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Formation Constants of Molecular Complexes from Spectrophotometric Data. 
Experimental Design for Concurrent Models Discrimination and Optimal 
Determination of the Parameters 

Gin0 Carta 
Dipartimento di Chimica e Tecnologie lnorganiche e Metallorganiche, Universita di Cagliari, Via Ospedale 72, 
09 7 24 Cagliari, Italy 

A typical experimental procedure as is now established collects al l  the data together at  the beginning of 
the study, before the true model is known. The resulting design (i.e. all the available experimental points) 
may not be very effective for discriminating between the tentative models initially assumed, and/or not 
very appropriate for the optimal determination of the parameters of the model finally chosen. 
Furthermore, in a non-linear situation, as in our case, the experiment cannot be optimally designed a 
priori, even if the model is known. An alternative experimental procedure is proposed, in which the 
observations are added sequentially, chosen on the basis of the task currently requested. The first and 
central part of the experiment is mainly devoted to the discrimination among the initial competing 
models. In the final phase, when hopefully only the correct model remains, the observations are added 
(still sequentially) to maximize the determinant of the information matrix IX'Xl, until the parameter 
variances are sufficiently low to stop the experiment. 

Spectrophotometric methods have been widely used for the 
determination of association constants of molecular com- 
plexes.'-' Until the late sixties the approach was mainly 
graphic-oriented; the problem was generally assumed to be 1: 1 
and was linearized by suitable mathematical simplifications and 
experimental limitations.'-' The obtained values of K 
(formation constant) and E (extinction coefficient) were often 
not repr~ducible.~ The explanation was sometimes sought 
either in a poor design (Person) l 3  or in the inadequacy of the 
m ~ d e l . ~ . ' ~ , ~ ~  With Derenleau l 6  the conditions to be met to have 
both model check and good determination of the parameters 
in the 1:l case were clearly stated. 

Elsewhere, a different computer-oriented approach was 
taking place. "-" With it the mathematical and experimental 
limitations used till then were no longer necessary, as the 
experimental points (i.e. the design) could be chosen freely, 
subject only to the system constraints (solubility of reagents, 
constancy of activity coefficients, region experimentally 
attainable, etc.). 

A typical computer-oriented procedure as established today 
could be summarized in the following steps. 

(1)  Collect the experimental points. This is probably done 
by keeping constant some different initial concentrations of a 
reactant, say A, while varying the initial concentration of the 
other reactant B, and/or vice uersa (titration curves).2o 
Generally, different wavelengths are used. 

(2) Estimate the number (and hopefully the nature) of the 
species in solution. To this end either graphical and/or 
numerical methods (matrix rank) may be e m p l ~ y e d . ~ ~ . ~ ~ , ~ ~ "  

(3) Use the information from point (2) and any possible 
previous knowledge or chemical intuition and set up all 
plausible models. 
(4) Choose a suitable least-squares routine and for each 

plausible model calculate all the parameters, their standard 
deviations and some statistical in dice^.^"^^ 

(5) Compare the statistical indices obtained in the preceding 
point (4) and select the most probable model. If the procedure 
does not give an unequivocal result then it has been suggested 
that the choice should be made by applying the following 
considerations in order of priority: 24 

(i) simplicity-the simplest model should be preferred by 
excluding poorly-defined species; 

(ii) similarity to previous results either on the same or on 
analogous systems; 
(iii) chemical significance. 

The weakness of this approach lies mainly in the fact that 
experimental points are collected uniquely at the beginning, 
before the true model (or, say, the model best representing the 
data) is known. As will be clarified later, these experimental 
points may not be effective for discriminating between the 
tentative, concurrent models initially proposed, and/or not very 
good for the optimal determination of the parameters of the 
model finally chosen. 

In a preceding paper2' a sequential method was described 
which, for a model known a priori, indicates how the 
experimental points could be chosen in order to have the best 
determination of the parameters. In practice the model is not 
known in advance and must be determined from the experi- 
ment. Hence the need for an experimental design which allows 
us to discriminate efficiently among rival competing models 
and can simultaneously enable an optimal parameter deter- 
mination. An optimal determination experiment, for non-linear 
models, cannot be designed a priori (see later), but must 
necessarily be set up sequentially; this is another reason for the 
intrinsic weakness of the standard procedure outlined above 
and generally adopted. 

An alternative procedure will be presented along with an 
essential, brief mathematical-statistical framework needed for a 
better understanding of the treatment. It will be assumed 
that the absorbance errors are independent, drawn from a 
normally-distributed population with mean p = 0 and constant 
variance 02. 

Results and Discussion 
Mathematical-statistical Framework.-Generally, the values 

of the parameters in a functional relationship are obtained by 
a least-squares calculation based on the Gauss-Newton 
m e t h ~ d , ~ ~ ~ ' ~ ~  i.e. by minimizing expression (l), where y i  and yci 

n 

CHISQ = 1 bi - Y C ~ ) ~  W J ~  (1) 
i =  1 

are the experimental and calculated absorbances, for unit path 
length, w i  is the weight given to the ith observation and y1 is the 
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number of the experimental points. A fuller expression for yci 
would be y(ai, bi, P I ,  P,, 0 ,  P,) where ai and bi are the initial 
concentrations of the two reagents A (ligand, donor) and B 
(acid, metal), rn is the number of parameters of the assumed 
model and P1, P, , . . . ,  P, are the unknown parameters 
being sought ( i e .  step formation constants and extinction co- 
efficient s). 

Eqn. (1) is not linear in the parameters and therefore the 
ordinary least-squares method cannot be applied. This problem 
is overcome by approximating y(ai, bi, P,,  P,,..., P,) with a 
Taylor series truncated to the first term. The equation to be 
minimized becomes eqn. (2), where yio represents y(ai, bi, PIo, 

n m 

CHISQ = C bi - yio - C ( S Y ~ O / S P ~ A P ~ ) ] ~  wi (2)  
i =  1 j =  1 

P Z 0 ,  0 .  P,’), the superscript zero refers to the starting values 
of the parameters (initially guessed values) and APj  is the 
correction to be given to Pjo. 

In any experiment of n observations a matrix (3), called a 

............ 
Xn1 Xn2 ... Xnm 

design matrix, can be constructed, where ( x i j )  = (6yio/6Pjwi+). 
The matrix (X’X)mxm = (Cjk)mxm is known as an information 
matrix; its inverse is (X’X)-lmxm = (Cjk- l ) ,xm.  

The sample variance Sj2 of a parameter Pi in a functional 
relationship is estimated by eqn. (4), where S2 = CHIMIN/ 

(4) 

(n  - m) and CHIMIN is the minimum value of CHISQ. The 
lower Sj, the higher the precision and reliability of the estimated 
parameter P j  

If the variables in the model are highly correlated, the 
determinant IX’Xl becomes close to zero and serious round off 
errors may occur in the inverse (X’X)-’ and hence in the 
calculation of the parameters and related statistics. The action 
generally taken to minimize this problem is a transformation of 
the variables and therefore a reparametrization of the 
Each variable is centred and scaled according to the 
standardizations scheme (5). 

ti = (yi - ym)/u,, z i j  = ( X i j  - xm.)/u.  J J  ( 5 )  

n n n 

where ym = (yi)/n,  xmj = (x i j ) /n ,  uj = [ (x i j  - ~ r n ~ ) ~ ] *  

and uy = [ 1 (yi - ~ m ) ~ ] + .  

i =  1 i =  1 i =  1 

n 

i =  1 

The matrix (Z’Z),,, = ( r j k ) m x m  is called the correlation 
matrix; it is symmetric and the main diagonal consists of 1. The 
term rjk is a partial correlation coefficient, i.e. a measure of the 
correlation between the independent variables xi and xk (or z j  
and zk); if all the variables were orthogonal to each other the 
resultant correlation matrix would be the identity matrix I,. 
The relation between an original parameter Pj and the new one 
Pj’ is P j  = (uy/uj)Pj’ and the new parameter variances are 
given in eqn. (6), 

(Sj’)2 = (S’)2rj;1 (6)  

where (S’), is the minimum value of CHISQ for the standard- 
ized model. 7 a  

The smaller the variance Sj2 of a parameter Pj,  the greater 
the precision of the parameter estimate. To keep Sj as low as 

possible we can act on two completely independent factors, S2 
and cjyl .  S2 is a measure of the total final experimental error 
and, in general, it can be little affected in a given practical 
situation, considering that both scientific instrumentation and 
the relative operators are fixed. Though the experimental error 
can be little affected, the precision of S2 can be improved by 
increasing the number of observations (i.e. the degrees of 
freedom of the estimate). 

The term c j j l  depends only on the experimental design, 
i.e. on the initial concentrations of the reagents A and B for 
each observation. An ideal way of keeping cj;’ low would be 
to choose points having absolute values IXjk lk=j  9 0 and 
( X j k l k $ j  - 0 (i.e. an orthogonal design) and so on for the other 
Pjs. Unfortunately, in practice, these designs are unattainable. 
In fact, in a non-linear functional relationship the role of the 
independent variables is covered by the derivatives of the 
function (here absorbance) with regard to the parameters 
(x i j  = 6yio/6Pj w,*) and these derivatives are highly correlated 
and cannot vary independently of one another. 

An extremely important statistical indicator of the quality 
of the data is the multiple correlation coefficient R j  given by 
eqn. (7). 

Rj  = [l - l/(cjjcj;’)]* = (1 - 1/rj;’)* (7) 

If each Rj - 0 then the data will have been collected 
according to an orthogonal design and all the parameters Pj  
will be independent of one another. On the other hand, if one 
Rj - 1 then the data are highly correlated (or multicolinear) 
and any error in the given P j  can be counterbalanced by suit- 
able variations in the other parameters, thus giving just the 
same fitting for the minimum, CHIMIN; P j  is then largely 
indeterminate. 

The relevance and peculiar meaning of R j  for a parameter P j  
(or Pj’) is apparent in eqn. (8), obtained by combining relations 
(6) and (7). 

(Sj’)2 = (S’)’Y~Y’ = (S )2 / (1  - Rj2) (8) 

The term rjy’ = 1/(1 - Rj2)  is called the variance inflation 
factor (VIF). In an ideal orthogonal design R j  = 0 and 
VIF(Pj) = rj;’ = 1 so that (S,’)’ = (S),; the variance of the 
parameter Pi’ depends only on the precision of the experimental 
data, considering that (S’)2 is the absorbance variance in the 
transformed model. If the variables are highly correlated, and 
this is often the case in the determination of formation 
constants, Rj may be close to 1 and VIF 1 so severely 
inflating the parameter v a r i a n ~ e . ~ ~ ’ . ~ *  

Known Model.-If the model representing the data is known, 
then a simple procedure can be followed in order to obtain an 
optimal determination of the parameters. Though in practice 
this case is fairly improbable, it may nevertheless be useful to 
consider it separately, both because of its theoretical importance 
and for reasons of clarity and simplicity.2g 

We can say that an experiment is optimally designed if it 
allows the most precise statistical inference within the con- 
straints of the physical and instrumental apparatus employed 
(e.g. solubilities, activity coefficients constancy, available cells, 
etc.). To compare designs different criteria have been proposed; 
probably the most largely used is the one2’q3’ that maximizes 
the determinant of the information matrix JX’XI (or of the 
correlation matrix IZ’Zl). Such a criterion has a tendency to 
automatically reduce the correlation among the variables and 
therefore R j  and the variance inflation factor (VIF). 

In models that are non-linear in the parameters, the 
experiments cannot be optimally designed a priori because the 
determinant depends on the design matrix (x~~), ,~,  = (6yio/6Pj 
w ~ * ) ~ ~ ~  which is based on the actual values of the unknown 
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parameters. This is an unusual situation in which, to design 
the experiment optimally, we would need to know the same 
parameters we are searching for. An efficient way of doing so 
is to adopt a sequential strategy. The parameter estimates 
available at a particular stage are required to choose the next 
observation. New improved parameter estimates are calculated 
using the preceding point and they are then used again to 
choose the subsequent observation, and so on. 

The scheme that will be shown below has been treated in 
more detail and includes a worked example.25 To implement 
this procedure a grid in the (log a, log b) plane should be made 
using the parameter estimates of the first least-squares calcul- 
ation based on the initial design (see later) and then possibly 
updated as the parameter estimates improve. The points on this 
grid, having a measurable absorbance with our apparatus, 
constitute the experimental region and are called ‘candidates’. 
The procedure can be detailed as follows. 

(1 )  Collect some points on the basis of some sensible criterion 
(starting design). 

(2) Use the points so far collected, in a non-linear least- 
squares routine and estimate the parameters and their 
variances. If the variances are low enough, stop the experiment. 

(3) Find the point of the experimentally attainable region 
that, when added to the points already collected, maximizes the 
determinant IX’Xl. In other words, each candidate must in 
turn be added to the current design matrix ( x ~ ~ ) ~ ~ ~  and the 
one resulting in a design matrix ( x ~ ~ ) ( ~ + ~ ) ~ ~  for which the 
determinant IX’X( is a maximum will be chosen. 
(4) Measure the absorbance of the point chosen in (3) and 

go to (2). 

General Procedure: Model Unknown.-In practice both the 
model and its parameters must be determined from the 
experiment; the approach previously proposed can only be 
applied once a single model has been picked out from all the 
plausible ones initially chosen. Therefore the first and central 
part of the experiment has to be devoted principally to the 
discrimination among competing models. 

Suppose there are two rival models (Y 1 and Y2) to represent 
the data, one of which is correct. Let Y lc(a, b) and Y2c(a, 6) be 
the calculated values at the point (a, b) for the two models, 
whose respective parameter estimates have been obtained with 
least-squares calculations based on the n observations already 
collected. Then the next observation n + 1 will be taken at the 
point (a, b) where the two models diverge most, i.e. where 
[Ylc(a, b) - Y2c(a, b)I2 = maximum, referring to the whole 
region of ~perability.~’ 

Once the new observation has been measured the least- 
squares parameter estimates are updated for both models and, 
as before, the subsequent observation will be found. This 
sequential procedure will continue until the variance for a 
model (the incorrect one) is high enough to put it aside. This 
will occur if, in the region experimentally explored, the two 
models differ significantly by more than the experimental error. 
In fact, while the variance of the correct model depends only on 
the experimental error, that of the incorrect one is due both 
to this error and to the bias for lack of fit. Furthermore, 
information will be obtained as to the unexplored region and 
where to direct our attention, if necessary. 

A possible line of action for the general case is suggested. 
( 1 )  Collect some points on the basis of some sensible criterion. 

Ideally this starting design should be both model robust (i.e. 
able to give good parameter estimation for any model) and 
model sensitive (i.e. suitable for highlighting possible inadequa- 
cies in the models initially assumed). 

(2) As in the standard procedure, estimate the number and 
possibly the nature of the species in solution, by using either 
numerical and/or graphical methods.23a 

(3) Use the information derived from point (2) and any 
previous knowledge of the system or chemical intuition to set 
up all the plausible models. 

(4) Use a non-linear least-squares routine (here Gauss- 
Newton) and all the available experimental points in order to 
calculate, for each of the q models still eligible, the parameters, 
their variances and the general variance V(g)  = CHIMIN- 
( g ) / [ n  - m(g)] ,  where g = 1, 2,000, q is a model index. If 
only one plausible model is left from the ones initially 
entertained, go to (9). 

(5) Select the two models giving the best agreement with the 
experimental data (for instance, the lowest variances), say the 
models Y 1 and Y2. 

(6)  Calculate the I; statistics F O  = V( 1)/ V(2) where V ( I )  and 
V(2) are the variances [with V(1) 3 V(2)] of the currently 
best-fitting models Y1 and Y2, based on all the available 
experimental points and estimated, respectively, with N l  and 
N2 degrees of freedom.24 Let F, = F(l - a, N1, N2) be the 
critical value of the F distribution for the given degrees of 
freedom and at a significance level CI (often 0.05 or 0.01 i.e. 5% 
or 1%); this means that the probability of F’ = V(l)/V(2) 
exceeding F, = F(l - a, N1, N 2 )  by chance is a. If F’ 2 F, 
remove the model Y2 and go to (4); if 

(7) Working as described earlier and considering all candi- 
dates, find the point for which the two models are furthest 
apart, i.e. [Ylc(a, b) - Y2c(a, b)I2 = maximum. Add another 
point in the same way and measure them both. 

(8) Find a point each, to maximize IX’Xl both for models 
Y 1 and Y2. Measure them and go to (4). 

(9) At this stage hopefully only one model is left, because all 
the others have been eliminated in the process of discrimination. 
Working according to the principles of the maximum deter- 
minant (see last section ‘Known Model’) add the observations 
sequentially until the parameter variances are sufficiently low, 
then stop the experiment. 

< I;, go to (7). 

Worked Example.-The scheme examined above will be 
illustrated through a simple simulated worked example; the aim 
is to clarify the proposed handling of the problem. Two species 
A and B react in a non-absorbing solvent according to eqns. (i) 
and (ii) to give the only absorbing species AB and A2B whose 
extinction coefficients are E~ and E ~ ~ ,  respectively. 

(i ) 
K2 1 A + B.‘AB 

K2 2 AB + A 4 A2B ( i i )  

The activity coefficients are assumed constant throughout 
the experiment and Beer’s law is valid. 

The values of K 2 ,  and K22  used to generate the data are 
10.00 and 0.100 dm3 mol-’; those of E~~ and are 10000.0 
and 21 000.0 dm3 mol-1 cm-’, respectively. Errors, normally 
distributed with mean p = 0 and o2 = 0.00102, have been 
added to the calculated absorbances through a FORTRAN 
program based on random number generation. The observ- 
ations have been chosen in a (log a, log b) plane from a 21 x 21 
grid (-4.0 < log a, log b < - 1.0; Alog a = Alog b = 0.15); 
the points in the grid having an absorbance between 0.1 and 
4.0 units (cells of unit path length) have been supposed 
experimentally attainable (i.e. candidates). 

The starting design consists of nine points, deliberately 
collected to cover the experimental region principally at the 
borderline (see later). The initial plausible models have been 
assumed to be those of 2:l and 1:l stoichiometry that in the 
present case can hardly be distinguished, considering that 
K22  G K 2 1 .  Tests have been made with different initial guess 
estimates for the parameters and generally there has been a 
convergence about the same final values. The calculations have 
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Table 2 Some other statistically significant results from the worked example“ 

c7z12/ KI 2 

13.2 
1.7 

0.754 
0.724 
0.715 

0.533 
0.470 
0.470 
0.400 
0.400 
0.364 
0.357 
0.338 
0.335 
0.334 
0.329 
0.327 
0.307 
0.293 
0.280 
0.279 
0.270 
0.260 
0.260 
0.253 
0.252 
0.186 
0.178 

- 

- 

0.104 x lo8 
0.692 x lo6 

0.274 x lo6 
0.381 x lo6 
0.383 x lo6 

0.224 x lo6 
0.156 x lo6 
0.145 x lo6 
0.114 x lo6 
0.895 x 10’ 
0.807 x 10’ 
0.865 x lo5 
0.776 x lo5 
0.657 x lo5 
0.608 x lo5 
0.575 x 10’ 
0.561 x 10’ 
0.557 x lo5 
0.551 x lo5 
0.539 x 10’ 
0.504 x 10’ 
0.508 x lo5 
0.499 x lo5 
0.453 x 10’ 
0.428 x lo5 
0.426 x lo5 
0.317 x lo5 
0.271 x 10’ 

- 

- 

3.66 
0.614 

0.3 74 
0.330 
0.327 

0.278 
0.228 
0.224 
0.205 
0.205 
0.193 
0.191 
0.187 
0.186 
0.185 
0.185 
0.184 
0.170 
0.165 
0.161 
0.160 
0.152 
0.149 
0.149 
0.147 
0.147 
0.1 14 
0.1 10 

- 

- 

8.19 x 107 
0.399 x 10‘ 

0.167 x lo6 
0.226 x lo6 
0.241 x lo6 

0.231 x lo6 
0.119 x lo6 
0.102 x 10‘ 
0.804 x 10’ 
0.649 x 10’ 
0.507 x 10’ 
0.481 x lo5 
0.516 x 10’ 

0.376 x lo5 
0.355 x lo5 
0.341 x lo5 
0.338 x 10’ 
0.320 x 10’ 
0.333 x lo5 
0.300 x 10’ 
0.301 x 10’ 
0.305 x 10’ 
0.295 x 10’ 
0.258 x lo5 
0.239 x 10’ 
0.190 x 10’ 
0.158 x lo5 

0.430 x 1 0 5  

211.8 
33.7 

27.2 
28.8 
29.2 

29.4 
26.9 
29.8 
28.9 
31.4 
32.2 
32.7 
33.6 
35.9 
35.9 
37.5 
37.9 
35.9 
35.7 
35.6 
36.1 
35.5 
35.6 
36.4 
36.6 
36.9 
44.0 
44.3 

- 

- 

25 270 
2 338 

1 192 
1613 
2 030 

1 630 
1025 

916 
734 
61 3 
524 
554 
550 
478 
464 
440 
470 
466 
449 
454 
426 
426 
426 
407 
372 
366 
345 
297 

- 

- 

140.9 
30.2 

28.3 
28.6 
29.6 

- 

31.0 
27.2 
29.9 
29.7 
31.7 
32.3 
33.3 
34.6 
36.4 
36.7 
38.5 
39.4 
36.9 
36.9 
37.0 
37.6 
36.6 
36.7 
37.5 
37.9 
38.3 
45.3 
45.6 

25 040 
2 307 

I170  
1593 
2 010 

1612 
1010 

906 
727 
604 
515 
545 
542 
469 
456 
433 
463 
459 
442 
447 
419 
420 
419 
400 
366 
3 60 
340 
293 

- 

- 

13.6 
13.8 
16.9 

18.5 
19.7 
19.3 

20.2 
19.1 
21.2 
21.2 
22.4 
22.4 
23.1 
24.0 
25.0 
24.5 
25.7 
25.5 
24.8 
24.8 
24.8 
25.2 
25.1 
25.1 
25.6 
25.8 
26.0 
30.4 
30.7 

- 

- 

0.970 
0.857 
0.848 

0.508 
0.49 1 
0.470 

0.363 
0.332 
0.332 
0.29 1 
0.282 
0.252 
0.251 
0.240 
0.23 1 
0.227 
0.224 
0.2 19 
0.210 
0.202 
0.193 
0.193 
0.189 
0.182 
0.181 
0.177 
0.177 
0.128 
0.123 

- 

- 

0.442 
0.356 
0.340 

0.24 1 
0.225 
0.21 1 

0.179 
0.159 
0.158 
0.144 
0.143 
0.133 
0.131 
0.128 
0.126 
0.122 
0.122 
0.118 
0.113 
0.110 
0.107 
0.107 
0.104 
0.101 
0.101 
0.0993 
0.0988 
0.0757 
0.0734 

- 

- 

~~ 

‘Some other relevant results for both models (Y1 and Y2) of the worked example are shown. cjy1/Pj2 is the component of the relative variance 
(S2cj;’/PJ2) of Pj ,  that can be ascribed to the design. The first points added have a dramatic impact on this quantity; the effect is decidedly more 
pronounced and persistent for c ~ ~ - ~ / K ~ ~ ~  and c ~ ~ - ~ / E ~ ~ ~ ,  as K, ,  and E~~ are strongly correlated. A similar behaviour is noticeable in the VIFs 
(Variance Inflation Factor) of the various parameters. The closer R; (square multiple correlation coefficient) to 1 the higher the 
value of VIF(Pj). For an ideal orthogonal design Rj2 = 0 and consequently VIF(Pj) = 1. 

been made with a FORTRAN program DISCRI based on the 
Gauss-Newton method as modified by Marquardt 26 and 
supplemented with subroutines to perform the required tasks. 
The first index or number of entries in the headings of both 
Tables 1 and 2 refer to the model: 1 to Y1 = y(a, h, K , ,  E ~ )  

and 2 to Y2 = y(a, b, K 2 1 ,  K,,, E , ~ ,  E , ~ )  (except cj;’). 
In Table 1 some relevant results of the program DISCRI are 

shown as each experimental point is added to the design. At the 
side of n, in parentheses, is a code, 0 means that the point in 
question belongs to the starting design, 1 that the point has been 
chosen because it maximizes the determinant I(X’X), for 
model Y 1 at the current stage, 2 because it maximizes I(X’X), 4( 

for model Y2, and 3 because it gives the best discrimination 
between Y 1 and Y2. At the significance level of a = 0.0010 and 
n = 9, p = 16.1 and Fc(7, 5) = 28.2 so that model Y1 cannot 
be rejected. For n = 10, p = 300 and Fc(8, 6) = 19.0 therefore 
Y 1 could be discarded. However, the process of discrimination is 
not terminated until n = 19 [for which = 280 and Fc(17, 
15) - 5.41, both to avoid relying too much on so few points and 
also to give a better demonstration of how the method functions. 

As can be seen, whatever the basis for collecting the experi- 
mental points, they demonstrate a tendency to concentrate on 
the borderline of the region being explored. K 2 ,  and E ~ ,  display 
a remarkable drift and this can be ascribed to their very strong 

correlation [ r2(K, , ,  E , , )  - 1.01; though r2(K2,,  E , , )  decreases 
during the experiment it remains very high, and consequently 
the estimates of K 2 ,  and E~~ are strongly responsive to the error 
fluctuations of the absorbance. The experiment is terminated 
when the determinant value of Y2 (det2) appears to increase 
moderately (n  = 37). In fact, since the determinant embodies 
the variance of all the parameters, its monitoring has been 
preferred to that of a single-parameter variance. 

For each entry, in Tables 1 and 2, are shown the values for 
the experiment as if it had been continued till n = 100 and 207 
(all candidates). It is manifest that the information gathered 
after n = 37 is not highly significant. 

In Table 2 the component of the relative variance ( S 2  
cj;’/Pj2) of Pj,  that can be ascribed to the design (c j ; ’ /Pj2) ,  is 
shown; the remaining part ( S 2 )  depends only on the experi- 
mental error which can vary unpredictably from point to 
point. The impact of the first four points (10, 11,12, 13) for each 
c . . - ’ /P j2  JJ of Y2 is dramatic as can globally be seen from the 
increase of det2 in Table 1. The effect is still strong until n = 22 
when it diminishes and becomes insignificant after n = 37. The 
effect is considerably more pronounced for c , , - ~ / K , , ~  and 
c44-’/&2Z2, as K, ,  and E,,  are the most correlated and hence 
the most indeterminate parameters. The VTFs [VIF(Pj) = 
1/(1 - Rj2) ]  for K 2 1  and E~~ present an initial noticeable 
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decrease and then a slow gradual increase. The VIFs for K22 and 
E ~ ~ ,  however, show a constant decrease that is much more 
marked for the first points. In fact, the selected points are very 
effective in gradually removing the strongest correlations (here 
between K22 and E ~ ~ )  that result in very small values of the 
determinant (if Rj = 1 then det = 0), while their effect on the 
less correlated parameters is smaller. 

The standard deviation for a parameter and a given n can be 
easily computed from the Tables. For n = 37, S(K2,)  = 
[V(K2,)lt = K222  CHIMIN2]* = (0.426 x lo5 
x 0.1152 x 0.714 x = 0.020; S ( E ~ ~ )  = (0.239 x lo5 
x 18 8002 x 0.714 x = 2456; S(K2, )  = 0.0042 and 
S ( E ~ , )  = 3.2. It is evident that the relative standard deviations 
of K22 and E~~ (0.17 and 0.13, respectively) are very high, 
revealing that their correlation has been removed only to a 
small extent; VIF(K2,) = 366 and this is due almost exclusively 

Calculations have been performed using data with different 
sample variances S2.  The results may vary significantly, 
particularly for the ones associated with the correlated 
parameters. They become significantly better if S2 < 0.0010, 
worse if S2 > 0.0010. So for data with high correlations the 
experimental error becomes very important. 

to r2(K22, E 2 2 ) .  

Conclusions 
A set of experimental points can be good to discriminate 
amongst some models but not amongst others and, at  the same 
time, they can either be good or useless for the determination of 
a certain model. The quality of a design depends only on the 
particular model considered, which is initially unknown. A 
procedure that collects all the data together at  the start is 
therefore not recommended. 

The method described allows, in a sequential manner, both 
the discrimination between whatever concurrent models are 
used, and the optimal determination of the final model. One 
way to proceed is via the one illustrated, where both the type 
and the number of points of the starting design could be a 
problem. In this case, further research is probably needed in 
order to obtain maximum efficiency. Another open question is 
the number of points to allocate both to the discrimination 
and to the optimal parameter determination before the final 
model is chosen. During the early steps, perhaps, more emphasis 
should be given to the discrimination, though the points here 
have been equally distributed between the two different tasks. 

The principles expounded can also be applied to repair 
designs of the standard type, i.e. when the data are collected 
together before they are processed. In such a case experimental 
points might be added to obtain either a better discrimination 
among certain particular models or a better determination of 
the final chosen model 31 or even both. Directions for a possible 
enlargement of the experimental region may also be obtained. 
Perhaps this is the route to follow to become accustomed to 
the method and, at the same time, possibly saving on the 
experimental time. 

In general, though less so today, in experimental research 
there is a propensity to ignore the design and concentrate on the 

statistical analysis of the data. No c l ee r  analysis can extract 
much information from data where there is none. The design is 
much more important than the statistical analysis, though in 
practice the reverse is true. The suggested approach should give 
us all the information that can be drawn out of the system. 

An essential practice is a close-mesh grid in the (log a, log b)  
plane, based on the most plausible model obtained from the 
starting design. This grid should be updated as the model or 
its parameters change. These guidelines can be applied to 
complexes of whatever stoichiometry and to other types of 
problems and, if properly used, their limit should be mainly 
in the system constraints and in the region experimentally 
attainable. 
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