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The simulation of  EPR spectra is often necessary for the accurate determination of  the principal 
values of  the electronic Zeeman and hyperfine tensors. The automatic adjustment of  these principal 
values and of  l inewidths enables us rapidly to  achieve a satisfactory agreement between the 
observed and the calculated spectra. The usual criterion of least squares may be applied to  the 
deviations t o  perform this adjustment. In two or more dimensions, a minimization algorithm derived 
from that of  Levenberg-Marquardt is applied. In one dimension, the algorithm of the Fibonacci 
series has been used. 

This approach lends itself to the determination of parameters, such as the reorientational 
correlation time, which may not be deduced by  a casual inspection of  spectra. It is illustrated by  the 
example of  a poly(4-vinylpyridine) gel, crosslinked by  vanadyl ions. Whereas the gel is rigid at l o w  
temperatures, the motion of the paramagnetic probe modifies the spectral shapes for this gel above 
260 K. 

The first stage involves only the spectral parameters which are fitted from the low-temperature 
spectrum, using second-order perturbation formulae. The second stage requires a model of  
reorientation; simulations have clearly shown that a Brownian diffusion model must be preferred t o  
a random-jump model. By  keeping the spectral parameters as constants, the reorientational 
correlation time, as well as linewidths, can be determined at several temperatures by  the above 
minimization. 

The determination of the eigenvalues and eigenvectors of the 
spectroscopic tensor g, of the hypedine coupling tensor A and, 
when appropriate, of the dipolar tensor D is done classically by 
EPR experiments carried out on single crystals, recording the 
resonance fields as functions of the orientation of the crystal. 

Although certainly the most accurate, this method is not 
always applicable, many paramagnetic species being observable 
only in microcrystalline powders or in amorphous rigid 
matrices. In these media, the orientation of the g and A tensors is 
not unique; generally, all orientations are equally probable. The 
EPR spectra recorded in such conditions are weighted sums of 
spectra corresponding to these orientations. Many articles have 
been devoted to the analysis of spectra of paramagnetic 
polyoriented species leading to the above-mentioned spectro- 
scopic parameters and are summarized in the review article of 
Taylor et al.' These methods are sometimes complex and yield 
values which have to be validated by simulation of EPR 
spectra. 

The precision and speed of this approach are greatly 
enhanced by the automatic fitting of spectroscopic parameters, 
which is achieved by the minimization of the sum of the squares 
of the deviations between the experimental and calculated 
spectra. Several research groups have resorted to the fitting of 
the spectroscopic parameters from the observed spectra. This 
fitting becomes a challenge when the observed spectrum entails 
several well separated lines. In such cases the lines of the 
calculated spectrum must match those of the observed spectrum 
before a least-squares minimization may be applied. 

This pattern matching problem for EPR spectra has been 
tackled by Jackson2 for analysing spectra of free radicals. 
Having met this problem, Beckwith and Brumby3 chose the 
Simplex algorithm in order to analyse hyperfine splittings in 
organic radicals because this algorithm avoids the calculation of 
derivatives. Fajer et al.4 also resorted to the Simplex algorithm 
to determine magnetic tensors and linewidths from powder 
spectra, bimodal orientation distributions and multiexponential 

decay times and amplitudes. In order to overcome the pattern- 
matching problem which results in multiple minima, the Monte 
Carlo method has been used by Kirste' and the simulated 
annealing method by Heynderickx et a1.6 

The calculation of derivatives should not, however, be 
regarded as a stumbling block, for these derivatives may be 
approximated in a useful manner by finite differences. And the 
minimization algorithms which use derivatives are far more 
efficient than the Simplex algorithm.' 

In the case of a coordination complex of trivalent uranium * 
in powder form studied in our laboratory, the broad asymmetric 
line of the spectrum did not raise the pattern matching difficulty 
mentioned above. Our previous experience with non-linear 
least-squares optimization for a variety of problems in physical 
chemistry has shown that the Levenberg-Marquardt 
algorithm is well suited for such problems. This algorithm uses 
derivatives at each iteration to select both a search direction and 
a step size. We have therefore used the latter algorithm to 
determine the principal values of the g tensor and the linewidths 
from the observed powder spectrum. 

The present article deals with the more general case where the 
spin Hamiltonian entails a hyperfine interaction term as well as 
the Zeeman electronic term, for a paramagnetic ion or a free 
radical having an effective electronic spin S = i. The simulation 
program is embedded into a computer program, based on the 
Levenberg-Marquardt algorithm, which fits the principal 
values of the g and A tensors according to the least-squares 
criterion. 

To illustrate this approach, we have chosen the example 
of the vanadyl ion in a gel of poly(4-vinylpyridine) (P4VP) 
in ethanol, which we have recently studied'' by EPR 
spectroscopy. 

This gel may be considered as a rigid medium below 260 K, 
since the resonance lines do not shift as the temperature is 
lowered. When a reorientational motion takes place and is fast 
enough, the effective aaisotropy of tensors g and A is gradually 
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Fig. 2 Arrhenius plot of the reorientation correlation times for V-O 
bonds deduced from spectral simulations. The slope of the straight line 
obtained by least-squares fitting to the values of zR, obtained by the 
method described in the text, corresponds to an activation energy of 
20.4 kJ mol-'. 

reduced along with the decrease of the correlation time 5R. As a 
consequence, the resonance lines are shifted and broadened. 
Two reorientation models have been applied in order to 
simulate the behaviour of spectra: a reorientation by random 
jumps of finite amplitude and a reorientation by infinitesimal 
rotations (Brownian diffusion). As the former model is clearly 
incompatible with the observed spectral patterns, only the 
Brownian reorientation will be considered. Knowing the 
principal values of magnetic tensors, the simulations are made 
by means of the Bloch equations, modified by a diffusion term. l 2  

When the only parameter to be adjusted was the reorientation 
correlation time, we used the algorithm of the Fibonacci 
series.13 In the case of two or more adjustable parameters, we 
use the algorithm and software of Gay. l4  

Experimental 
Upon addition of V02+  ions to a solution of P4VP in ethanol 
with a concentration lower than one ion for twenty monomer 
units, a gel is obtained, the physical properties of which depend 
on the degree of crosslinking and on the solvent content." 
Interchain bonds are maintained by the V02+ ions, each of 
which is bonded to two pyridyl groups belonging to different 
chains (Fig. 1). The increase in the flexibility of the three- 
dimensional network with temperature may be estimated from 

the reorientational correlation time zR of the V-O bond, the 
direction of which is the cylindrical symmetry axis of the g and A 
tensors (Fig. 2). This correlation was determined from spectra 
recorded in the X-band on a Varian E-109 spectrometer 
connected to an acquisition system E-935. 

Discussion 
The Reorientational Model.-The mobility of the V-O bond 

induces a reduction of the effective anisotropy of the g and A 
tensors which, in the X-band, becomes perceptible only for 
reorientational correlation times shorter than 100 ns (rigid 
limit). The anisotropy is practically cancelled if zR is lower than 
0.5 ns. Between these two values, the spectral shape evolves in a 
complex manner and the determination of zR requires the 
simulation of experimental spectra. 

The simulation of an EPR spectrum in the slow reorientation 
regime may be considered as a multisite exchange problem, each 
site corresponding to a particular orientation of the applied field 
with respect to the principal axes of the magnetic tensors. In 
the frame of this model, McCalley et a1.12 have proposed an 
algorithm based on the Bloch equations modified by the 
addition of a term rotational diffusion. For each point of the 
spectrum, there is a corresponding system of equations [eqn. 
(l)], where m a n d j  stand for the nuclear quantum number and 

@[iye(Bj - Bo) + I;; + kFri-1 
A A 

-7i1(kT- 1v- 1 + kj'+ 1w+ 1) 
= iy,B,M;;Pj (1) 

the site respectively; Pi = sin Oj is the probability density of an 
angle Oj between the applied field Bo and the symmetry axis of 
tensors g and A. B, is the microwave field and Bj" the 
resonance field. M r  is the static electronic magnetization, 
proportional to the concentration of the paramagnetic species, 
and M y  = uj" + iuj" denotes the transverse magnetization for 
site j. The expressions for constants k-, and kj'* 1, to which 
exchange rates of magnetization between site j and adjacent 
sites are proportional, may be found in ref. 12. 

The first step in the analysis consists in the determination of 
the g and A tensors of V 0 2 +  by a least-squares fit of the 
simulated spectrum to the observed spectrum run in a rigid 
matrix. In this case, the Lorentzian and Gaussian lineshapes give 
about the same agreement with the observed spectrum (Fig. 3). 

The simulated spectra in the presence of motion then depends 
on the following parameters: the reorientation correlation time 
tR of the V-O bond and the half-widths at half height ALII and 
ALL. We assume that the 'intrinsic' linewidth varies with the 
orientation of the symmetry axis of tensors g and A with respect 
to the applied magnetic field according to eqn. (2), where ye 

(AL,), = (ALIl2 cos20j + AL: sin20j)* = (yenT2j)-1 (2) 

is the electron magnetogyric ratio and T2 the transverse 
electronic relaxation time, which depends on the dynamics of 
reorientation. 

The parameters tR, ALII and ALL are explicitly or implicitly 
involved in the equation system (1) and play a role in the shape 
and position of resonance lines. The observed linewidths are 
sometimes greater than the intrinsic values used. Further line 
broadening may thus take place, which does not depend on 
motion: it may be Gaussian if it stems from unresolved 
hyperfine interactions of Lorentzian in the case of a dipolar 
interaction between neighbouring paramagnetic species. This 
broadening is taken into account by a convolution of the 
calculated spectrum with a form function; our simulations 
suggest that the Lorentzian shape results in a much better fit 
than the Gaussian shape, which is not represented here. 
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Fig. 3 VOz+ ion in a gel of P4VP at 153 K (rigid matrix): ------, 
experimental spectrum; -- -- --, spectra calculated with A ll = 184.2 G, 
A ,  = 67.3 G, g , ,  = 1.93786, g ,  = 1.97396. Halfwidths at half height 
are ALl, = AL, = 6.7 G. for a Gaussian shape [spectrum (a)] or A l l  = 
8.8 G and AI = 8.6 G for a Lorentzian shape [spectrum (b)]  

Adjusting the Parameters.-A general scheme applies to all 
fitting problems, the solution of which is approached by 
successive iterations. Initial values of the adjustable parameters 
x,. x2, . . . x, are known. With these values, simulation provides 
a spectrum in the form of a series of intensities y l ,  y , ,  . . ., y ,  
corresponding to the sampled values B, ,  B,, . . . Bp of the 
applied magnetic field. 

The intensities observed are zl, z2, . . ., zp;  the parameters 
xl, x2, . . ., x, will be modified in such a way that the deviations 
z1 - y , ,  z2 - y 2 , .  . ., z p  - y p  are minimal. The least-squares 
criterion leads to the most probable parameters if errors 
affecting measures have a Gaussian distribution and if the 
mathematical model is perfectly suited. 

The sum of the squares of deviations is a twice-derivable 
function of the adjustable parameters and the minimization 
algorithm of Newton could, in principle, be applied. It consists 
of determining the minimum of the quadratic function having 
the same value of the function, the same gradient and the same 
second-derivatives or Hessian matrix. In practice, only an 
approximation of the gradient is determined, by finite 
differences. The Levenberg-Marquardt algorithm uses the 
fact that, in the case of a sum of squares, the matrix of the partial 
derivatives dyj/dx,, or Jacobian, provides an approximation of 
the Hessian matrix. However, in this algorithm, the adjustable 
parameters may take any value. It is known, apriori, that the 
i-th parameter must be included within some interval (ai; bi). 
The subroutine BSOLVE by Ball implements an algorithm 
stemming from the previous one, which takes into account the 
boundary constraints. The approximation of the Hessian 
matrix used in the two algorithms mentioned above neglects the 
second derivatives d2yj/dxidx,. As long as the deviations z j  - y j  

are important, a significant error results in the calculated 
Hessian matrix. We have therefore used the software N2FB of 
Gay l 4  which is also specialized for the minimization of a sum of 
squares, which implements an algorithm in which a far better 
approximation of the Hessian matrix is calculated. 

When only one parameter is to be adjusted, the algorithm of 
the Fibonacci series l 3  in which derivatives do not play a role, 
was used. 

A complete computer program for parameter fitting entails 
three parts. 

(1) The executant monitors the whole calculation. It performs 
all preliminary calculations, then calls the optimizer and then 
does the final calculations and calls the subroutine responsible 
for production of a graphic representation of both the observed 
and calculated spectra. 

(2) The optimizer determines approximations of the gradient 
and Hessian matrix of the sum of the squares of the deviations 
and modifies the adjustable parameters by successive iterations 
in such a way that this sum decreases. It calls the simulator at 
each iteration. 

(3) The simulator calculates the deviations z j  - y j  for the 
current values of the adjustable parameters. 

Our software is written in FORTRAN 77 and executed on 
a CRAY XMP-28 computer. Execution times range between a 
few seconds for the rigid matrix and a hundred seconds in the 
case of the Brownian rotation for 90 values of the 8 angle. 

Automatic differentiation of algorithms,' ' which we have 
not yet applied for these simulations, would enable us to obtain 
a variant of the simulator which calculates not only the 
deviations, but also the Jacobian matrix dyj/dxi. Another type 
of software, N2GB also by Gay,14 takes advantage of this 
Jacobian in order to determine a better approximation of the 
Hessian matrix and to reach more rapidly the optimal para- 
meters. 

Application to the Rigid Matrix.-Knowing that the g and A 
tensors have the same principal axes, one can determine, for a 
given orientation of the paramagnetic species: (a) the resonance 
fields corresponding to the various values of the nuclear 
quantum number m,, thanks to an analytical formula derived 
from a second-order perturbation calculation '; ( b )  the 
corresponding transition probabilities. 

The expression enabling the calculation of a spectrum for a 
given orientation of the applied magnetic field with respect to 
the principal axes of the magnetic tensors is integrated 
numerically over the spherical coordinates 8 and v, if at least one 
of the two tensors is non-axial, and over 8 only if both tensors 
are axial. 

For a non-axial system, there are nine adjustable parameters: 
three principal values for each magnetic tensor and three 
linewidths. Their number is reduced to six for an axial system, 
or even five in the case of the vanadyl ion. In the latter case 
indeed, the principal value A l l  is deduced from the separation 
between the extreme parallel bumps of the spectrum with good 
precision. 

The fits (see Fig. 3) have shown that in a rigid matrix, the 
lineshape is intermediate between the Gauss-Laplace (un- 
resolved hyperfine structures) and the Lorentz-Cauchy 
(electronic relaxation) shapes. A typical fit entails fifty 
iterations. 

Application to Reorien ta tional Motions .-The above de- 
scribed computer program, designed to fit spectra in the slow 
reorientation regime, is practically applicable for correlation 
times of between 5 and 100 ns in the case of vanadyl. Above 
the upper limit, the spectrum is practically independent of zR. 
For a P4VP gel swollen by ethanol, this range of correlation 
times corresponds to temperatures in the range 26C320 K. 
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Fig. 4 Experimental (- - - -) and calculated (**-jC-) spectra of 
the vanadyl ion in a P4VP gel swollen in ethanol; T = 261 K, zR = 
7.6 x lo-* S (a) ,  and T = 308 K, rR = 1.66 x lo-' S ( b )  

Since the tensors g and A are, in principle, independent of the 
temperature, thc adjustment of zR by use of the algorithm of 
the Fibonacci seriesI3 gives a good agreement between the 
observed and calculated spectra. This agreement is significantly 

improved when the intrinsic linewidths AL,, and AL, and a 
further Lorentzian broadening, expressing the interactions 
between electronic spins, are introduced as adjustable 
parameters and the algorithm of Gay l4 used. Fig. 4 displays 
examples of the good agreement obtained with the latter 
method. A typical fit entails twenty iterations. 
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