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New Rate-Product Correlations for General-base Catalysed Reactions in 
Alcohol-Water Mixtures t 

T. William Bentley" and Robert 0. Jones 
Department of Chemistry, University College of  Swansea, Singleton Park, Swansea SA2 8PP, UK 

Selectivities (S) for solvolyses of p-nitrobenzoyl chloride (I  ), p-nitrobenzenesulfonyl chloride (2), 
p-nitrobenzyl chloride (3; Z = NO,) and p-methoxybenzyl chloride (3; Z = OMe) in alcohol-water 
mixtures are consistent with third-order terms in the rate law, including terms for nucleophilic attack 
and general- base catalysis by water and/or alcohol. The results document new rate-product corre- 
lations and new reactivity-selectivity relationships, which help to define 'normal' behaviour from 
which deviations can be identified for further investigations. 

Rate-product correlations have played a central role in mech- 
anistic evidence for nucleophilic substitution reactions, e.g. in 
distinguishing between sN2 and sN1 mechanisms,' and in 
resolving the phenonium-ion problem.2 The currently used 
'azide clock' is based on a rate-produch correlation. between 
carbocation attack by solvent (k,)  in competition with attack by 
azide (kN,,).3 For a substrate RX in the solvent (SOH) with low 
concentrations of the added nucleophile (Nuc), and if the 
products are RNuc and ROS, the selectivity ( S )  is given by eqn. 
(1) based on molar concentrations; the validity of the equation 
can be shown by varying [Nuc] in an essentially constant 
reaction medium. 

S = kNu,/k, = [RNuc][SOH]/[ROS][NUC] (1) 

There is a corresponding definition of S for solvolyses in 
alcohol-water mixtures or in mixtures of two different alcohols. 
To maintain an approximately 'constant' solvent, ternary 
solvent systems have been We now report a new 
rate-product correlation, which provides useful kinetic and 
mechanistic information for nucleophilic substitutions in a wide 
range of binary alcohol-water mixtures. 

Solvolyses of p-nitrobenzoyl chloride (1) in binary mixtures 
are second order in protic solvent(s), and it has been proposed 
that one of the solvent molecules acted as a nucleophile while 
the other acted as a general base.4 Hence, four terms are 
required for a third-order kinetic analysis. Reaction in water is 
denoted by a third-order rate constant k,, (calculated from 
kobs/[water12), and the other terms are: k,,, water acts as 
nucleophile and alcohol acts as general base; k,,, alcohol acts as 
nucleophile and water acts as general base; k,,, alcohol acts as 
nucleophile and a second molecule of alcohol acts as general 
base.4 The k,, term (k,,[al~ohol]~) has been shown4 to be 
unimportant in solvent compositions more aqueous than 80% 
alcohol. If the k,, term is ignored, S [based on eqn. (l)] is given 
by eqn. (2) and its reciprocal simplifies to eqn. (3). 

S = ((k,,[alcohol][water])/{(k,,[alcohol][water] + 
k,,[~ater]~))) x [water]/[alcohol] (2) 

1/S = (kwa/kaw)(Calcoholl/Cwaterl) + kww/kaw (3) 

Although medium effects on the rate constants are e ~ p e c t e d , ~  
if the two ratios of rate constants in eqn. (3) are independent of 
solvent, it is predicted from eqn. (3) that a plot of 1/S vs. 
[alcohol]/[water] should be linear. Appropriate plots (Fig. 1) 
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Fig. 1 Correlation of 1/S ( S  values from ref. 4) with solvent compo- 
sition [eqn. (3)] for soholyses ofp-nitrobenzoyl chloride (1; Z = NO,) 
in alcohol-water mixtures: slopes 0.28 -t 0.02 (c  = 0.18 f 0.01, r = 
0.992) for ethanol-water and 0.063 k 0.005 (c = 0.087 f 0.004, r = 
0.995) for methanol-water / 1.6 
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Fig. 2 Correlation of 1/S with solvent composition [eqn. (3)] for 
solvolyses of p-nitrobenzenesulfonyl chloride ( 2  Z = NO,) in alcohol- 
water mixtures: slopes 0.81 f 0.03 (c = 0.45 f 0.02, r = 0.995) for 
ethanol-water and 0.35 k 0.01 (c = 0.28 k 0.01, r = 0.997) for meth- 
anol-water 

for solvolyses of 1, (Z = NOz) in ethanol- and methanol-water 
are close to linear from water up to SO% alcohol, although the 
ethanol-water plot appears to be slightly curved. The very low 
slope of the methanol-water plot confirms that k,, is much 
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Fig. 3 Correlation of 1/S with solvent composition [eqn. (3)] for 
solvolyses of p-nitrobenzyl chloride (3; 2 = NOz) in alcohol-water 
mixtures: slopes 0.285 f 0.015 (c = 0.26 f 0.01, r = 0.995) for ethanol- 
water and 0.096 f 0.006 (c = 0.215 & 0.005, r = 0.992) for methanol- 
water 

cationic intermediate, and selectivity data (Fig. 4) fit eqn. (3) 
very well from water up to 60% alcohol-water mixtures. In such 
S N 1  reactions, the observed first-order rate constants will not be 
related to the products,' and the selectivity data provide 
mechanistic information only about the product-determining 
step(s).' 

Two 'normal' patterns or trends of selectivity values (S) in 
alcohol-water mixtures are now established. Constant S, with 
S < 1 in ethanol-water mixtures, appears to be characteristic of 
product formation from a solvent-separated ion pair,g probably 
with general-base catalysis by the counteranion. lo  Alternatively, 
when S values fit eqn. (3), there is general-base catalysis by a 
second molecule of solvent. The scope of eqn. (3) is currently 
being extended to reactions of more stable carbocations. Devi- 
ations from expected trends warrant further investigation and 
have provided evidence for mechanistic changes for solvolyses 
of 1 (Z = Cl, H and Me)," and for electron-rich derivatives 
of 2.12 Solvolyses of other benzyl substrates 3 (Z = C1, H, Me) 
do not fit either of the 'normal' patterns l 3  and we are now in a 
strong position to interpret solvolyses of these classic substrates, 
which are still not fully u n d e r ~ t o o d . ~ * ~ * ' " ~ ~  
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Fig. 4 Correlation of 1/S (S values from ref. 5 )  with solvent compo- 
sition [eqn. (3)] for solvolyses of p-methoxybenzyl chloride ( 3  Z = 
OMe) in alcohol-water mixtures: slopes 0.36 k 0.01 (c = 0.204 i- 
0.003, r = 0.9997) up to 60% ethanol-water and 0.092 f 0.013 (c = 
0.147 f 0.006, r = 0.990) up to 60% methanol-water 

more important than k,, (but k,, is not negligible for ethanol- 
water mixtures as assumed previously4). Eqn. (3) is in 
agreement with our previous derivation of a maximum value of 
S in highly aqueous media where [alcohol] is very small and 
S,,, is then given by k,,/k,,.4 

The scope of eqn. (3) is indicated by new results for solvolyses 
of 2 (Z = NO2) and 3 (Z = NO,)-see Figs. 2 and 3. The 
slopes of the plots for methanol-water are larger than for 
solvolyses of 1 (Z = NOz), implying increasing contributions 
from kwa. Again the ethanol-water plots may be slightly curved, 
and a more precise linear plot would be obtained by limiting the 
solvent range to water to 60% alcohol-water . Our previous 
work4 was based on curve fitting of observed rate constants, 
followed by a prediction of the product composition. Eqn. (3) 
provides an alternative means of investigating rate-product 
correlations relating observed products to observed first-order 
rate constants, but allowances for the medium effects on the 
third-order rate constants will usually be needed.4 

A possible further extension of eqn. (3) is to 'stable' carbo- 
cations. Nucleophilic attack by water on all carbocations with 
an appreciable lifetime may be general-base catalysed.6 Solvo- 
lyses of 3 (2 = OMe) show common-ion rate depression in 50% 
(v/v) trifluoroethanol-water,' consistent with formation of a 
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