,(CH,),CH, 
Hexane, CH ,(CH,),CH , 
Isopropylbenzene, C,H,CH(CH,), 
Octane, CH3(CH ,)6CH3 
Alkane-mixture CH ,(CH,),CH, 
Polystyrene, -[CH,CH(C,H,)],-- 
Toluene, C,H,CH, 

Ketones 
Acetophenone, C,H ,COCH , 
Acetone, CH,COCH, 
Butan-2-one, CH,COCH,CH, 
1-Phenylbutan- 1-one, C,H,COCH,CH,CH, 
Cyclohexanone, C,H oO 
Cyclopentanone, C,H80 
Heptan-2-one, CH ,CO(CH,),CH , 
Octan-2-one7 CH,CO(CH,),CH, 
Phenylpropan-2-one, C,H,CH,COCH, 
1 -Phenylpropan- 1-one, C,H,COCH,CH, 

Carboxylic acids 
Ethanoic acid, CH,CO,H 
Heptanoic acid, CH,(CH2),C0,H 
Hexanoic acid, CH,(CH,),CO,H 
2-Methylpropanoic acid, (CH,),CHCO,H 
Octanoic acid, CH,(CH,),CO,H 
Oleic acid, CH,(CH,),CH=CH(CH,),CO,H 
Pentanoic acid, CH,(CH,),CO,H 
Propanoic acid, CH3CH,C0,H 

1 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0  
1 0 0 0 0 1 0 0 0  
1 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0  
1 0 0 0 0 1 0 0 0  
1 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0  
1 0 0 0 0 1 0 0 0  
1 0 0 0 0 1 0 0 0  

0 0 0 1 0 1 0 0 1  
0 0 0 1 0 0 0 0 1  
0 0 0 1 0 0 0 0 1  
0 0 0 1 0 1 0 0 1  
0 0 0 1  0 0 0 0 1  
0 0 0 1 0 0 0 0 1  
0 0 0 1 0 0 0 0 1  
0 0 0 1 0 0 0 0 1  
0 0 0  1 0 1  0 0  1 
0 0 0 1 0  1 0 0 1  

0 1 0 0 0 0 1  I 1  
0 1 0 0 0 0 1 1 1  
0 1 0 0 0 0 1 1 1  
0 1 0 0 0 0 1 1 1  
0 1 0 0 0 0 1 1 1  
0 1 0 0 0 0 1 1 1  
0 1 0 0 0 0 1  1 1  
0 1 0 0 0 0 1 1 1  

Esters 
Benzyl benzoate, C,H,CO,CH,C,H, . 0 0  1 0 0  1 0  1 1  
Butyl ethanoate, CH,CO,CH,CH,CH,CH, 0 0 1 0 0 0 0 1 1  
Ethyl ethanoate, CH,CO,CH,CH, 0 0 1 0 0 0 0 1 1  
Ethyl benzoate, C,H,CO,CH,CH, 0 0 1 0 0 1 0 1 1  
Ethyl propanoate, CH,CH,CO,CH,CH, 0 0 1 0 0 0 0 1 1  

Isopropyl ethanoate, CH,CO,CH(CH,), 0 0 1 0 0 0 0 1 1  
Methyl benzoate, C,H,CO,CH, 0 0 1 0 0 1 0 1 1  
2-Phenylethyl ethanoate, CH,CO,CH,CH,C,H, 0 0 1 0 0 1 0 1 1  
Propyl ethanoate, CH,CO,CH,CH,CH, 0 0 1 0 0 0 0 1 1  

3-Methylbutyl ethanoate, CH,CO,CH,CH,CH(CH,), 0 0 1 0 0 0 0 1 1 

Alcohols 
Benzyl alcohol, C,H,CH,OH 
But an- 1-01, CH ,CH ,CH ,CH ,OH 
Butan-2-01, CH ,CH ,CH(OH)CH , 
Cyclohexanol, C,H, iOH 
Hexan- 1-01, CH ,(CH 2)4CH2 OH 
3-Methylbutan-1-01, (CH,),CHCH,CH,OH 
Isobutyl alcohol, (CH,),CHCH,OH 
1-Phenylethanol, C,H,CH(OH)CH3 
2-Phenoxyethanol, C,H,OCH,CH,OH 
3-Phenylpropan-1-01, C,H,CH,CH,CH,OH 

0 0 0 0 1 ~ 1 1 0  
0 0 0 0 1 0 1  1 0  
0 0 0 0  1 0  1 1  0 
0 0 0 0  1 0  1 1  0 
0 0 0 0 1 0 1 1 0  
0 0 0 0 1 0 1 1 0  
0 0 0 0 1 0 1 1 0  
0 0 0 0 1 1 1 1 0  
0 0 0 0 1  1 1  1 0  
0 0 0 0 1 1 1 1 0  

A value of 1 means that the functional group or bond type is present; a value of0 means that it is absent. Coding for function groups and bond types: 
1, hydrocarbon; 2, carboxylic acid; 3, ester; 4, ketone; 5 ,  alcohol; 6, phenyl; 7,O-H bond; 8, C-0 bond; and 9, C=O bond. 

Coding for  the Functional Groups. The Output Neurons.-If a 
functional group was present in a compound, its code was 1 
and, if it was absent, its code was 0. Each compound was 
assigned a coded answer that reflected its structure. This coded 
answer was used for training and for evaluation of the results 
of the testing. The functional group codes were for hydro- 

carbon, carboxylic acid, ester, ketone, alcohol and phenyl. The 
bond-type codes were for the 0-H, C-0 and C=O bonds. 
These bond-type codes allowed all the functional groups, 
except phenyl, to be double coded, i.e., each functional group 
was independently represented by a unique output pattern in 
the first five as well as in the last three output neurons. Table 2 
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Table 3 Correct identification as a function of data presentation 

Percent transmittance Absorbance 

Pm cm-' Pm cm-' 

Number of % Numberof % Number of % Number of "/, 
points Correct pointsc Correct points Correct points Correct 

13 60 14 47 13 54 14 33 
26 84 27 49 26 53 27 31 
51 83 51 86 51 74 51 76 

126 83 129 89 126 69 129 74 
25 1 83 278 91 25 1 54 278 62 
462 96 417 87 462 67 417 60 

a The %correct is the average of nine separate training sessions starting with a different initial randomized network. The value was determined using a 
0.2 tolerance for each test compound. The complete spectrum was recorded from 2.5-15 pm: 13 points gave a separation of 1.0 pm between data 
samples; 26 points, 0.5 pm; 51 points, 0.25 pm; 126 points, 0.10 pm; 251 points, 0.05 pm; and 462 points, 0.025 pm. The complete spectrum was 
recorded from 4000-666 cm-I: 14 points gave a separation of 256 cm-' between data samples; 27 points, 128 cm-I; 51 points, 66 cm-'; 129 points, 26 
cm-I, 278 points, 12 cm--'; and 417 points, 8 cm-I. 

shows the functional group and bond-type codes used for each 
compound studied. 

A Typical Training and Testing Session.-A typical set of 
compounds used to train a network and their input order in the 
training set (chosen by a random selection) are listed in the 
Appendix. Scrambling the order of the compounds so that 
compounds with the same functional group were not presented 
sequentially to the network significantly reduced the number of 
passes needed to train a network. With this set of 39 training 
compounds, the network required 68 passes to be trained to a 
tolerance of 0.1. 

None of the nine compounds (isopropylbenzene, heptane, 
propanoic acid, ethyl benzoate, ethyl ethanoate, cyclohexan- 
one, phenylpropan-2-one, butan- 1-01, 1-phenylethanol) used to 
test the network belonged to the training set. The test results 
are given in Table 1. 

Results and Discussion 
Two different sessions of training and testing were carried out. 
The first was aimed at determining the best data representation 
for this classification problem. The second was aimed at 
determining the accuracy of a trained network. 

Effect of Representation of Spectral Information on Network 
Performance.-This portion of the study attempted to answer 
two interrelated questions: (a) how many data points are 
needed to train a network to correctly identify functional 
groups in related spectra; and (b)  what is the best format for 
the presentation of the spectral data to the network? 

The compounds used for these runs are the same as those 
used to describe a typical training-testing session (Table 1 and 
Appendix). In this portion of the study, the compounds were 
not changed from one training-testing session to another. In 
addition, the order in which the training spectra were entered 
into the networks was held constant. This procedure produced 
identically trained networks when all other variables were held 
constant and the network was initialized using the same seed 
for the random number generator. 

The parameters that were varied were: (a) the number of 
data entry points; (6) the use of wavelength or frequency units 
in the sampling procedure (pm or cm-'); and (c) the units of 
absorption (%T or A). Nine separate training-testing sessions 
were carried out with each set of variables using different 
randomized initial states and the results were averaged. This 
procedure minimized the effect of the initial random state of 

the network. The results in this portion of the study can be 
quantitatively compared. 

Each input neuron represents absorption of energy at a 
specific wavelength (or frequency). Therefore, the amount of 
spectral detail presented to the network is a function of the 
number of input neurons used. In addition, each input neuron 
can be used to sample the absorption of energy at a specific 
wavelength (pm) or wavenumber (cm-'). The difference between 
the two scales determines which portion of the spectrum is 
emphasized. When equidistant wavenumber values are used, 
the functional group region is emphasized; when equidistant 
micrometer values are used, the fingerprint region is empha- 
sized. The results of the variation of these parameters is given 
in Table 3. The use of wavenumber-spaced data gives a slightly 
higher percentage of correct functional group and bond type 
identifications than that of micrometer-spaced data but the 
difference is not great. Either type of input can be used if 
a sufficient number of data points are presented to the 
network. 

The importance of the number of data points can be seen 
in the spectra of benzyl alcohol given in Fig. 2. It is apparent 
that over 100 points (input neurons) are needed to adequately 
represent the details of the spectrum. However, merely 
increasing the number of input neurons is not necessarily 
beneficial. Oversized networks tend to be poor at generalization 
and for our network with 18 hidden neurons, every additional 
input neuron increases the size of the network by eighteen 
connections (weights). The effect of oversizing the network can 
be seen in Table 3, where, in some cases, the number of 
correct classifications passes through a maximum as the 
number of data points is increased. 

Absorption of energy can be expressed in units of absorbance 
(A) or percent transmittance (%T). The results of a study of 
these two variables are also summarized in Table 3. Percent 
transmittance data give better results than do absorbance data. 
It is not clear why this is the case. A possibility is that the 
use of absorbance units suppresses the medium and weak 
absorption bands that play an important role in the global 
recognition of functional groups by the network. 

The number of passes through the training data needed to 
train the network is also a function of the number of input 
values. In general, the greater the number of points, the fewer 
the number of passes required to train a network to a tolerance 
of 0.1 (Table 4). 

Accuracy of the Trained Neural Networks.-As before, in this 
portion of the study nine compounds from the set of 48 were 
selected for testing and the remaining 39 were used for training 
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Fig. 2 IR spectra of benzyl alcohol, C,H,CH,OH from 4000-666 
cm-'. Spectrum (a), 27 data points separated by 128 cm-'; spectrum (b), 
51 data points separated by 66 cm-'; spectrum (c), 129 data points 
separated by 26 cm-' and spectrum (d) ,  the first 240 data points of 
278 selected points separated by 12 cm-'. 

the network. The test compounds were selected randomly from 
a group of candidates which fulfilled the following two criteria: 
(a) only two compounds from each functional group class could 
be selected (except for carboxylic acids, where only one 
compound could be selected); and (b) one of the two selected 
compounds must have a phenyl group. Fifteen separate 
selections of 9 testing and 39 training compounds were made. 
Each selection was used to train three separate networks 
starting at different initial random settings (45 different 
training-testing sessions; 405 separate tests). 

The input data for each spectrum consisted of 250 points 
separated by 0.05 pm. The absorption units were normalized 
O//,T values. The network was trained to a tolerance of 0.1 and 

then the network was tested with the test compounds. A testing 
tolerance of 0.4 was used. To be classified as good, the output 
results from a test spectrum had to be within 0.4 of the correct 
values for all output neurons. If at least one output neuron 
had a value between 0.4 and 0.6 the result was classified as 
uncertain. A typical group of compounds selected for training 
and testing are listed in Table 1 and the Appendix. 

First the network was trained to recognize only the six 
functional groups: hydrocarbon, alcohol, carboxylic acid, 
ketone, ester and phenyl. With this level of training, 25 test 
spectra of 405 were classified as bad (6.2%) and 28 as uncertain 
(6.9%). This number gives a correct identification rate of 86.9%. 

Subsequently each compound was also coded with the three 
bond types. This double coding allowed all of the functional 
groups except phenyl to be identified by a set of rules. A BASIC 
program was written to evaluate the output results from each 
trained network. The rules used in the program are listed in the 
Appendix. 

With this rule-based evaluation of the neural network output, 
good, bad and uncertain classifications are defined as follows. 
The classification is good when the network selects both the 
correct functional group and bond types. The classification is 
bad when the network selects a functional group and bond type 
that are in agreement with each other, but are incorrect. The 
classification is uncertain when the selected functional group is 
not in agreement with the selected bond type. An example of an 
uncertain classification is the case in which the network selects 
an ester and an 0-H bond. The accuracy of the network with 
rule-based evaluation is: good, 90.3%; bad, 3% and uncertain, 
6.7%. 

With the rule-based evaluation procedure, we observed nine 
bad classifications out of 405 spectra tested. Six of these were 
due to two compounds, toluene and benzyl benzoate. Of 27 
uncertain classifications ten were also due to benzyl benzoate. 
When only six functional groups were used as output neurons, 
14 of the 53 bad or uncertain classifications were also due to 
benzyl benzoate. The trained networks tended to misclassify 
this ester as a ketone, a misclassification that implies the 
network could not recognize the C-0 bond of the ester. The 
position of the C-0 bond in the spectrum of benzyl benzoate is 
1274 cm-', the same location as for methyl and ethyl benzoate 
(1276 cm-'), but a considerably different location from those of 
the other esters (1 180 to 1240 cm-'). The carbonyl group in the 
spectrum of benzyl benzoate absorbs at 1720 cm-', considerably 
different than the carbonyl absorption of the other benzoates 
(1602 cm-') but similar to that of the other esters (1742 cm-'). 
Why the network has difficulty with benzyl benzoate is not 
entirely understood, but must in some way be related to the 
manner in which a network globally interprets the combination 
of the C-0 and C=O bands. 

Conclusions 
All training-testing sessions carried out in this study show that 
a neural network can be trained to recognize several different 
functional groups and bond types by simply being presented 
with spectra of the compounds. No specific identification of the 
bands in the spectrum need be given to the network. Once a 
network has been trained, it is able to recognize these functional 
groups and bond types in related spectra. Either micrometer or 
wavenumber data can be used to train neural networks for 
functional group identification, but percent transmittance data 
are superior to absorbance data. 

Comparison of our results with those of Robb and Munk ' ' 
indicate that a multilayer network with nonlinear activation 
function can achieve better classification than a simple one- 
layer, linear architecture (50% with a linear, one layer us. 90% 
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Table 4 Average number of passes needed to train a network to a 
tolerance of 0.1 as a function of the number of data entry points 

Micrometers Wavenumbers 

Passes 
Number required 
of 
points %T A 

13 360 1553 
26 122 33 1 
51 63 197 

126 52 46 
25 1 49 38 
462 70 30 

~~ 

Passes 
Number required" 
of 
points %T A 

14 1114 3773 
27 277 705 
5 1  81  173 

129 59 64 
278 78 50 
417 90 41 

"The  number of passes required are the average of nine separate 
training sessions with different initial randomized networks. 

with the nonlinear, multilayer). We also found that normal- 
ization of the absorption and equidistant wavelength (or 
frequency) sampling was all that was needed for the processing 
of a spectrum. There was no need to locate the major absorption 
bands. 

One crucial aspect of the performance of a neural network 
used to solve classification problems like this is the percentage 
of bad classifications. When the network produces an 
uncertain classification, the problem can still be shown to a 
human expert or presented again to the network in a modified 
form. There is no way, however, to detect a misclassification 
in a real-world situation. We attempted to address this 
problem and found that double coding of the molecular 
structure in the output layer followed by a rule-based 
evaluation procedure is superior to a simple functional group 
identification. 

Our results indicate that neural networks are potentially 
useful for building structure elucidation systems and further 
studies are underway to test the limits of this approach. 

Appendix 
The Compounds Used for Training a Network.- 

(1) Benzyl alcohol 
(2) Butan-2-one 
(3) Butyl ethanoate 
(4) Cyclopentane 
(5) 2-Methylpropanoic acid 
(6) Butan-2-01 
(7) l-Phenylbutan- 1 -one 
(8) Methyl benzoate 
(9) Cyclohexane 

(10) Hexan- 1-01 
(1 1) Acetophenone 
(12) Alkane mixture 
(13) Oleic acid 
(14) 3-Methylbutan-1-01 
(1 5) 2-Heptanone 
(16) Ethyl propanoate 
(17) Ethylbenzene 
(1 8) Cyclohexanol 
(19) Propyl ethanoate 
(20) Ethanoic acid 

(21) Cyclopentanone 
(22) Polystyrene 
(23) Octanoic acid 
(24) Isobutyl alcohol 
(25) Octan-2-one 
(26) 2-Phenylethanol 
(27) Octane 
(28) Pentanoic acid 
(29) 3-Phenylpropan-2-01 
(30) Acetone 
(31) 3-Methylbutyl ethanoate 
(32) Toluene 
(33) Hexanoic acid 
(34) 2-Phenoxyethanol 
(35) 1-Phenylpropan-l-one 
(36) Isopropyl ethanoate 
(37) l-Phenylethanol 
(38) Benzyl benzoate 
(39) Hexane 

Criteria for Classijication of Functional Groups Using Neural 
Network Output Results When Nine Output Neurons are 
Used.-Notation (see Tables 1 and 2). Result (R i )  is the output 
result from the neural network, 0 < Ri < 1. 

R l  = hydrocarbon 
R ,  = carboxylic acid 
R ,  = ester 
R,  = ketone 
R ,  = alcohol 

R, = phenyl 
R7 = O-H bond 
R, = C-0 bond 
R, = C=O bond 

Rules in order of execution. 
1 For all output results: 

If Ri 6 0.4 set Ri = 0 
If 0.4 < R j  < 0.6 set Ri = 0.5 
I f R i  2 0.6set Ri = 1.0 

2 If all Ri  for the set ( R l ,  R, ,  . . ., R , )  are equal to 0 then the 
compound is classified as uncertain. 

3 If two Ri from the set (Rl,  R,, . . ., R , )  are equal to 1.0, 
then the functional group classification of the compound is 
uncertain. 

4 If R ,  = 0.5, the functional group classification of the 
compound is uncertain. 

5 If the functional group result ( R l ,  R,,  . . ., R , )  and the 
bond-type result (R7 ,  R,, R,) both contain an 0.5 output, the 
functional group classification of the compound is uncertain. 

6 If there is not 0.5 output for the bond type (R7 ,  R,,  R,)  
and these three outputs do not code a valid functional group, 
then the functional group classification of the compound is 
uncertain. 

7 If there is no 0.5 output in the set ( R l ,  R,,  . . ., R,) then the 
functional group of the compound can be classified. (At this 
point the classification was judged to be good or bad by 
comparing it to the expected answer.) 

8 If there is 0.5 output among the first five functional group 
answers ( R l ,  R,,  . . ., R5)? then use the bond type information 
to decide if it is 0 or 1. Replace it and restart from Rule 2. 

9 If there is 0.5 output among the bond type answers (R7 ,  
R,, R,), then use the functional group information ( R l ,  R,,  . , ., 
R , )  to decide if it is 0 or 1. Replace it and restart from Rule 2. 
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