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Kinetics and Mechanism of the Addition of Triphenylphosphonio-
cyclopentadienide to Tetrahalo-p-benzoquinones. Part 2. Reaction with

Bromanil and lodanil
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The reaction of tetrahalo-p-benzoquinones with triphenylphosphoniocyclopentadienide yields 6- (tri-
phenylphosphonio-3’-cyclopentadienyl)-2,3,5-trihalocyclohexa-2,5-diene-1,4-dione (4a-d), a new
class of zwitterionic dyes containing phosphorus. The rate-limiting step has been found to be the
addition of the ylide to the quinone through a highly polar betaine intermediate. The elimination of
hydrogen halide from the betaine, is of the E, or E,cB type for the bromanil system and of the E,
type for iodanil. SCF-AM1 calculations suggest that the E,cB path is energetically favoured relative

to the E, elimination path.

The conventional chemistry of haloquinones is characterized by
the formation of charge transfer complexes (CT) and nucleo-
philic substitution of the halides of the quinone nucleus. The
stabilities of CT complexes depend upon the difference in
ionization potential between the electron donors and the
haloquinones. There are examples of complete electron transfer
in which the halosemiquinone radical anion (HSQ) is formed, as
occurs in the dispersion of alkaline metals (Na, K) in organic
solutions of chloranil (1b) and bromanil (1¢), from which an
ionic solid having the composition (M*HSQ)2™> can be
isolated. In contrast, the formation of weak charge transfer
complexes occurs with electron donors of high ionization
potential. This is the case with 1:1 complexes between phenyl-
carbamates and chloranil, which, depending on the substitution
of the benzene nucleus, possess formation constants between 0.8
and 2.0 at room temperature. Intermediate cases are exempli-
fied by the formation of CT complexes between 2,7-bis(methyl-
thio)-1,6-dithiapyrene (TMTDTPY) and fluoranil (1a), chlor-
anil and bromanil in dichloromethane. These complexes can be
isolated in crystalline polymorphic phases where the extent of
charge donation is ca. 309 as revealed by X-ray crystallo-
graphy. It has also been demonstrated that complexes between
TMTDTPY and fluoranil have semiconductor properties, while
the adducts with chloranil and fluoranil show metallic con-
ductivity.”-8

The second type of reaction is represented by the hydrolysis of
chloranil in alkaline media to form chloranilic acid.*'° Also
included in this type is the reaction of aliphatic amines with
haloquinones.!'~!3 In excess of primary and secondary amines,
chloranil reacts to form disubstitution products, while tertiary
amines form CT complexes in which the tetrachlorosemi-
quinone radical anion has been detected. Some authors!'!-!2
have indicated that the initial phase of these reactions takes place
through radical intermediates, implying the previous formation
of CT complexes. The mechanism proposed for the reaction
with aromatic amines involves the consecutive formation of n-
complexes and a-complexes.'®

The ylide 2a contains a delocalized cyclopentadiene ring
whose reactivity !7-!® is typical of non-benzenoid aromatic
systems. The tetrahalo-p-benzoquinones and ylide solutions in
dichloromethane give rise in a matter of seconds to an in-
tense blue colour, 4,,, 690-700 nm. The 'H NMR spectra
from the reaction mixtures reveal the formation of a new
o-bonded compound and not the formation of a CT complex.
In the case of chloranil, the product was isolated and character-
ized as 4b.'® The reaction between ylide and chloranil involves

rate-determining addition of the ylide to the quinone to form a
polar intermediate without the intervention of n-complexes.’
The overall reactivity is similar to that found for other strong
electron acceptors such as cyanovinylbenzenes 2°-23 or tetra-
cyanoethylene. '8

In this work the mechanistic results obtained for the reaction
between bromanil (1c) and iodanil (1d) and the ylide (2a, b) are
reported. At the same time, the role of o-intermediates in the
reactions of tetrahalo-p-benzoquinones with the ylide are
explained.

Experimental

Materials.—Triphenylphosphoniocyclopentadienide ~ (2a)
was prepared by a modification 2° of the method reported by
Ramirez.!” For Kkinetic runs further purification was carried
out by re-crystallizing the ylide from ethanol?® (x 3) and
toluene.?* The quality of the purified product was checked by
recording the IR spectrum!7-2° and the 3!'P NMR spectrum
(6 = 13.6)."°

2,3,4,5-Tetradeuteriotriphenylphosphoniocyclopentadienide
(2b) was prepared from 2a by H-D exchange in deuterioacetic
acid—deuterium oxide medium.2® The level of deuteriation as
assessed by 'H NMR was 85%,.

Chloranil was supplied by Fluka Chemie AG and the com-
mercial product was recrystallized from acetone ( x 2) and then
sublimed as previously reported'* to give lustrous yellow
crystals, m.p. 290 °C.

Bromanil (ex-Hopkin and Williams) was recrystallized from
acetone ( x 2) to give lustrous yellow crystals, m.p. 296 °C.

TIodanil was prepared by the method of Jackson and Bolton 23
and was recrystallized ( x 2) from glacial acetic acid to give dark
purple needles, m.p. (sealed tube) 279-281 °C, lit. 282 °C.

Dichloromethane of IR grade (Panreac) was dried by adding
25 g dm® of NaOH and stirring the mixture for ten minutes at
room temperature. The solvent was decanted and distilled ( x 2)
from calcium hydride.

Absorbance Measurements.—Absorbance vs. time curves
were recorded with a spectrophotometer (Kontron, Uvikon
930) attached to a fast mixer unit (Hitech, SFA-11) and a
temperature regulated cell holder. The temperature of the cells
was maintained constant to an accuracy of +0.1°C by
circulating water. The temperature was monitored with a
thermocouple attached to a stopped flow quartz cell of 1 cm
pathlength. Nitrogen flow across the face of the cells was
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Table 1 Elemental analysis. mass spectral and visible spectroscopy Stoichiometry Measurements—In order to determine the
data on 4b-d stoichiometry of the reaction, the '"H NMR spectrum (Bruker
al Br I 200 MH2z) of a reaction mixture of 1.42 x 10~ mol dm™ in
bromanil and 3.46 x 10~ mol dm™3 in ylide, using CD,Cl, as
C (found) 65.0 51.85 43.25 a solvent, was recorded at 300 K. The spectrum of the same
C (required) 64.45 52.03 4297 reaction mixture containing a drop of triethylamine was also
recorded. This experiment was repeated using iodanil
g(r"“",‘i)d ggg ;;0 ;gi (1.71 x 10°* mol dm™) and ylide (24 x 10°3 mol dm™3) in
(required) ’ : ) CD,Cl,. The spectrum of the reaction mixture of bromanil and
P (found) 53 46 40 ylide between 6.0 and 7.4 ppm showed a multiplet at 6.33 ppm
P (required) 5.48 463 3.83 and two multiplets which were very close together at 7.05 ppm
whose intensity was double that of the previous one. These
X (found) 19.85 339 46.95 signals were attributed to the cyclopentadiene protons of the
X (required) 19.41 33.26 4701 product 4c. In addition, two weak broad signals centred at 6.87
+ and 7.28 ppm were attributed to the cp H of 3¢ and a broad
M 537 669 811 .
band centred at 3.62 ppm was attributed to the methylene group
J /M 694 693 694 of 3c. After the addition of amine the signals at 6.87, 7.28 and
&dm>3mol ' cm ! 7736 8536 9002 3.62 ppm disappeared but the signals originating from the

maintained during measurements to avoid water condensation
on the wall of the cells at low temperatures.

Product Characterization.—The products (4b-d) of the re-
actions of 2a with 1b-d were isolated by flash chromatography
on 60 H silica (CH,Cl, as eluent) and characterized by mass
spectrometry/elemental analysis, see Table 1, and by *'P, 'H
and '*C NMR spectroscopy, see Table 2.

product 4¢ were maintained at the same intensity and two
symmetrical quintuplets centred at 6.2 ppm appeared which
were assigned to the cp hydrogens of 2a.2%27 Similarly the
spectrum of the product from the iodanil-ylide mixture
consisted of three multiplets centred at 6.31, 6.97 and 7.10 ppm
integrating for one proton each and attributed to the cp
hydrogens of 4d. After the addition of amine the signals centred
at 697 and 7.10 ppm maintained their intensity and two
quintuplets due to 2a appeared. Unlike the previous case. the
quintuplets were not symmetrical, the one centred at 6.23



J. CHEM. SOC. PERKIN TRANS. 2 1992 427
Table2 NMR data for 4b—d in CD,Cl, at —30 'C
'H NMR '3C NMR 3'P NMR
) No.of Hatoms  Assignment  J/Hz J Dept  Assignment  J/Hz o
X=0Cl
7.6 (mult.) 15 2"—6" 181.1 0 C-1 0 15.04
7.05 (sext.) 1 5 Jpd9: 0, 47,0, 2.1 172.7 0 C-4 0
6.94 (sext.) 1 2 Jp 6.3, 2.1 143.0 0 C2 0
6.36 (quint.) 1 4’ Jp 2.5 141.2 0 C-3 0
140.3 0 C-5 0
135.7 + Cc-4 0
135.7 + C-27,C-6" 10.0
133.1 + C-2 15.8
131.5 + C-3",C-5" 12.5
124.7 0 C-1" 90.6
124.0 0 C-6 0
124.0 0 C-3 203
123.7 + C-5 13.6
121.4 + C-4 13.6
95.4 0 C-1 110.0
X = Br
7.6 (mult.) 15 2"-6" 178.5 0 C-1 0 15.04
7.05 (sext.) 1 5 Jpd8,J,-47,J,.24 170.6 0 C-4 0
6.94 (dxt.) 1 b Jp6.6;J, 2.1 142.5 0 C-2 0
636 (quint.) 1 4 Jp2.1 139.2 0 c3 0
136.5 0 C-5 0
1337 + C-4 0
133.65 + C-2",C-6" 10.4
130.8 + C-2 15.7
129.4 + C-3,C-5" 12.5
1234 0 C-3 19.5
122.7 0 C-1" 90.9
121.7 + C-5 13.7
1189 + C-4 13.8
114.5 0 C-6 0
92.8 0 C-1 109.9
X=1
7.7 (mult) 15 2"-6" 1779 0 C-1 0 15.02
7.08 (dxt.) 1 5 Jp5.0:J,-4.7;J, 2.1 172.6 0 C-4 0
6.99 (sext.) 1 > Jpd6:J, 2.1 147.95 0 C-2 0
6.37 (quint.) 1 4 Jp 20 147.9 0 C-3 0
147.8 0 C-5 0
1337 + C-4" 0
133.6 + C-2".C-6 10.3
133.6 + C-2 15.3
130.6 0 C-6 0
129.4 + C-3".C-5 12.4
125.7 0 C-3 19.1
122.8 0 C-1" 90.9
121.4 + C-5 14.1
118.2 + C-4 13.8
91.7 0 C-1" 109.8
“ 4 p for ylide, 13.6.
-2 N
ﬁ 3[ Mr—p—i \4"
ER St 4
2/ \8/ \5 "
1] 1]
NP
1]
(o]

having double the intensity of the one centred at 6.15, since the

former overlapped with the signal of 4d at 6.31.

lines (» > 0.99) up to 95%, degree of conversion were obtained

and the resulting values of & are given in Tables 3 and 4.

Data Treatment.-—The absorbance vs. time curves were cor-
rected by subtracting the base line.! Curves from experiments

carried out with an excess of ylide fit eqn. (1). Good regression

£

A, .
In —“7— = k(t = 9)
A

1

Ineqn. (1), 4, is the absorbance measured at infinite time, k
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Table 5 Dependence of second-order rate coefficients (dm* mol™! s7!)
on isotopic substitution in CH,Cl, at 298 K

System ky kp ku/kp
Bromanil 1024 + 25 1480 + 30 0.69
Iodanil 216 + 13 198 + 10 1.09
8 -
6 M
4 -
X
£
-2 i ] 1 ] ]
0.0032 0.0033 0.0034 0.0035 0.0036 0.0037
7K

Fig. 1 Arrhenius plots for quinone-ylide systems in CH,Cl, solution.
(M) In k, chloranil. ((J) In k, bromanil. (@) In k, iodanil. (O) In &,
1odanil.

the first-order rate coefficient, t the time measured by the
spectrophotometer and & a correction due to the fact that t
includes the mixing and discharge time.!

The points 1/kyy, vs. 1/[Y]o (Where [Y], is the initial concen-
tration of ylide) obtained in the experiments carried out in
excess of ylide were fitted to eqn. (2) using the weighted least
squares method.?® The [Y], values were obtained using the
procedure described previously ! and the results are shown in
Tables 3 and 4.

1 1 1

— =ay +

P o, T @

Results and Discussion

Stoichiometry.—The 'H NMR spectra of the reaction mix-
tures are similar to those described for chloranil, in an earlier
report.! The integration of the spectra indicates that for each
mole of the product formed, two moles of ylide are consumed as
deduced from the integration of the signals from the products
4c-d and from the signal due to ylide cyclopentadiene hydro-
gens after adding amine. One mole of the ylide forms part of the
product 4b—d and the other remains as 3c-d, with the appear-
ance of band at 3.62 ppm corresponding to the formation of a
methylene group by protonation of the cyclopentadiene ring.
The broad nature of the bands attributed to 3c,d indicates a
rapid exchange of the proton between the cyclopentadiene
carbons. The addition of amine causes the transfer of the
protons from ylide to amine causing the hydrochloride signals
at 6.2 and 3.62 ppm to disappear.

Reaction Mechanism—The overall mechanism involves
nucleophilic addition of 2 to the quinones la-d to form an
intermediate o-complex 5a—d followed by elimination of hydro-
gen halide to form the products, P, (4a—d). The rate-limiting step
in this mechanistic scheme is the nucleophilic addition of 2 to
la-d as evidenced by the element effect?® (X =F » X =
Cl~ X = Br > X = 1) analogous to the classical sequence
established for nucleophilic substitution in activated aryl
halides 2° and by the isotope effects observed with 1b—d and 2b

J. CHEM. SOC. PERKIN TRANS. 2 1992

which in each case showed ky/kp < 1 (Table 5). The latter
results show that the loss of a proton from the intermediates
5b—d is not involved in the rate-limiting process. The question
then arises as to whether the data will allow one to define the
mechanism for the elimination of hydrogen halide from 5a-d.
The three possible mechanisms are E,, E, and E,cB (see
Scheme) and since the reactions are monitored by the appear-
ance of the products 4b—d, the equations corresponding to these
mechanisms (as derived from the steady state approximation
and mass balance) are eqns. (3)—(5) respectively.

1 1 ky + ks 1 1
_—=— 4+ + — ) — 3)
kovs k3 kiks ka/ [Ylo
1 k k 1 1
ag = —; alz_zi_s.‘._z_; (1220
ks kiks ke Kk,
1 1 ky + k; 1 k 1
=_ "7 472 - 4)
kavs ks kik; [Ylo kiks[Y]o
1 ki + k4 1 k,
a=—=0;, a, = xX—; a, =
kg kykq k, kyk4
1 _ ki + ko 1 + k, 1
kobs k|k9 [Y]o klk9 [Y]<2) (5)
ky + kg 1 k,
a=0;, aj=——=x~—; a,=—
kiko ky kiko

The E, mechanism. The value deduced for 1/k, ts shown in
eqn. (3). A plot of 1/k s vs. 1/[Y], would produce a straight line
of slope a, and intercept a,. If k, is large, as expected for a
proton transfer, then a, = (k, + k3)/k ks, and if k3 > k,, then
a, = 1/k,. The value of the intercept is a, = 1/k; and hence a
value of k5 for the elimination of the halide may be derived.

The most likely reaction to conform to this mechanism is
where X = I (iodanil) and analysis of the data (Table 6) for this
reaction seems to support this view. The plots of k., vs. [Y],
although linear (r = 1.00) all gave positive intercepts. The
correlationcoefficients of the plots of 1 /&, vs. 1/[ Y], were all also
ca. 1.00 and all again gave positive intercepts. Plots of In (1/a,)
vs. 1/T and In (1/ay) vs. 1/T gave E, values of 15 kJ mol! (r =
0.92) and 44 kJ mol™! (r = 0.93) respectively (Table 7, Fig. 1).
Thus the E, mechanism seems likely for iodanil and this is
consistent with the leaving group ability of the iodide ion. The
plots of ko vs. [Y]o or 1/ky, vs. 1/[Y], for chloranil (CA) and
bromanil (BA) also gave excellent linear correlations but
negative intercepts at almost every temperature. Thus these
quinones do not appear to conform to the E, mechanism since
k, for X = Br or Cl would both be expected to be less than for
X = I which would make the intercepts for X = Br or Cl in an
E, mechanism larger than that for X = 1. The alternative
mechanisms are E, or E,cB and these are analysed below.

The E, mechanism. The value deduced for 1/k,,, is shown in
eqn. (5). The quadratic fit of 1/k,,, vs. 1/[Y], would pass

Y ky +k k 1
[]Vo 1 o, 2

K obs kykg kiks [Y]o

(6)

through the origin and a plot of [Y]o/kyps ts. 1/[Y], would lead
to a linear plot in which, if k4 > k,, the intercept, ay = 1/k,
and the slope ¢, = k,/k ko [eqn. (6)].

The E,cB mechanism. The value deduced for 1/k,,, is shown
in eqn. (4). Clearly, if k4 is very large the E,cB mechanism would
approximate to the E, mechanism but if 1/k4 is significant, the
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Table 6 Experimental a, and a, parameters obtained from eqn. (3) in CH,Cl,

Bromanil system

Iodanil system

T/K ayfs l/a, ~ k,/dm* mol' 57! T/K l/ay ~ k;/s7'® l/a, = k,/dm?* mol™! s~!
2739 + 0.1 —0.05 + 003 650 + 10

278.1 —0.09 + 0.02 697 + 7 2778 + 0.1 0.56 + 0.03 142 + 14

2829 —0.04 + 0.02 800 + 9 282.8 1.1 + 0.1 152 + 12

287.9 0.00 + 0.04 860 + 20 287.2 1.1 £0.1 163 + 9

2934 0.01 + 0.03 1000 + 15 2934 19 + 03 180 + 20

298.4 —0.03 + 0.03 1025 + 25 298.1 1.4 + 0.1 216 + 13

303.4 —0.06 + 0.01 1160 + 10 303.2 30+ 04 234 + 10

308.0 0.09 + 0.04 1280 + 40 308.0 8§ +2 270 + 15

“ E, mechanism.

Table 7 Parameters of activation for the bromanil and iodanil-ylide
systems

AH3/K) AS?))
System E,/kJ mol™!  mol! mol'' K!  AG*#/kJ mol!
k, Bromanil? 13.8 + 0.5 11.6 £+ 05 —148+2 52+1
k, Bromanil® 37 35 —81 59
k, lodaml* 150+ 1.1 126 £ 1.1 —158+3 60 +2
k, lodanil® 42 39 —78 62
ks lodanil® 44 410 42+ 10 —97+ 35 71+ 16

?In CH,Cl,. ® In toluene.

quadratic fit of 1/k vs. 1/[Y], would give a positive intercept.
In addition, plots of 1/ky,, vs. 1/[Y]e or [Y]o/kows vs. 1/[Y]o
would not be linear.

We have already argued that the reaction with chloranil (1b)
probably belongs to the E,cB category.! Analysis of the data for
bromanil in Table 6 reveals that quadratic fits of the plots of
1/kps vs. 1/[Y], over the whole temperature range give
intercepts of —0.1 + 0.5. Thus within experimental error the
plots effectively pass through the origin. Furthermore, plots of
[Ylo/kons vs. 1/[Y]o, although affording poor linearity, give
intercepts (a, = 1/k,) which give an E, value of 14 kJ mol-!, in
excellent agreement with the value derived from the simple plots
of ks vs. [Y], at each temperature. Thus the bromanil reaction
appears to be best represented by an E, elimination of hydrogen
bromide from the o-complex. We may in fact be observing the
whole range of elimination mechanisms from E, to E,cB as the
halogen varies from I to F. Further studies on fluoranil and the
details of the deuterium isotope effects for each halogen are in
hand in an attempt to verify this hypothesis.

The activation parameters established for k; (bromanil and
iodanil) are precisely those one would expect for a rate-limiting
addition of a neutral nucleophile (the ylide) to a neutral
electrophile (the quinone). The Arrhenius activation energy is
low (i.e. the sensitivity of the reaction to temperature changes
is low) but the entropy of activation shows a high negative
value consistent with a high degree of order developing
between the ground state and the transition state. As expected,
the AS* values are less negative in toluene than in dichloro-
methane indicating a less polar, less ordered transition
state in the former solvent. Thus in toluene enthalpy factors are
dominant whereas in dichloromethane the entropy factors are
most important.

Quantum Mechanical Calculations.—For the purpose of clari-
fying the role which the o intermediates play in the reaction
mechanism, a set of quantum mechanical calculations was
carried out, using the AM1 method,3® implemented in the
MOPAC program.®! The enthalpies of formation of the
compounds listed in Table 8 were calculated. Based on these
heats the enthalpies of the reactions were calculated (see Table

9). The direct and inverse activation barriers for the addition of
the tetrahalo-p-benzoquinones to ylide were estimated. The
methodology used for the calculations was the following: The
ylide and the tetrahalo-p-benzoquinone were completely
optimized. In calculations of other structures in which the ylide
fragment appears, the internal structures of the phenyl groups
were not optimized, allowing only for variations in their relative
position. The minimum was obtained when the gradient was
smaller or the same as the required 0.2 kJ A-'. However, slightly
higher gradients (0.4 kJ A-') were obtained in the same
structures containing iodine atoms. The activation barriers were
determined by elongation of the C-C bond, which connects the
ylide and quinone fragments in the structures Sa-d, from its
equilibrium value to r = 3 A, the point at which the energy of
the supermolecule was similar to that obtained from the total of
the fragments individually. The maximum was obtained by
interpolation of the curve AH; vs. r. An overestimation of the
atomic charges on the phosphorus atom was observed with
respect to the values calculated for 2a, which gave good agree-
ment between the calculated and the experimental structure as
measured by X-ray diffraction.?®

From Table 8 one may conclude that the heat of formation of
the o-complexes 5a—d is slightly higher (15-30 kJ mol-!) than
the heat of formation of the reactants 1a-d and 2 individually.
Consequently, the formation of a o-type complex is a likely
reaction path since a highly polar intermediate is formed with
minimum expenditure of energy, which leads, in successive steps,
to formation of the products. A low AH; is expected in CH,Cl,,
since the polarity of the o-complexes is greater than that of the
reactants.

In Table 10 the direct, E,, and inverse, E_,, enthalpies of
activation are given for the addition of ylide to quinone. These
quantities are clearly overestimated because the AMI calcu-
lations do not take into account the interactions with the
solvent. The dipole moments estimated for the TS are inter-
mediate between those calculated for the o-complexes and the
reactants, and are very similar for all systems studied. As a
consequence, we expect the stabilization due to solvent effects to
be very similar in the four systems. The E, values follow the
same trend as the experimental ones. The E_, values are always
smaller than the forward ones, these facts being in agreement
with the reversibility of the first step. The increase in E ,, in
going from chloranil to bromanil, is in qualitative agreement
with a decrease in k,.

In Table 9, six elementary steps which may take place in the
system are shown. Step 2 is a global transfer of a HX molecule
from the o-complex to an ylide molecule. 1t is observed that this
transfer becomes less favourable along the series Cl-Br-1. The
high enthalpies of reaction for the bromanil and iodanil systems
suggest that the transfer should take place in more than one
step. Steps 3 and 4 show the E,cB and E, decomposition of the
o-intermediate respectively. Charged products are formed from
charged intermediates (c-complexes) and therefore solvation
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Table 8 AMI enthalpies of formation and dipole moments for reactants, products and intermediates of the reactions

Compound AH kI mol'! wD Compound AH k] mol*  p/D
C,O,F, la —795.6 0.0 C,oH,,0,F;P* 6a 648.3 —
C,0,Cl, 1b —161.9 0.0 C,4H,,0,CI,P* 6b 837.6 —
C,0,Br, 1c 474 0.0 C,4H,,0,PBr;* 6¢ 994.0 —
C,0.l, 1d 2329 0.0 C,4H,,0,PI;* 6d 1140.2 —
C,3H 4P 2 4249 8.1 (7.09 C,oH,3O,F,P~ Ta -571.6 —
C,3;H, FP 3a 3419 1.4 C,0H,,0,C1,P~ 7b 55.6 —
C,;3H,,CIP 3b 433.7 74 C,4H,30,PBr,~ Tc 2430 —
C,3H,PBr 3¢ 549.3 8.0 C,H,,O,PI,~ 7d 431.6 —
C,;3H,0PI 3d 654.0 8.3
C,3H,0P* 3e 900.2 —
C,4H,30,F,P 4a -217.1 13.7 HF — -3109 1.7
C,4H,40,CLIP 4b 278.8 12.6 HClI —103.0 14
C,4H,40,PBr; 4c 430.6 12.7 HBr — —439 1.4
C,oH,30,PI; 4d 581.7 12.8 HI — 332 1.3
C,H,,0,F,P Sa —337.0 204 F~ — 144 —
C,0H,,0,CI,P 5b 291.2 19.3 ClI™ — —157.6 —
C,4H,,0,PBr, Sc 486.5 19.1 Br~ — —85.5 —
C,,H,,0,PI, 5d 678.2 19.2 - — 9.3 —
“In benzene at 298 K.!”
Table9 AM1 Enthalpies (kJ mol™!) of reaction for elementary steps®

Step Fluoranil Chloranil Bromanil Todanil

MmQ+Y=o0 336 28.3 14.1 20.5

2)o+ Y =X+ (YH",X) 37.0 —-38 68.4 132.6

B3)o+Y=0"+YH" 2408 239.7 231.8 2287

4o =cH* + X~ 999.7 460.9 422.1 452.7

S)(YH*.X") =Y + HX —2283 —1119 —168.4 —1959

6)Q + Y =X+ HX —1573 -874 —85.6 —-429

“Q = tetrahalo-p-benzoquinone; Y = ylide; YH™ = 3¢; X = 4a—;06 = Sa-d;ocH* = 6a—c;0™ = Ta-¢; X~ = F.Cl",Br .17; HX = hydrogen

halide.

Table 10 AM-estimated energy of activation and dipole moments of
TS for ylide-quinone step

X E,/kJ mol! E  /kJmol''  r/A u/D
F 72.8 39.2 2.1 12,6
Cl 87.1 58.7 2.1 12.1
Br 80.2 66.0 2.1 118
I 86.6 66.1 2.1 12.2

factors can make the value of the heat of formation vary
substantially. For this reason the heats of formation are far too
high. The E,cB path is always favoured energetically over the
E, path. The enthalpy of step 3 (E,cB type) decreases in the F to
I series, indicating that the acidity of the -complexes increases
in that order. The decrease in the enthalpy of step 4 suggests that
the E, type mechanism is increasingly feasible when going from
fluoranil to iodanil.

The calculation indicates that the deprotonation of ylide is an
extremely exothermic process and therefore the ylide is a weak
base (pK, = 4.69 in ethanol-water mixture).3? Reaction 6
indicates that the global process is exothermic.

Conclusions

The experimental activation parameters indicate that the
reactivities of bromanil and iodanil with 2 are similar to that
with chloranil. In an initial stage, quinone and ylide form a
polar o-complex Sa—d, whose energy is similar to the sum of the
cnergies of quinone and ylide individually. After this step, three
reaction paths are possible. In the first one, of E,cB type, a

proton is transferred from the o-complex, forming an anion
which rapidly expells a halide anion. This is the case for
chloranil where the C-halogen bond energy is high. An altern-
ative path is the E, type elimination of the halide to form an
acidic cation which rapidly transfers a proton. This happens
with iodanil in which the energy of the C-halogen bond is lower.
The energy of the C-halogen bond in bromanil induces an inter-
mediate situation. Experimental data suggest that bromanil
reacts through an E, type mechanism.
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