Complexation with Diol Host Compounds. Part 11.t Structures and Thermal Analyses of the Inclusion Compounds of 4,4'-Bis(diphenylhydroxymethyl)biphenyl, $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{O}_{2}$, with Acetone, Acetophenone, 1,4-Dioxane and p-Xylene

Louise Johnson, ${ }^{a}$ Luigi Nassimbeni, ${ }^{*, a}$ Edwin Weber ${ }^{b}$ and Konstantinos Skobridis ${ }^{b}$
${ }^{\text {a }}$ Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7700, South Africa
${ }^{6}$ Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, D-5300 Bonn-1, Germany

Abstract

Structures of the inclusion compounds of $4,4^{\prime}$-bis(diphenylhydroxymethyl)biphenyl with acetone (1), acetophenone (2), 1,4 -dioxane (3) and p-xylene (4) have been determined. Crystal data: 1 ; $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{O}_{2} \cdot 2 \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}, M_{\mathrm{r}}=634.81 \mathrm{~g} \mathrm{~mol}^{-1}$, orthorhombic, Pna $1_{1}, a=29.169(6), b=8.046(1), c=$ 15.235 (2) $\AA, V=3576$ (1) $\AA^{3}, Z=4, D_{\mathrm{m}}=1.17$ (3) $\mathrm{g} \mathrm{cm}^{-3}, D_{\mathrm{c}}=1.18 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71069 \AA$, $\mu=0.39 \mathrm{~cm}^{-1}, F(\mathrm{OOO})=1316.2 ; \mathrm{C}_{38} \mathrm{H}_{30} \mathrm{O}_{2} \cdot 2 \mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$, triclinic, $P \overline{1}, M_{\mathrm{r}}=758.95 \mathrm{~g} \mathrm{~mol}^{-1}, a=8.005(6)$, $b=11.464(3), c=12.338(3) \AA, \alpha=85.14(2), \beta=76.89(4), \gamma=73.71(4)^{\circ}, V=1058(1) \AA^{3}, Z=1$, $D_{\mathrm{m}}=1.17(2) \mathrm{g} \mathrm{cm}^{-3}, D_{\mathrm{c}}=1.19 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71069 \AA, \mu=0.40 \mathrm{~cm}^{-1}, F(000)=402.3$; $\mathrm{C}_{38} \mathrm{H}_{30} \mathrm{O}_{2} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}, M_{\mathrm{r}}=654.80 \mathrm{~g} \mathrm{~mol}{ }^{-1}$, monoclinic, $P 2_{1} / n, a=9.434(2), \quad b=14.152(5), c=$ 14.503(1), $\beta=105.36(1)^{\circ}, V=1866(1) \AA^{3}, Z=2, D_{\mathrm{m}}=1.20$ (2) $\mathrm{g} \mathrm{cm}^{-3}, D_{\mathrm{c}}=1.22 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda$ (Mo$\mathrm{K} \alpha)=0.71069 \AA, \mu=0.44 \mathrm{~cm}^{-1}, F(\mathrm{OOO})=836.4 ; \mathrm{C}_{33} \mathrm{H}_{30} \mathrm{O}_{2} \cdot 1.75 \mathrm{C}_{8} \mathrm{H}_{10}, M_{\mathrm{r}}=1408.89 \mathrm{~g} \mathrm{~mol}^{-1}$, monoclinic, $P 2_{1} / n, a=20.354(3), b=21.142(4), c=21.327(4) \AA, \beta=117.92(1)^{\circ}, V=8109(3) \AA^{3}$, $Z=8, D_{\mathrm{m}}=1.15(2) \mathrm{g} \mathrm{cm}^{-3}, D_{\mathrm{c}}=1.15 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71069 \AA, \mu=0.71 \mathrm{~cm}^{-1}, F(000)=$ 3004. Depending on the host-guest interaction, they are H -bonded coordinatoclathrates in the case of 1-3 and a true clathrate type of inclusion compound in the case of 4 with H -bonded tetramer clusters of host molecules forming the inclusion matrix. The thermal decompositions of the compounds have been studied. Compound 1 contains acetone molecules in two different binding states, one being more strongly bound than the other giving two individual endotherms. Phase transitions before the melting point occur in compounds $\mathbf{1 , 3}$ and $\mathbf{4}$. Compound $\mathbf{2}$ shows no melting point because of dissolution of the host compound in the released guest.

Most of the classical compounds which act as hosts in clathrate structures, were discovered by chance. ${ }^{1,2}$ In the last twenty years, effort has been put into the synthesis of host molecules with specific properties and Weber has recently reviewed the principles of directed host design. ${ }^{3.4}$ Host molecules of the 'wheel-and-axle' type were first synthesized by Toda, ${ }^{5}$ when he described the synthesis of 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6diol and its inclusion complexes with various n^{*} - and π^{*} donors. We have investigated the kinetics of the solid-solid reaction between this host compound and benzophenone, ${ }^{6}$ as well as the inclusion compounds it forms with various ketones, ${ }^{7}$ and 1,4 -dioxane. ${ }^{8}$ We have described the structures of the related host $1,1,2,2$-tetraphenylethane-1,2-diol ${ }^{9}$ and its molecular inclusion complexes with lutidine guests. ${ }^{10}$ We now present the results of the enclathration behaviour of the novel host compound 4,4'-bis(diphenylhydroxymethyl)biphenyl which is also based on the 'wheel-and-axle' design. The structures of the inclusion compounds formed with selected guests are described and their thermal stability is analysed.

Experimental

The host compound was synthesised as previously described. ${ }^{11}$ The inclusion compounds $1-4$ were obtained by dissolving the host compound in a minimum of the guest liquid. Single crystals suitable for X-ray diffraction were obtained by slow evaporation over a period which ranged from 1 to 10 days. Preliminary cell parameters and space group symmetry were determined photographically. X-Ray diffraction data were then measured

[^0]on a Nonius CAD4 diffractometer using graphite-monochromated radiation and the $\omega-2 \theta$ technique. In all cases the crystals selected were sealed in Lindemann capillary tubes together with mother liquor to prevent desorption of the guest during data collection, and three reference reflections were monitored periodically to check crystal stability. The data reduction included correction for Lorentz and polarisation but not for absorption. Experimental details are given in Table 1.

Structure Solution and Refinement.-All four structures were solved by direct methods using SHELXS-86 ${ }^{12}$ and refined by full-matrix least squares using SHELX-76. ${ }^{13}$ The structure of 1 showed the host molecule and the two guest molecules to be located in general positions, and it refined uneventfully. For 2 the host molecule was located on a centre of inversion at Wyckoff position f with the acetophenone molecules in general positions. A similar situation arose for 3 with the host molecule lying on a crystallographic centre at Wyckoff position c and the two guest dioxane molecules in general positions. Compound 4 has an unusual stoichiometry with a host: guest ratio of 1:1.75. With $Z=8$ in the space group $P 2_{1} / n$, this implies a cell content of 8 hosts and $14 p$-xylene guest molecules. Thus in the crystallographic asymmetric unit we placed two host molecules labelled \mathbf{A} and \mathbf{B} in general positions, three p-xylene molecules (labelled E,F and \mathbf{H}) in general positions, and half a p-xylene molecule labelled I on a centre of inversion at Wyck off position a. Refinement proceeded in a parallel manner for all five structures. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were subjected to constrained refinement ($d \mathrm{C}-\mathrm{H}=1.00 \AA$). The hydroxy hydrogen atoms were located in difference electron density maps and allowed to refine independently. They were, however, constrained to fixed dis-

Table 1 Crystal data for compounds 1-4

	1	2	3	4
Data collection ($21{ }^{\circ} \mathrm{C}$)				
Crystal dimensions (mm)	$0.31 \times 0.38 \times 0.41$	$0.31 \times 0.38 \times 0.47$	$0.38 \times 0.38 \times 0.44$	$0.38 \times 0.38 \times 0.44$
Range scanned $\theta\left({ }^{\circ}\right.$)	1-25	1-25	1-25	1-23
Range of indices h, k, l	$+9, \pm 18,+34$	$\pm 9, \pm 13,+14$	$\pm 11,+16,+17$	$+23, \pm 22$
Reflections for lattice parameters no., θ range (${ }^{\circ}$)	24, 16-17	24, 16-17	24, 16-17	24, 16-17
Instability of standard reflections ($\%$)	-6.9	4.0	35.3	-0.3
Scan mode	($\omega-2 \theta$)			
Scan width (${ }^{\circ}$)	$(0.80+0.35 \tan \theta)$	$(0.85+0.35 \tan \theta)$	$(0.85+0.35 \tan \theta)$	$(0.75+0.35 \tan \theta)$
Vertical aperture length (mm)	4.0	4.0	4	4
Aperture width (mm)	$(1.12+1.05 \tan \theta)$	$(1.12+1.05 \tan \theta)$	$(1.12+1.05 \tan \theta)$	$(1.12+1.05 \tan \theta)$
Number of reflections collected (unique)	2681	2992	2712	8592
$\begin{aligned} & \text { Number of reflections } \\ & \text { observed with } I_{\mathrm{rel}}>2 \sigma I_{\mathrm{rel}} \end{aligned}$	1954	2105	1989	5226
Final refinement				
Number of parameters	352	256	240	894
R	0.075	0.132	0.060	0.072
$w R$	0.080	0.137	0.065	0.077
${ }^{\prime}$	$\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.005 F_{\mathrm{o}}{ }^{2}\right]^{-1}$	$\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.001 F_{\mathrm{o}}{ }^{2}\right]^{-1}$	$\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.001 F_{\mathrm{o}}^{2}\right]^{-1}$	$\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.001 F_{\mathrm{o}}{ }^{2}\right]^{-1}$
S	1.60	13.98	1.72	2.80
Max. shift /esd	0.14	0.145	0.51	0.51
Max. height in difference electron density map (e \AA^{-3})	0.31	0.53	0.22	0.46
Min. height in difference electron density map (e \AA^{-3})	-0.25	-0.55	-0.31	-0.33

Fig. 1 Structural formula of host compound
tances from their parent oxygens, according to a function of O-H versus $\mathrm{O} \cdots \mathrm{O}$ distance. ${ }^{14}$ For 2 , however, the hydroxy hydrogen atoms could not be refined satisfactorily and were omitted from the final model.

Thermal Analysis.--Differential scanning calorimetry (DSC) and thermogravimetry (TG) were performed on a PerkinElmer, PC7 Series system. Crystals were removed from their mother liquor, blotted dry and crushed before analysis. Sample analysis was on ca. 4 mg in each case. The temperature ranges were typically from ambient to $200^{\circ} \mathrm{C}$. DSC and TG runs were carried out at a heating rate of $10^{\circ} \mathrm{C}$ min^{-1}. The purge gas was dry nitrogen flowing at $40 \mathrm{~cm}^{3}$ $\min ^{-1}$.

Results and Discussion

The atomic coordinates for compounds 1-4 are given in Tables 2-5. Complete lists of bond lengths, angles, anisotropic thermal parameters and coordinates of calculated hydrogen atom positions have been deposited. For details of the deposition

Fig. 2 Packing diagram for compound 1
scheme see 'Instruction for Authors', J. Chem. Soc., Perkin Trans. 2, 1992, issue 1. The structural formula of the host compound I with atomic nomenclature is shown in Fig. 1. The bond lengths and angles in the four host structures are in good agreement with those found in similar structures. ${ }^{15,16}$ The carbon atoms bonded to the hydroxy moieties are tetrahedral and the angles are in the range 104.5 to 110.6°.
The packing of 1 is shown in Fig. 2 which displays a projection of the structure along [010]. This shows that the biphenyl rings of the host are slightly twisted, with a torsion angle $\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(64)-\mathrm{C}(63)$ of 20°. Each hydroxy moiety of

Table 2 Fractional atomic coordinates $\left(\times 10^{4}\right)$ with esds in parentheses for 1

Atom	x / a	y / b	z / c
$\mathrm{O}(1)$	1854(2)	7011(7)	2652(0)
C(1)	1599(3)	5890(9)	3171(6)
O(2)	615(2)	-4472(7)	-818(6)
C(2)	870(3)	-3213(10)	-1276(6)
C(12)	1229(2)	8570(6)	3649(6)
C(13)	856(2)	9509(6)	3940(6)
C(14)	433(2)	8747(6)	4080(6)
C(15)	381(2)	7047(6)	3930(6)
C(16)	754(2)	6108(6)	3639(6)
C(11)	1178(2)	6870(6)	3499(6)
C(22)	2362(2)	5528(8)	3965(5)
C(23)	2623(2)	5022(8)	4684(5)
C(24)	2410(2)	4321(8)	5414(5)
C(25)	1934(2)	4125(8)	5426(5)
C(26)	1673(2)	4631(8)	4708(5)
C(21)	1887(2)	5333(8)	3977(5)
C(32)	1717(2)	-3062(6)	-1679(6)
C(33)	2120(2)	-3809(6)	-1976(6)
C(34)	2129(2)	-5511(6)	-2149(6)
C(35)	1735(2)	-6467(6)	-2024(6)
C(36)	1332(2)	-5720(6)	-1727(6)
C(31)	1323(2)	-4018(6)	-1555(6)
C(42)	800(2)	-2628(9)	-2928(5)
C(43)	539(2)	-2148(9)	-3652(5)
C(44)	81(2)	-1694(9)	-3541(5)
C(45)	-116(2)	-1722(9)	-2706(5)
C(46)	146(2)	-2202(9)	-1982(5)
C(41)	604(2)	-2655(9)	-2093(5)
C(51)	967(3)	-1808(9)	-615(6)
C(52)	898(3)	-129(9)	-802(6)
C(53)	996(3)	1082(10)	-161(6)
C(54)	1161(3)	675(9)	652(6)
C(55)	1232(3)	-1022(9)	807(6)
C(56)	1148(3)	-2210(10)	179(7)
C(61)	1461(3)	4408(9)	2588(6)
C(62)	1638(3)	2843(9)	2658(7)
C(63)	1541(3)	1655(10)	2032(6)
C(64)	1266(2)	1944(8)	1317(6)
C(65)	1073(3)	3545(9)	1261(6)
C(66)	1171(3)	4716(9)	1874(7)
O(1GA)	2395(3)	521(9)	6743(6)
C(1GA)	2348(4)	-152(13)	6052(7)
C(2GA)	1873(6)	-818(22)	5777(13)
C(3GA)	2754(6)	-310(20)	5422(12)
$\mathrm{O}(1 \mathrm{~GB})$	197(4)	3089(13)	5112(8)
C(1GB)	293(4)	3019(13)	5899(8)
C(2GB)	766(6)	2463(19)	6164(11)
C(3GB)	-22(7)	3353(24)	6609(14)

Fig. 3 Packing diagram for compound 2
the host is hydrogen bonded to an acetone molecule with $\mathrm{O}(1) \cdots \mathrm{O}(1 \mathrm{GA})=2.873(3) \AA$ and $\mathrm{O}(2) \cdots \mathrm{O}(1 \mathrm{~GB})=3.002(3)$

Table 3 Fractional atomic coordinates $\left(\times 10^{4}\right)$ with esds in parentheses for 2

Atom	x / a	y / b	z / c
O(1)	$1101(7)$	$6338(5)$	$5893(4)$
$\mathrm{C}(1)$	$-296(9)$	$6980(6)$	$6773(6)$
$\mathrm{C}(11)$	$-1099(9)$	$5993(7)$	$7429(6)$
$\mathrm{C}(12)$	$-1672(12)$	$5999(8)$	$8538(8)$
$\mathrm{C}(13)$	$-2495(15)$	$5126(10)$	$9117(9)$
$\mathrm{C}(14)$	$-2760(15)$	$4279(10)$	$8545(10)$
$\mathrm{C}(15)$	$-2199(14)$	$4236(9)$	$7414(11)$
$\mathrm{C}(16)$	$-1349(11)$	$5114(7)$	$6838(8)$
$\mathrm{C}(21)$	$518(10)$	$7559(7)$	$7503(7)$
$\mathrm{C}(22)$	$-122(12)$	$8786(8)$	$7790(8)$
$\mathrm{C}(23)$	$691(15)$	$9266(11)$	$8454(9)$
$\mathrm{C}(24)$	$2145(17)$	$8551(14)$	$8856(10)$
$\mathrm{C}(25)$	$2781(14)$	$7350(13)$	$8571(10)$
$\mathrm{C}(26)$	$2019(12)$	$6870(9)$	$7924(8)$
$\mathrm{C}(51)$	$-1673(9)$	$7899(6)$	$6258(7)$
$\mathrm{C}(52)$	$-3493(11)$	$8201(8)$	$6747(7)$
$\mathrm{C}(53)$	$-4739(10)$	$9007(8)$	$6286(7)$
$\mathrm{C}(54)$	$-4349(9)$	$9578(6)$	$5246(6)$
$\mathrm{C}(55)$	$-2503(11)$	$9295(9)$	$4790(9)$
$\mathrm{C}(56)$	$-1259(11)$	$8480(9)$	$5238(8)$
$\mathrm{O}(1 \mathrm{G})$	$3230(8)$	$7583(6)$	$4429(6)$
$\mathrm{C}(1 \mathrm{G})$	$4857(12)$	$7194(7)$	$4072(8)$
$\mathrm{C}(2 \mathrm{G})$	$6028(13)$	$6362(8)$	$4701(9)$
$\mathrm{C}(12 \mathrm{G})$	$4391(7)$	$8401(6)$	$2323(6)$
$\mathrm{C}(13 \mathrm{G})$	$5026(7)$	$8787(6)$	$1244(6)$
$\mathrm{C}(14 \mathrm{G})$	$6829(7)$	$8369(6)$	$748(6)$
$\mathrm{C}(15 \mathrm{G})$	$7993(7)$	$7564(6)$	$1330(6)$
$\mathrm{C}(16 \mathrm{G})$	$7358(7)$	$7177(6)$	$2409(6)$
$\mathrm{C}(11 \mathrm{G})$	$5556(7)$	$7596(6)$	$2904(6)$

Table 4 Fractional atomic coordinates $\left(\times 10^{4}\right)$ with esds in parentheses for 3

Atom	x / a	y / b	z / c
$\mathrm{O}(1)$	$785(2)$	$8540(1)$	$6005(2)$
$\mathrm{H}(1)$	$509(42)$	$8867(23)$	$6514(20)$
$\mathrm{C}(1)$	$-397(3)$	$7936(2)$	$5516(2)$
$\mathrm{C}(11)$	$-30(3)$	$7659(2)$	$4584(2)$
$\mathrm{C}(12)$	$-1118(4)$	$7519(3)$	$3736(3)$
$\mathrm{C}(13)$	$-743(6)$	$7235(3)$	$2910(3)$
$\mathrm{C}(14)$	$708(7)$	$7103(3)$	$2937(4)$
$\mathrm{C}(15)$	$1787(5)$	$7237(3)$	$3770(4)$
$\mathrm{C}(16)$	$1421(4)$	$7506(2)$	$4595(3)$
$\mathrm{C}(21)$	$-424(3)$	$7052(2)$	$6128(2)$
$\mathrm{C}(22)$	$-632(3)$	$6154(2)$	$5752(2)$
$\mathrm{C}(23)$	$-581(4)$	$5374(2)$	$6337(3)$
$\mathrm{C}(24)$	$-324(4)$	$5482(3)$	$7303(3)$
$\mathrm{C}(25)$	$-135(4)$	$6373(3)$	$7694(3)$
$\mathrm{C}(26)$	$-183(4)$	$7155(2)$	$7120(2)$
$\mathrm{C}(61)$	$-1834(3)$	$8502(2)$	$5334(2)$
$\mathrm{C}(62)$	$-3091(3)$	$8189(2)$	$5538(2)$
$\mathrm{C}(63)$	$-4329(3)$	$8770(2)$	$5406(2)$
$\mathrm{C}(64)$	$-4346(3)$	$9693(2)$	$5065(2)$
$\mathrm{C}(65)$	$-3087(3)$	$9979(2)$	$4819(3)$
$\mathrm{C}(66)$	$-1868(3)$	$9402(2)$	$4944(3)$
$\mathrm{O}(1 G)$	$318(3)$	$9559(2)$	$7548(2)$
$\mathrm{O}(2 \mathrm{G})$	$486(3)$	$11011(2)$	$8881(2)$
$\mathrm{C}(1 \mathrm{G})$	$-878(5)$	$10158(4)$	$7536(4)$
$\mathrm{C}(2 \mathrm{G})$	$-819(6)$	$10569(4)$	$8441(5)$
$\mathrm{C}(3 G)$	$1672(5)$	$10434(4)$	$8873(4)$
$\mathrm{C}(4 \mathrm{G})$	$1648(5)$	$10043(4)$	$7962(5)$

\AA. Thus there are two different guest molecules in the crystal, one acetone molecule being more strongly bound than the other. Compound 2 has a similar packing pattern as shown in Fig. 3, which is a projection viewed along [100]. Because the host lies on a centre of inversion, the biphenyl rings are coplanar, and each hydroxy moiety is again hydrogen bonded

Table 5 Fractional atomic coordinates $\left(\times 10^{4}\right)$ with esds in parentheses for 4

Atom	x / a	y / b	z / c
$\mathrm{O}(1 \mathrm{~A})$	531(2)	6 397(2)	2037(2)
H(1A)	807(4)	$6095(3)$	2 398(3)
$\mathrm{O}(2 \mathrm{~A})$	4 215(2)	9 328(2)	$6792(2)$
H(2A)	4 620(3)	$9072(3)$	$6842(4)$
$\mathrm{C}(1 \mathrm{~A})$	1016 (3)	$6826(2)$	$1932(3)$
C(2A)	$3775(3)$	9730 (2)	6 185(3)
C(12A)	641(2)	$7892(2)$	1 289(2)
C(13A)	174(2)	8 260(2)	707(2)
C(14A)	-445(2)	7 986(2)	143(2)
C(15A)	-595(2)	$7345(2)$	161(2)
C(16A)	-128(2)	6 977(2)	743(2)
C(11A)	491(2)	7 250(2)	$1307(2)$
C(22A)	$1926(2)$	5 937(2)	$2178(2)$
C(23A)	2 432(2)	5 594(2)	2042(2)
C(24A)	2 565(2)	5 768(2)	$1480(2)$
C(25A)	2191 (2)	6 283(2)	$1053(2)$
C(26A)	1 685(2)	$6625(2)$	$1189(2)$
C(21A)	$1553(2)$	6452(2)	$1751(2)$
C(32A)	3 571(2)	$10376(2)$	7 063(2)
C(33A)	$3125(2)$	$10733(2)$	7 267(2)
C(34A)	2369 (2)	$10804(2)$	$6804(2)$
C(35A)	2 057(2)	10 518(2)	$6138(2)$
C(36A)	2500 (2)	$10161(2)$	$5933(2)$
C(31A)	3 258(2)	10089(2)	6 396(2)
C(42A)	4 929(2)	$9935(1)$	6065(2)
C(43A)	5 378(2)	$10324(1)$	$5898(2)$
C(44A)	5 186(2)	10956(1)	$5721(2)$
C(45A)	4 544(2)	11200 (1)	$5711(2)$
C(46A)	$4093(2)$	10811(1)	$5877(2)$
C(41A)	4 287(2)	$10178(1)$	6 054(2)
C(51A)	$1451(3)$	7 228(2)	2 599(3)
C(52A)	$1169(3)$	7 339(2)	$3072(3)$
C(53A)	$1538(3)$	$7731(2)$	3 650(3)
C(54A)	2 193(3)	8 032(2)	$3782(3)$
C(55A)	2 483(3)	7 904(3)	3 322(3)
C(56A)	2 122(3)	7 508(2)	2744 (3)
C(61A)	3 343(3)	9 296(2)	5 536(3)
C(62A)	3 270(3)	$9436(2)$	4 881(3)
C(63A)	2890 (3)	$9027(3)$	4312 (3)
C(64A)	2 570(3)	$8475(2)$	$4386(3)$
C(65A)	2 628(3)	8348 (3)	$5051(3)$
C(66A)	$3008(3)$	$8751(2)$	5 619(3)
O(1B)	-366(2)	$6517(2)$	$2965(2)$
H(1B)	-662(4)	6 251(3)	2 563(3)
$\mathrm{O}(2 \mathrm{~B})$	-4160(2)	9 334(2)	-1763(2)
H(2B)	-4545(3)	9 107(3)	-1717(4)
C(1B)	-825(3)	$6959(2)$	3 105(3)
$\mathrm{C}(2 \mathrm{~B})$	-3765(3)	9780 (2)	-1192(3)
C(12B)	-1515(2)	$6735(2)$	$3827(2)$
C(13B)	-2040(2)	6 391(2)	$3935(2)$
C(14B)	-2 428(2)	$5898(2)$	3 477(2)
C(15B)	-2 292(2)	$5747(2)$	$2911(2)$
C(16B)	-1768(2)	6090 (2)	2 803(2)
C(11B)	-1 379(2)	6 583(2)	3 261(2)
C(22B)	-291(2)	7 999(2)	3759 (2)
$\mathrm{C}(23 \mathrm{~B})$	215(2)	$8329(2)$	$4357(2)$
C(24B)	741(2)	$8000(2)$	4946 (2)
C (25B)	760 (2)	$7341(2)$	4 936(2)
$\mathrm{C}(26 \mathrm{~B})$	254(2)	$7009(2)$	$4338(2)$
C(21B)	-271(2)	$7339(2)$	3 749(2)
C(32B)	-4177(2)	$10818(2)$	-879(2)
C(33B)	-4667(2)	$11167(2)$	-729(2)
C(34B)	-5 303(2)	$10882(2)$	-768(2)
C(35B)	-5449(2)	10247 (2)	-957(2)
C(36B)	-4958(2)	9896(2)	-1107(2)
C(31B)	-4323(2)	$10182(2)$	-1068(2)
C(42B)	-2554(2)	10280 (2)	-1037(2)
C(43B)	-2 167(2)	10 649(2)	-1 296(2)
C(44B)	-2 543(2)	$10925(2)$	-1967(2)
C(45B)	-3 306(2)	$10831(2)$	-2 378(2)
C(46B)	-3693(2)	10461 (2)	-2119(2)
C(41B)	-3 318(2)	$10186(2)$	-1449(2)
C(51B)	-1252(3)	$7384(2)$	2 454(3)
$\mathrm{C}(52 \mathrm{~B})$	-969(3)	$7501(3)$	$1981(3)$

Table 5 (continued)

Atom	x / a	y / b	z / c
C(53B)	$-1339(3)$	$7898(2)$	$1408(3)$
C(54B)	$-1989(3)$	$8211(2)$	$1292(3)$
C(55B)	$-2255(3)$	$8090(3)$	$1775(3)$
C(56B)	$-1897(3)$	$7688(3)$	$2336(3)$
C(61B)	$-3271(3)$	$9399(2)$	$-524(3)$
C(62B)	$-3185(3)$	$9550(3)$	$144(3)$
C(63B)	$-2755(3)$	$9175(3)$	$727(3)$
C(64B)	$-2392(3)$	$8638(2)$	$679(3)$
C(65B)	$-2457(3)$	$8501(2)$	$16(3)$
C(66B)	$-2881(3)$	$8872(2)$	$-569(3)$
C(1EG)	$4683(5)$	$4436(4)$	$2074(5)$
C(2EG)	$4197(4)$	$4703(4)$	$1445(5)$
C(3EG)	$4440(5)$	$5058(4)$	$1062(5)$
C(4EG)	$5167(5)$	$5170(3)$	$1257(5)$
C(5EG)	$5665(4)$	$4894(3)$	$1883(5)$
C(6EG)	$5427(5)$	$4535(4)$	$2291(4)$
C(1ME)	$4412(5)$	$4048(4)$	$2511(5)$
C(2Me)	$5447(6)$	$5590(4)$	$840(6)$
C(1FG)	$6773(5)$	$2806(3)$	$-163(5)$
C(2FG)	$7402(5)$	$2909(3)$	$490(4)$
C(3FG)	$8054(4)$	$2618(4)$	$662(4)$
C(4FG)	$8126(4)$	$2197(3)$	$201(5)$
C(5FG)	$7500(5)$	$2103(4)$	$-456(5)$
C(6FG)	$6836(5)$	$2399(4)$	$-621(4)$
C(1MF)	$6043(5)$	$3124(4)$	$-362(6)$
C(2MF)	$8853(5)$	$1870(5)$	$395(6)$
C(1HG)	$5636(4)$	$7282(4)$	$2301(4)$
C(2HG)	$5335(4)$	$7812(4)$	$2412(4)$
C(3HG)	$4770(5)$	$7755(5)$	$2590(4)$
C(4HG)	$4512(5)$	$7194(5)$	$2653(5)$
C(5HG)	$4810(5)$	$6618(5)$	$2548(4)$
C(6HG)	$5399(4)$	$6689(4)$	$2374(4)$
C(1MH)	$6314(6)$	$7334(5)$	$2118(6)$
C(2MH)	$3869(7)$	$7110(6)$	$2864(7)$
C(1IG)	$5437(5)$	$4960(4)$	$4619(5)$
C(2IG)	$5245(6)$	$4700(4)$	$5662(5)$
C(6IG)	$4379(5)$	$5316(4)$	$4746(5)$
C(1MI)	$4158(7)$	$5055(6)$	$5824(7)$

Fig. 4 Packing diagram for compound 3
to the carbonyl oxygen atom of acetophenone, with the $\mathrm{O} \cdots \mathrm{O}$ distance at $2.872(1) \AA$.

The host conformation in 3 is similar to that found in 2 , because the host molecule again lies on a centre of symmetry. The hydrogen bonding pattern is characterised by host-hydroxy to dioxane-oxygen atom hydrogen bonds with $\mathrm{O} \cdots \mathrm{O}$ distances of $2.780(4) \AA$. This is shown in Fig. 4, which is a projection viewed along [010]. Only one dioxane oxygen atom is hydrogen bonded, so there are no ribbons of hydrogen bonded chains running through the structure. We have mapped the topology of this structure by using the program OPEC, ${ }^{17}$ and found the dioxane to lie in discrete pockets as shown in Fig. 5. This classifies this inclusion compound as a cage-type. ${ }^{18}$

The structure of 4 is complicated and is shown in projection in Fig. 6 viewed along [010] with the guest molecules omitted for clarity. With xylene as guest molecules, there is no host-guest hydrogen bonding, but the host molecules are hydrogen bonded into tetramers with $\mathrm{O} \ldots \mathrm{O}$ distances varying from $2.799(6) \AA$ to $2.913(6) \AA$. The conformation of the hydroxy moieties in this host compound

Fig. 5 OPEC mapping of compound 3

varies, and is dependent on the hydrogen bonding pattern. The torsion angle $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ in the four inclusion compounds has the value $179^{\circ}, 180^{\circ}, 180^{\circ}$ and for $4 ; 60^{\circ}(\mathrm{A})$ and $56^{\circ}(\mathrm{B})$. This variability is an expression of the torsional flexibility of this and similar host compounds ${ }^{19}$ which twist their 'backbone' to accommodate different guest molecules. Induced-fit processes such as modelled here are very important for enzyme recognition.

Table 6 Percentage weight loss obtained from thermal gravimetric results

	Compound	Calculated
Experimental		
$\mathbf{1}$	18.3	18.0
$\mathbf{2}$	31.7	32.8
$\mathbf{3}$	25.4	24.9
$\mathbf{4}$	26.4	26.2

Fig. 6 Packing diagram for compound 4 (guest molecules omitted for clarity)

Fig. 7 DSC and TG traces for compounds 1-4

Thermal Analysis.-Fig. 7 shows the DSC and TG traces for 1-4 and the results of the thermal analysis are summarised in Table 6. There is good agreement between the calculated and observed weight losses of the TG for all four compounds, thus confirming their host: guest ratios.

The DSC traces of $\mathbf{1 , 3}$ and $\mathbf{4}$ have similar features. For $\mathbf{1}$ we observe two endotherms A ($T_{\text {on }}=74^{\circ} \mathrm{C}$) and B($T_{\text {on }}=94^{\circ} \mathrm{C}$) which correspond to the desorption of acetone. This is followed by endotherms C ($T_{\text {on }}=164^{\circ} \mathrm{C}$) and $\mathrm{D}\left(T_{\text {on }}=178^{\circ} \mathrm{C}\right.$). The latter two endotherms occur consistently in all three compounds and correspond to a structural phase change occurring between $175^{\circ} \mathrm{C}$ and $182^{\circ} \mathrm{C}$ (endotherm C), and the melting point of the host compound (endotherm D). We have observed a similar phenomenon with the decomposition of the inclusion compound formed between 1,1,2,2-tetraphenylethane and 3,5lutidine. ${ }^{10}$ In 3, the single endotherm A corresponds to the desorption of dioxane, while in 4 the xylene desorption is shown by a first sharp endotherm $\mathrm{A}\left(T_{\mathrm{on}}=75^{\circ} \mathrm{C}\right.$) followed by a second broad endotherm B which peaks at $143^{\circ} \mathrm{C}$, and corresponds to a further weight loss of 3.8%.

The DSC traces of 2 show only a single endotherm ($T_{\text {on }}=$ $69.3{ }^{\circ} \mathrm{C}$) which corresponds to the release of the guest with concomitant dissolution of the host compound. We have reported a similar result with the decomposition of $1,1,6,6-$ tetraphenylhexa-2,4-diyne-1,6-diol-2 dioxane. ${ }^{8}$

Acknowledgements

L. R. N. and L. J. thank the University of Cape Town and the Foundation for Research Development (Pretoria) for research grants. L. J. thanks AECI for a scholarship which she held during her Ph.D. studies. E. W. thanks the Deutsche Forschungsgemeinschaft (SFB 334) and the Fonds der Chemischen Industrie for financial support.

References
1 M. Hagan, Clathrate Inclusion Compounds, Reinhold Publ. Corp., New York, 1962.

2 L. Mandelcorn, Non-Stoicheiometric Compounds, Academic Press, New York, 1964.
3 E. Weber, Molecular Inclusion and Molecular RecognitionClathrates I; Topics in Current Chemistry, Vol. 140, Springer-Verlag, Berlin, Heidelberg, 1987.
4 E. Weber, Inclusion Compounds, Vol. 4, eds. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Oxford University Press, 1991, chapter 5.

5 F. Toda and K. Akagi, Tetrahedron Lett., 1968, 33, 3695.
6 D. R. Bond, L. Johnson, L. R. Nassimbeni and F. Toda, J. Solid State Chem., 1991, 92, 68.
7 L. Johnson, L. R. Nassimbeni and F. Toda, Acta Crystallogr., Sect. B, in the press.
8 S. A. Bourne, L. Johnson, C. Marais, L. R. Nassimbeni, E. Weber, K. Skobridis and F. Toda, J. Chem. Soc., Perkin Trans. 2, 1991, 1707.

9 D. R. Bond, S. A. Bourne, L. R. Nassimbeni and F. Toda, J. Crystallogr. Spectros. Res., 1989, 19, 809.
10 S. A. Bourne, L. R. Nassimbeni and F. Toda, J. Chem. Soc., Perkin Trans. 2, 1991, 1335
11 E. Weber, K. Skobridis, L. R. Nassimbeni and L. Johnson, J. Chem. Soc., Perkin Trans. 2, preceding paper.
12 G. M. Sheldrick, SHELXS-86, Crystallographic Computing 3, eds. G. M. Sheldrick, C. Kruger and R. Goddard, Oxford University Press, 1985, p. 175.
13 G. M. Sheldrick, SHELX-76: A Program for Crystal Structure Determination, University of Cambridge, England, 1976.
14 J. C. Speakman, The Hydrogen Bond, The Chemical Society, London, 1975, p. 13.
15 E. Weber, W. Seichter and I. Goldberg, Chem. Ber., 1990, 123, 811.

16 F. Toda, K. Tanaka and C. W. Mak, Chem. Lett., 1989, 1329.
17 A. Gavezotti, OPEC-Organic Packing Energy Calculations manual, Milan University, Italy, unpublished.
18 E. Weber and H.-P. Josel, J. Incl. Phenom., 1983, 1, 79.
19 Enzyme Mechanisms, eds. M. I. Page and A. Williams, Royal Society of Chemistry, London, 1987.

[^0]: \dagger Part 10. Preceding paper (ref. 11).

