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COSMO: A New Approach to Dielectric Screening in Solvents with Explicit 
Expressions for the Screening Energy and its Gradient 

A. Klamt * and G. Schuurmann t 
Bayer AG, 0 78, 0-5090 Leverkusen-Bayerwerk, Germany 

Starting from the screening in conductors, an algorithm for the accurate calculation of dielectric screening 
effects in solvents is presented, which leads to  rather simple explicit expressions for the screening 
energy and its analytic gradient with respect to  the solute coordinates. Thus geometry optimization 
of a solute within a realistic dielectric continuum model becomes practicable for the first time. The 
algorithm is suited for molecular mechanics as well as for any molecular orbital algorithm. The 
implementation into MOPAC and some example applications are reported. 

Owing to the outstanding importance of solvation effects in 
chemistry the proper handling of solvation in molecular 
mechanics as well as in molecular orbital (MO) calculations is a 
field of active research. Even a brief discussion of the several 
very different approaches to this problem would be beyond the 
scope of this paper and we therefore refer the interested reader 
to some reviews ‘ e 2 a 3  and literature cited therein. 

The new approach presented in this article belongs to the 
class of dielectric continuum  model^.^-^' In these models the 
solute molecule is embedded in a dielectric continuum of 
permittivity E .  Thus the solute forms a cavity within the 
dielectric. The cavity surface, i.e. the interface between the cavity 
and the dielectric is usually called the ‘solvent accessible surface’ 
(SAS). It is well known from basic electrostatics21 that the 
response of a homogeneous dielectric continuum to any charge 
distribution of the solute consists of a surface charge dis- 
tribution on the interface, i.e. the SAS, arising from the 
polarization of the dielectric medium. The only, but non-trivial, 
problem consists in the calculation of the screening charge 
densities a(r) which are implicitly given by eqn. ( I )  where 
n(r) is the surface normal vector at a point r and E - ( r )  denotes 

47ce o(r) = ( e  - 1) n(r) E - ( r )  ( 1 )  

the total electric field at the inner side of the surface at this point. 
The latter consists of contributions arising from the solute 
charge distribution and from the screening charges. For an 
arbitrarily shaped surface eqn. ( I )  cannot be solved by 
analytical means and different numerical approaches for its 
solution have been proposed. All of them require the 
segmentation of the SAS into small segments, arid usually a 
constant charge density rsv is assumed for each segment S,. 
Thus. with m being the number of segments on the SAS, the 
screening charge distribution can be represented by a rn- 
dimensional vector 6. 

One approach to the continuum model has been elaborated 
by Miertus, Tomasi and c o - ~ o r k e r s . ~  For a given charge 
distribution p(r)  within the cavity they calculate the screening 
charges Q iteratively from eqn. (1  1. This has the advantage of 
being quite straightforward, but it requires a separate iterative 
calculation for each charge distribution p(r), even if the SAS 
is kept fixed. Thus the calculation of the self-consistent solution, 
often called self-consisten t reaction field (SCRF), within a MO- 
calculation results in a double iterative procedure within a 
single SCF-cycle. Obviously this is computationally quite 
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expensive, but owing to the enormous increase in computer 
power it has become practicable during recent years. Thus 
implementations in different ab initio and semi-empirical codes 
have been reported. Even more serious is the lack of an 
analytical expression for the gradient of the screening energy 
with respect to the solute geometry. The problem of geometry 
optimization within this approach has been considered by 
Bonaccorsi, Cammi and Tomasi, recently.’ Numerical gradients 
are prohibitively expensive owing to the iterative procedure. In 
addition they are unstable owing to fluctuations arising from 
the segmentation of the surface. Therefore geometry optimiz- 
ation has to be done using strategies which do not use gradients, 
but these can hardly be expected to work properly for systems 
with many degrees of freedom. 

Hoshi and co-workers l 3  have developed a Green function 
solution of eqn. (1) (although not recognized as such) which 
allows one to express the screening charge distribution a as 
a linear function of the charge distribution p(r). As a con- 
sequence, the solvation energy becomes a quadratic expression 
with respect to p(r), very much like the Coulomb energy. 
Thus it can be included in the Hamiltonian of the solute in 
analogy to the Coulomb interactions, as soon as the corre- 
sponding dielectric operator D, i.e. the Green function of the 
dielectric cavity, is evaluated. The evaluation of D is quite 
expensive and includes the inversion of a rn x rn-matrix, where 
rn is the number of segments, but since D does only depend on 
geometry, it has to be evaluated only once for a fixed geometry. 
As soon as D is known and included in the Hamiltonian, the 
calculation of the fully self-consistent wavefunction in the 
presence of the dielectric is a single SCF-cycle. Thus this non- 
iterative approach should be more efficient than the iterative 
ones, as long as the evaluation of D is not much more expensive 
than a single iterative solution of eqn. ( l ) ,  but this questioq has 
not been discussed in the literature. The approach of Hoshi et a/. 
has not been taken up by the scientific community so far. This 
may be due to the quite complicated formalism, which arises 
partly from the general treatment of anisotropic dielectric 
media. In addition, they did not realize, that, at least in 
principle, the Green function approach opens the way for the 
calculation of analytical gradients, although within their 
formalism this task would be quite hard. 

For spherical and ellipsoidal cavities eqn. ( I )  can be solved 
analytically. This was done first by Onsager.22 His solution, 
which is an expansion with respect to the electric multipole 
moments, is the basis for another class of dielectric continuum 
approaches, 14-’ * which work with spherical or ellipsoidal 
cavities. In these approaches the first and most crucial step is 
the fitting of a suitable sphere or ellipsoid for the solute under 
consideration, while the subsequent calculation of the screening 
energy or the integration of the corresponding operator into the 



800 J.  CHEM. SOC. P E R K I N  TRANS. 2 1993 

energy units for the sake of shortness, i.e. we have dropped 
the factor ( ~ X E ~ ) - ' ,  which would appear in all energy ex- 
pressions otherwise. Furthermore, we have adopted the vector 
notation Q for the N charges Qi. A E  includes the energy gain of 
the source charges Q due to the screening as well as the positive 
energy due to the interaction of the screening charges on the 
sphere. Thus, using the dielectric operator D, i.e. the Green 
function of the sphere, the total screening energy is a quadratic 
expression with respect to the charge vector Q in close analogy 
to the Coulomb interaction of the charges itself, which in an 
analogous notation reads 

Hamiltonian is straightforward. But it is necessary to take into 
account several orders of the multipole expansion, since the 
convergence in general is very poor. l 7  This has not been done 
in the implementation of the spherical approach into semi- 
empirical MO-codes 23.24 by Katritzky, Zerner and co- 
workers," where only dipoles are taken into account. Their 
approach can easily be shown to fail in several cases, for 
example for symmetric molecules with two dipoles, for which 
the total dipole moment is zero. Nevertheless, carefully applied, 
the ellipsoidal approach especially has been shown to give 
reliable results for a wide range of molecules, as long as their 
shape is roughly ellipsoidal. Owing to the simplicity of the 
expression for the screening energy it is no problem to calculate 
an analytical gradient with respect to the solute coordinates for 
a fixed cavity. This becomes much more complicated if the 
cavity is simultaneously adjusted. Recently such an algorithm, 
which allows for the fast geometry optimization of solutes 
within the ellipsoidal approximation, has been developed and 
implemented into different ab initio and semi-empirical codes by 
the group of Rivail.I6 Nevertheless, apart from being very fast, 
it is questionable whether such a geometry optimization, which 
is obviously restricted to ellipsoid-like conformations of a 
molecule, is useful anyway. 

In summary, within their range of validity, the different 
realizations of the dielectric continuum model give comparable 
results. The values of the screening energy are very sensitive to 
the size of the cavity used. Therefore differences in the results 
between the approaches are mainly due to differences in the 
definition of the cavity. The use of van der Waals surfaces with 
slightly increased radii (up to 20%) turned out to yield 
surprisingly good estimates for free energies of ' 
Therefore the dielectric continuum model is a valuable tool for 
the handling of solvation effects. 

In this article we present an approximate, but very accurate, 
non-iterative approach for the solution of eqn. (1 )  for arbitrarily 
shapedcavities. It isa Green function solution and thus, although 
being developed independently, the formalism is to some extent 
similar to the approach of Hoshi er al.," but it is less 
complicated with the consequence that the calculation of 
analytical gradients, and hence efficient geometry optimization 
without shape constraints, becomes practicable. Since our 
approach is based on the screening in conductors, we call it 
'Conductor-like Screening Model' or COSMO. 

Theory 
Dielectric Screening Energy.-It is well known from basic 

electrostatics I that dielectric screening energies for a given 
geometry scale as ( E  - I)/(& + x) with the dielectric 
permittivity E of the screening medium, where x is in the range 
0-2 (see Appendix A). Hence screening effects in strong 
dielectric media such as water, which has a relative dielectric 
permittivity of E ca. 80, are well approximated by the 
corresponding screening effects in an infinitely strong dielectric 
(E = a), i.e. in a conductor. Screening in conductors can be 
handled much more easily than in dielectric media. As an 
example we first consider the problem of N point charges Qi at 
positions ri within a sphere of radius R. For a conductor this 
problem can be solved in closed form using the image charge 
method,21.25 and the total screening energy of the system reads 

with 

D i j  = R / ( F  - 2R2 rirj + ri2rj2)f (3) 

Here, as well as throughout the article, we use electrostatic 

with 

Cij = llri - rjIl-* and Cii = 0 ( 5 )  

Eqn. (2) is the exact solution of the screening problem only 
for conductors, but with a weakly &-dependent correction 
factor discussed in Appendix A it is also very accurate for most 
dielectric media of interest. Hence this simple quadratic 
expression provides an accurate and much easier to handle 
solution for the dielectric screening energy of a molecule within 
a spherical cavity than Onsager's multipole expansion," and 
it is by far preferable to the dipole approach of Katritzky el 

Since, in our opinion, the assumption of a spherical cavity is 
a too severe restriction, we decided to develop a similar 
Green function formulation for realistic cavity shapes, starting 
again from the screening in conductors. If the charges Qi are 
enclosed by an arbitrary closed surface S the screening charge 
distribution on S and the screening energy can be found by 
dividing S into a large number M of small segments S, centred 
at tu with constant surface charge density Q, on each segment. 
Let (SUI denote the area and q ,  = IS,J Q, the charge of segment 
p. Then 

.1,18.19 

(6) 

z [It, - rill-' (6a) 

is the electrostatic interaction of a unit charge at rj with a unit 
charge on S, and 

, r r  

is the electrostatic interaction of unit charges on S, and S, .  For 
p # v, a,," can be approximated by 

U,," z lit, - W (7a) 

while for a diagonal element a,,, which represents twice the self 
energy of a unit charge on segment P, a detailed analysis (see 
Appendix B) yields 

a,,,, z 3.8 (7b) 

as a good approximation. Using vector notations Q for the N 
Source charges Qi and 4 for the Surface charges qj, the total 
energy of the system may be written 

= 4QcQ + Q4 + &A9 ( 8 )  

where A and B are the matrices formed by a,, and bi,, 
respectively, and c is the Coulomb matrix [eqn. ( 5 ) ] .  The actual 



J.  CHEM. SOC. PERKIN TRANS. 2 1993 80 1 

screening charge distribution q* minimises this total energy. 
Hence we have 

of charge densities is straightforward and left out here for the 
sake of shortness. In eqns. (14)-(16) only the direct geometry 
dependence of the segment positions has been taken into 
account while the indirect geometry dependence via a possible 
change of the segment areas has been neglected. The handling 
of the latter contributions would be much harder, but not 
impossible. Fortunately they turn out to be of minor 

So far we have developed the theory for conductors. By the 
and the total energy of the screened system becomes introduction of the &-dependent correction factor f ( ~ )  = 

(E - I)/(& + $) into the expressions for the screening 
energy and its gradient the theory can be extended to finite 
values of the dielectric constant with a relative error of less than 
$E -' (see Appendix A). 

V,E(q)Iq. = BQ + Aq* = 0 (9) 

and 

q* = -A ' B Q  (10) importance. 

E(#) = iQ(C - BA-'B)Q (1 1) 

and 

AE = -iQBA-'BQ = - iQDQ (12) 

Thus the expression for the screening energy in an arbitrarily 
shaped cavity now is analogous to the solution for the sphere, 
with the Green function or dielectric operator now being 
BA-'B. Eqn. (9) and thereby also eqns. (IO),  (11)  and (12) 
can also be derived from the boundary condition of vanishing 
potential on the surface of a conductor. This can be written as 

= 0, where 45 is the vector of potentials a,, on the seg- 
ments. Realising that 45 = BQ + Aq, where BQis the potential 
arising on the segments from the source charges Q, and 
Aq is the potential arising from the surface charges q, the 
condition 0 = 0 is just equivalent to eqn. (9). 

Up  to now we have only considered point charges. A 
generalization to charge distributions arising from basis 
functions, which, in general, is required for the use of our 
method in molecular orbital calculations, is straightforward 
and given in Appendix C. 

Gradients.-The relative simplicity of the explicit results for 
the total dielectric screening energy AE allows for the 
calculation of the analytic gradient of the dielectric energy with 
respect to each atomic position R,: 

Physically the first part of this gradient represents the change 
of Coulomb interaction between the source charges Q and the 
screening charges q* due to a change of R,, while the second 
part represents the corresponding change in the interaction of 
the screening charges. As long as each segment S ,  is fixed to 
a single atom, the gradient of the matrices B and A with respect 
to R, can easily be calculated as 

and 

where si, = 1 or 0 depending on whether the representation 
point ri does or does not belong to atom I, respectively, and 
<,= = 1 if surface segment S, is associated with atom I and 
S,, = 0 otherwise. The generalization of eqn. (14) to the case I 

Results 
Method of Implementation and Efficiency Aspects 

Before going into the details of a special implementation, the 
general method of use and some efficiency aspects of the 
COSMO-approach presented in the previous section will be 
discussed. 

The first step, i.e. the construction and segmentation of the 
SAS is common to all 'real'-shape continuum approaches. 
Usually this is not important for the total computation time. 

The second step is the evaluation of all interaction co- 
efficients, i.e. the construction of the matrices A and B. In one 
way or another this has to be done in any continuum approach, 
but again it is less critical with respect to computation time. 

The first really time-consuming step is the inversion of 
M x M-matrix A. This step scales as M 3 ,  where M is the 
number of segments on the SAS. Depending on the desired 
accuracy, segment numbers A4 between 50 and 500 turn out to 
be reasonable for molecules up to 20 atoms, even if some effort is 
made to keep M as small as possible (see below). Therefore the 
inversion is the time-determining step in semi-empirical and 
force-field COSMO-calculations. It should be done with the 
most efficient inversion routines taking advantage of the 
positive definiteness of the matrix. Fortunately it has to be 
done only once for a given geometry. 

After the inversion of A the Green function D = BA-' B has 
to be evaluated. Since B is a N x M-matrix, and since for ab 
initio calculations N is of the order of n2/2, where n is the 
number of basis functions, the evaluation of D is an n4 x MZ- 
step process, and therefore it becomes highly relevant for the 
calculation time. The total time effect of a COSMO- 
implementation into ab initio codes can thus be estimated by 
a comparison with the other n4-step process in ab initio 
calculations, i.e. the calculation of the two-electron integrals. A 
preliminary and crude estimation yields that both steps should 
require comparable computation time. Hence we expect a time 
increase of about a factor 2 or 3 for COSMO ab initio 
calculations. This appears to be rather modest for an accurate 
representation of solvent effects. In semi-empirical calculations 
most of the overlap densities are neglected and as a result N 
is only proportional to the number of orbitals n and the 
evaluation of D is not time-relevant. 

For force-field calculations the solvation energy can now be 
calculated directly from the point charges and the matrix D. For 
MO calculations we have to include D in the Hamiltonian. 
Owing to the formal analogy to the Coulomb interactions this 
is rather straightforward. Having done this the self-consistent 
wave function and the corresponding fully self-consistent total 
energy of the system in the presence of the dielectric environ- 
ment can be calculated in a standard SCF-cycle with the 
modified Hamiltonian. 

At this point in any case the screening charges q* = A-'BQ 
are available at negligible costs and thus the gradient with 
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Fig. 1 Construction of the SAS (schematic); Solid circles indicate the 
surface accessible to the centres of solvent molecules, dashed lines the 
surface accessible to solvent charges. For atom B the three dipole 
representation points are indicated in addition. 

respect to an atomic position R, can be calculated from eqn. 
(13). This does not involve any additional M3-  or n4-step 
process. Thus the gradient is not only available, but even at no 
relevant additional costs, as soon as the screening energy is 
calculated. This is a unique feature within the non-ellipsoidal 
continuum approaches. We consider this to be the greatest 
advantage of COSMO. 

Construction of a Suitable Solvent Accessible Surface 
Because the number of segments on the surface strongly 
influences the computational costs, and because we have to 
ensure that all segment positions are connected to the atom 
positions in a simple way for an efficient calculation of 
gradients, we did not use a published segmentation strategy. 
Instead we have developed a more efficient algorithm for the 
construction of a suitable set of segments on the solvent 
accessible surface. We assume that the geometry of the solvent 
molecules may be described by an effective radius Rsolv. Thus the 
centres of the solvent molecules are excluded from a sphere of 
radius R, = RaVdW + Rsolv around each atom cx of the solute 
with R l d W  being the van der Waals radius of atom a. The 
effective charges which are responsible for the dielectric 
screening will not be located at the centres of solvent molecules. 
They may be assumed to be a distance 8' outside the centre, 
so that their minimum distance to a solute atom u is R,* = 
R, - 8'. 8'' will be in the range of 0.5 A to Rsolv. The most 
reliable value for each solvent has to be found empirically. The 
distances Re* define the SAS as indicated in Fig. 1. 

In more detail the construction and segmentation of the 
SAS is done as follows: As an initial preparation a basic grid 
of points on the unit sphere is generated by iterative refinement 
of triangles starting from a regular icosahedron. Although 
developed independently our refinement procedure is to some 
degree similar to the GEPOL algorithm published recently.26 
Thus a large number of basic points per atom (NPPA) is 
generated. To a high accuracy, each basic point represents an 
area of 4n/NPPA on the unit sphere. The following steps are 
done atomwise, in order to ensure that each segment of the SAS 
is connected to a single solute atom. As previously mentioned 
this is essential for the calculation of gradients. 

In the first step, the basic grid is projected to the RE-sphere 
and those points lying within the R,-sphere of any other atom 
p are excluded. Thus only allowed positions for the centres of 
solvent molecules are left. 

In a second step the remainder of these basic points is 
contracted to the R,*-sphere. Now these points represent 
allowed positions for the screening charges and define the SAS. 

In the third step the basic points on the SAS are gathered into 
segments. By the parameter NSPA (number of segments per 
atom) the size of the segments is controlled; the mean number of 

basic points per segment is set to NPPA/NSPA, corresponding 
to NSPA segments on a complete sphere. The basic points are 
put together in such a way as to achieve the most compact 
segments. 

Finally, for each segment the segment area is calculated from 
the number of basic points associated with it, and the 
corresponding representation vector t ,  is obtained as the centre 
of these basic points. 

The described algorithm of defining a relatively small number 
of segments composed of sets of basic points enables us to 
calculate the segment interactions a,, by summation over the 
interactions of the corresponding basic points. Owing to the 
corresponding increase in accuracy we can achieve the 
continuum limit with a moderate total number of segments M, 
i.e. with 50 to 500 segments for molecules of up to 20 atoms. 

Implementation into MOPAC 
For a first implementation of COSMO we have chosen the 
semi-empirical MO package MOPAC.23*27 Within the frame- 
work of MOPAC, the charge distribution of a molecule can be 
represented quite accurately by the sum of atomic point 
charges and atomic dipoles. We have adopted this notation and 
thus have avoided the slightly more complicated basis function 
notation. Introducing three additional dipole points rEk (see 
Fig. 1) for each non-hydrogen atom at R" + dek ( k  = x, y, I), 
where e k  denotes the unit vectors in Cartesian space, the charge 
distribution can be represented by point charges Q,k on the 
resulting set of representation points. The number N of these 
points is just equal to the number of atomic orbitals. The dipole 
length d is a parameter which has to be chosen as a compromise 
between artificial quadrupole moments associated with dipoles 
of finite length and numeric instability arising from too small 
distances of the point charges. We found d = 0.01 A to be a 
reasonable value. The charges Q , k  can be expressed by the 
electron density matrix P and the core charges Q,'"" via 

and 

d 

where 2, denotes the hybridization dipole length coded for 
the different elements in MOPAC. These charges can be 
expected to represent quite accurately the electrostatic inter- 
actions of the solute with its environment. To increase the 
accuracy up to atomic quadrupole contributions, an additional 
15 points per atom would be required. Alternatively one could 
use the basis function formulation of the B matrix as given in 
eqn. (C2). In our opinion the latter way would be preferable, 
but it has not been implemented yet. 

Since the Q , k  are h e a r  with respect to the density matrix P, 
the total energy reduction AE to the solvent is a quadratic form 
with respect to P, in perfect analogy to the Coulomb energy. 
Thus the integration of the solvation energy into the Hamil- 
tonian is straightforward: The terms not depending on P, i.e. the 
dielectric reduction of the core-core interactions, are added to 
the core-core interaction energy, the linear terms with respect 
to P correspond to a reduction of the core-electron interaction 
and are thus added to the core-electron interaction Hamil- 
tonian. The quadratic terms correspond to a reduction of the 
electron-electron interaction and they are included in the two- 
electron operator. One should be aware that these dielectric 
contributions to the Hamiltonian are very large. For medium 
sized molecules they cause changes in the core-core interaction 
and electronic energies of the order of some lo4 eV while the 
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Table 1 Calculated heats of formation and hydration energies/enthalpies (in kcal mol I )  

Heat of formation 

Gas phase geom. Solution geom. 
Hydration 

Energy Enthalpy 
Compound Method in gas phase in solution in solution (calc.) (exp.) 

Formamide 

GI ycine 
neutral 
twitterion 

HF 

AM I 
AM 1 
AM I 

AM 1 

AM 1 
AM1 

PM3 
PM3 
PM3 

PM3 
PM3 

150.6 
157.1 
132.1 

- 44.7 

- 101.6 
- 59.2 

- 53.4 
- 110.4 
- 170.4 

- 62.7 
-131.2 

59.6 
101 -6 
84.2 

- 60.3 

- 117.1 
- 118.3 

-61 .O 
- 122.3 
- 183.7 

- 67.3 
- 138.8 

59.5 
101.1 
84.2 

-61.4 

- 117.3 
- 125.6 

-61.1 
- 123.8 
- 185.8 

- 67.3 
- 139.3 

91.1 88.0L7 
56.0 59.9 I 

47.9 57.0 I 

16.7 - 

15.7 - 

66.4 - 

7.7 3 10" 
13.4 - 
15.4 - 

4.6 - 

8.1 - 

Enthalpy of vaporization. 

real effect, i.e. the difference of these changes, typically is of the 
order of 0.1 eV. Fortunately, using double precision accuracy 
throughout the implementation, this does not cause any 
problems. 

Using the resulting self-consistent density matrix P the 
associated charges Q,k [eqns. ( 17) and ( I  8)J can be evaluated 
and used for the calculation of analytical gradients. Since each 
segment position does depend on a single atom position, the 
implementation of the analytical gradient according to eqns. 
( 13)-( 16) is straightforward. Now, having the self-consistent 
total energy as well as the gradient, standard geometry 
optimization can be done. Owing to the finite segmentation 
of the SAS some random fluctuations in the total energy do 
unavoidably occur during the optimization procedure. These 
turn out to cause problems with the standard BFGS optimizer 
in MOPAC, but the eigenvector-following algorithm appears to 
be less sensitive to these fluctuations. Thus, using the MOPAC 
keywords EF and ANALYT we have achieved final gradient 
norms of about 0.1-0.4 kcal mol for the test molecules 
considered so far.* This clearly shows that the implemented 
analytical gradient for the screening energy is rather accurate 
and that the approximations used are less serious. 

A 

Some Preliminary Applications 

In this section we present some preliminary applications of 
the COSMO implementation into MOPAC in order to demon- 
strate the performance of our approach. All calculations have 
been carried out with E = 78.4 corresponding to water. We 
set the parameters NPPA to 1082 and NSPA to 60; this choice 
turned out to give a convergence for the dielectric screening 
energy of better than 1 %. 

Since the screening energy is very sensitive to the distance of 
the SAS from the atoms, the choice of proper parameters for the 
construction of the SAS is crucial. Tomasi and co-worker~~- ' .~ 
have shown that distances in the order of van der Waals radii 
lead to reasonable values of the screening energies in continuum 
models. They usually work with van der Waals radii increased 
by 20%, but in some cases they use slightly smaller values. In 
the work of Negre et a/.9 van der Waals radii have been used. 
Since a detailed optimization of the surface parameters is 
beyond the scope of this paper, we also decided to use van der 

* I cal = 4.184 J. 

Waals distances, corresponding to a setting of d,, = RWlv in 
our model. The value of RWlv itself is lesscritical. In the following 
applications we have used Rsolv = 1 A. 

Screening of Cut ions. -The series of ca t ions NH4 + , N( CH 3)4 + 

and N(C2H&+ has been studied using AM1.28 For the three 
cations the unscreened and screened heats of formation in their 
gas phase geometries have been calculated and a geometry 
optimization in solution has been carried out. These results 
and the corresponding hydration energies are given in Table 1 
together with experimental hydration enthalpies taken from 
ref. 17. In general there is a quite good agreement between 
calculated and experimental numbers. As one might have 
expected for such rigid molecules, geometry optimization in 
solution causes only slight contractions of the ions with 
marginal energy gains. 

Screening of Formamide-Formamide has been used as an 
example in the work of Rinaldi et on geometry 
optimization in ellipsoidal cavities. Our AM 1 results on 
formamide are given in Table 1. We find an energy gain of 1.1 
kcal mol-l due to geometry optimization in solution. This is 
accompanied by several changes in the bond lengths and bond 
angles, which all have the same tendency as those found by 
Rinaldi el a/., but they are larger by a factor of cu. 3. 
Unfortunately, at the moment it is impossible to decide whether 
this difference is due to the differences in the MO-methods, or 
due to limitations of the ellipsoidal cavity approach. 

Screening of Glycine.-The screening effects on glycine have 
been frequently studied 8*29  in order to explain the experimental 
fact, that, in aqueous solution, the zwitterionic species of glycine 
is about 10 kcal mol-I more stable than the neutral, while in 
the gas phase the neutral species is by far the more stable. 

The different heats of formation from an AM 1 analysis for the 
two species of glycine are given in Table 1. The energy difference 
between the zwitterion and the neutral species decreases from 
42 to - 1 kcal mol-' owing to the dielectric screening for the 
gas phase geometry. This difference is further decreased by 
geometry optimization within the solvent. While for the neutral 
species this only yields 0.2 kcal mol ' with no qualitative 
geometry changes, there arise strong effects. for the zwitterion 
(see Fig. 2). The hydrogen bond existing between one of the 
NH,+-hydrogens and one of the oxygens in the gas phase is 



804 J .  C H E M .  SOC. P E R K I N  TRANS. 2 1993 

H H 

Fig. 2 
zwitterion: the hydrogen bond (dashed) is removed in solution 

Gas phase and solution optimized geometries of the glycine 

removed by an increase in the corresponding distance of 0.3 A 
and most of the bond lengths and angles of the five-membered 
ring formed by the hydrogen bond are relaxed considerably. 
This relaxation goes along with an energy gain of 7.3 kcal mol '. 
Thus we finally obtain a total energy difference of 8.3 kcal 
mol ' between the two species, in good agreement with the 
experimental finding. The same qualitative result, i.e. the release 
of the hydrogen bond in the zwitterion was obtained within the 
supermolecule a p p r ~ a c h , ' ~  but with orders of magnitude higher 
computational effort. In addition, it is hard to imagine, that 
such a ring-opening 'reaction' could be described within the 
ellipsoidal cavity approximation. 

Screening of the Water Molecule and its Di- and Tri-merx- 
The conformations and interaction energies of small clusters of 
water molecules have been the subject of several theoretical 
 investigation^.^' For the dimer the gas phase conformation is 
generally accepted to have C,-symmetry. The hydrogen bond 
between the two molecules is entirely straight, i.e. the donating 
OH-bond of the one molecule is oriented directly towards the 
accepting oxygen of the other molecule, while the remaining 
hydrogen of the donating molecule is pointing outside to  
minimize the total dipole of the dimer. While AMI does not 
yield this geometry at all, it is reproduced correctly by the PM3- 
Hamiltonian. Hence we studied the dielectric screening of water 
and its di- and tri-mers within a dielectric continuum model of 
water using PM3 (see Table 1). 

Dielectric screening with E = 78.4 reduces the heat of 
formation of H 2 0  by 7.7 kcal mol-'. Geometry optimization in 
solution only yields additional 0.02 kcal mol-', accompanied by 
a marginal increase in the bond lengths and a decrease in the 
bond angle of I". The hydration energy of 7.7 kcal mol-' is in 
quite good agreement with the heat of vaporization of about 
IO kcal mol-'. The screening effect on the dipole moment is 
an increase from 1.74 to 2.06 Debye. 

The heat of formation of the water dimer in the PM3 gas 
phase geometry is reduced by the dielectric environment by 13.4 
kcal mol-'. Geometry optimization in solution leads to a 180"- 
rotation of the donating water molecule around the hydrogen 
bond axis, while the other degrees of freedom are entirely 
unaffected (see Fig. 3). This rotation, which goes along with 
an increase of the dipole moment from 2.7 to 4.3 Debye, yields 
an additional 1.5 kcal mol-'. Thus we find a stabilization of 
the screened dimer of 1.6 kcal mol-' compared to two isolated 
screened water molecules. The corresponding interaction 
energy in the gas phase is 3.5 kcal mol-'. 

A similar rotation has been found for the triangular water 
trimer. In this case the rotation leads to full C,-symmetry of the 
cluster, while in the gas phase this symmetry is prevented by a 
high dipole moment. Although the relevance of these con- 
formational changes is not clear at the moment, they clearly 
demonstrate the benefit of geometry optimization within the 
dielectric environment since unexpected changes in the geo- 
metry might otherwise remain undetected. 

H 
,H 

0'-H 

Fig. 3 Gas phase and solution optimized geometries of the water 
dimer: the left molecule is rotated by 180° in solution (gas phase 
geometry dashed). Both conformations have C.-symmetry. 

Screening of Hydrogen Fluoride and its Dinler.-The H F  
dimer has been studied in the paper of Bonaccorsi et ul.' on 
geometry optimization of molecular solutes. Even on this rather 
simple molecule they report considerable dimculties appearing 
in an automated geometry optimization within their continuum 
approach. These are due to  the lack of analytical gradients. 
Therefore we have also considered H F  and its dimer. Again we 
have used the PM3-Hamiltonian, owing to a better agreement 
of the dimer geometry with ab initio calculations. The results 
are reported in Table 1 .  Within COSMO the geometry 
optimization of the dimer in solution causes no problems. It 
yields an additional solvation energy of about 0.5 kcal mol I .  

Only small changes in the geometry are observed. As far as is 
comparable these are in agreement with the trends in the 
geometry optimisation reported by Bonaccorsi et al. 

Discussion 
The COSMO approach introduced in this article allows for 
the calculation of a comparatively simple, explicit expression 
for the screening energy of a molecule in a dielectric medium. 
For the first time this enables the calculation of analytic 
gradients within a real-shape cavity. Hence reliable geometry 
optimization within solvents becomes practicable and this 
should enable considerable progress in the computational 
treatment of solvation effects. 

Obviously we could not resolve all the questions arising from 
the new approach, yet. The most critical problem in our opinion 
is the optimum choice of the solvent parameters R"". B' and 
of a set of van der Waals radii, which in summary define the 
SAS. The values used throughout our examples should only be 
looked at as a reasonable first guess for water, but further work 
is needed on this point, especially if different solvents are 
considered. Nevertheless, similar problems arise from any 
continuum approach and are not specific for COSMO. More 
specific, but probably less important, is the question of the 
effects arising from the neglect of small parts of the SAS due to  
the atomwise segmentation which is needed for the calculation 
of gradients. These effects can be shown to be of the order of 
1% of the total screening energy, or less. 

Although our preliminary implementation of COSMO into 
MOPAC has proved to work properly, a lot of work remains to 
be done. First of all this implementation should be optimized, 
especially with respect to faster geometry optimization, for 
example by the use of updating algorithms for the A-'-matrix. 
Furthermore it should be generalized to become compatible 
with all the different functionalities of MOPAC like vibrational 
analysis, eigenvector following, CI, etc. Furthermore a refine- 
ment of the charge representation by taking into account 
atomic quadrupoles would be desirable for the sake of 
consistency with the MOPAC calculation of Coulomb inter- 
actions, although we do not expect a large influence on the 
results. These improvements should be possible without major 
problems, but a good knowledge of the architecture of MOpAc  
is required. They are beyond the scope of our work a t  a chemical 
company. Therefore we have submitted our implementation to 
J. J. p. Stewart for further development and distribution as 
part of the MOPAC software. 

Implementations of COSMO into ab initio as well as force- 
field codes should be practicable without larger problems, but 
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they too are beyond the scope of our work. Thus we would like 
to encourage people who are familiar with such codes to do 
this work and to contact us for details. 
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Appendix A 
As previously mentioned, the screening energy of a charge 
distribution due to a dielectric medium scales as (E - I ) /  
(E + s) with 0 < s < 2. This can be seen from different 
standard problems of electrostatics. In Onsager's solution for 
the screening of a multipole of order /a t  the centre of a spherical 
cavity." s takes the value //(/ + I ) .  For a monopole, i.e. a 
point charge, in front of a planar surface of a dielectric medium 
the value of s is 1 while .Y becomes 2 for a monopole far away 
from a sphere with relative dielectric permittivity E .  The latter 
case seems to be very unrealistic for charges within the cavity 
formed by a molecule. Thus we can expect the best value of .v 
to be between zero and one. We propose to use .Y = f and 
hence an &-dependent correction factor of /(E) = (E - 1)/ 
( E  + i) for the total screening energies and gradients 
appearing in our approach. Thus the relative error should be 
less than ;E '. This is negligible. or at least tolerably small, 
for most of the relevant polar solvents in organic chemistry. For 
weak dielectrics with E z I ,  the relative error may become 
SO%, but in this case the solvation energy itself is very small 
and thus the absolute error remains irrelevant. 

Appendix B 
The total electrostatic energy of a sphere of radius R with a unit 
charge homogeneously distributed over its surface is 0 .5 /R .  On 
the other hand for a homogeneous segmentation of the sphere 
into M equivalent segments of area ]SUI = 47tR2/M the total 
energy can be calculated as the sum of the Coulomb interactions 
of the charges M-' on different segments plus the sum of their 
self energies. Hence using the notation of the Theory section we 
have 

and 

For M = 4 , 6 , 8  and 12. i.e. for segmentations corresponding to 
the vertices of a tetrahedron, octahedron, cube and icosahedron, 
respectively, the sum of the inverse distances can be calculated 
easily. In these cases the last two terms of eqn. ( B 2 )  
approximately take the value 1.07. This result even holds for 
homogeneous segmentations with values of M up to 3242, 
which have been generated by the algorithm described for 
construction of a solvent accessible surface. Thus we have got 
the desired expression for the diagonal elements of A. 

To adjust the formalism to MO-calculations we have to 
consider charge density distributions p,.(r) = P KAqK(r)q) , ( r )  
instead of, or, more precisely, in addition to. point charges Qi 
at positions ri. Here q,(r)  and qA(r)  denote basis functions 
describing the position of the resulting overlap charge density 
and hence taking the role of ri, while the density matrix elements 
P ,.. describe the amount of charge corresponding to the overlap 
of these basis functions and hence they take the part of Qi. In 
this analogy the index i is replaced by a double indexation ~h 
denoting the combinations of basis functions. Exploiting the 
analogy further we have 

The integral in eqn. ( C 2 )  is of the core-electron interaction type 
and thus readily available in any MOcode. If we define a 
generalized charge vector Q consisting of the point charges of 
the nuclei or atom cores, respectively, and of electron densities 
PKA. eqn. (12) does hold even in the MO-formulation. 
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During the text we only considered point charges Qi as sources. 
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