The Effective 'Size' of the Tris(trimethylsilyl)silyl Group in Several Molecular Environments

Joseph Frey, ${ }^{a}$ Etti Schottland, ${ }^{a}$ Zvi Rappoport, ${ }^{*, a}$ Dmitry Bravo-Zhivotovskii, ${ }^{b}$ Moshe Nakash, ${ }^{\text {b }}$ Mark Botoshansky, ${ }^{\text {b }}$ Menahem Kaftory ${ }^{*, b}$ and Yitzhak Apeloig ${ }^{\text {*,b }}$
${ }^{\text {a }}$ Department of Organic Chemistry, The Hebrew University, Jerusalem 91904, Israel
${ }^{\text {b }}$ Department of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel

Abstract

The effective size of the tris(trimethylsilyl)silyl group in several molecular environments has been estimated. 2,2-Dimesityl-1-tris(trimethylsilyl)silylethanol 1g has been prepared and its structure determined by X -ray crystallography. The Mes- $\mathrm{C}=\mathrm{C}$ torsional angles are $59.6\left(\varphi_{2}\right)$ and $63.3^{\circ}\left(\varphi_{2}\right)$ and the $\mathrm{C}=\mathrm{C}-\mathrm{Si}$ bond angle α_{4} is 133.8°. The two-ring flip barrier for the correlated rotation of the two mesityl rings around the Mes- $\mathrm{C}=$ bonds is $\Delta G_{\mathrm{c}}^{\ddagger}=10.2 \mathrm{kcal} \mathrm{mol}^{-1}$. The structures of enols $\mathrm{Mes}_{2} \mathrm{C}=\mathrm{C}(\mathrm{OH}) \mathrm{R}, \mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}, \mathrm{Bu}^{t}(\mathbf{1 a - 1 e}), \mathrm{Me} \mathrm{C}_{3} \mathrm{Si}(1 \mathrm{f}),\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}(1 \mathrm{~g})$ and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ (1h) and the two-ring flip barriers have been calculated by the MM2* force-field. The calculated and the experimental values are in good agreement, except for somewhat lower calculated α_{4} for $1 \mathrm{~b}-1 \mathrm{e}$ and a shorter $=\mathrm{C}-\mathrm{Si}$ distance in 1 g . From the linear correlations between the observed $\cos \varphi_{2}$ or $\Delta G_{\mathrm{c}}^{\ddagger}$ values and E_{s} values for the enols $1 \mathrm{a}-1 \mathrm{e}$ and the values observed for 1 g an average E_{s} value of -1.46 has been calculated for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$. $\mathrm{MM} 2^{*}$ calculations gave an A value for $\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{Si}^{2}\right.$ of $4.89 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. These steric parameters resemble those for the Bu^{t} group ($E_{5}=$ $-1.54 ; A=4.9 \mathrm{kcal} \mathrm{mol}^{-1}$) indicating a similar effective size for the Bu^{t} and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ groups in these specific environments. $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ is significantly larger $\left(A=13.3 \mathrm{kcal} \mathrm{mol}^{-1}\right.$; estimated $E_{3}=$ -3.7).

One of the most fundamental properties of a substituent is its 'size'-a property which is expected to depend on the specific molecular environment in which the group is placed. ${ }^{1}$ Over the last years we have been interested in comparing the 'size' of the trimethylsilyl group with that of a methyl or a tert-butyl group. Apeloig and Stanger concluded on the basis of the similar solvolysis rates of 2-trimethylsilyl- and 2-methyl-adamant-2-yl (Ad) p-nitrobenzoate, coupled with model $a b$ initio and forcefield calculations, that the solvolysis of the silicon derivative proceeds without significant steric acceleration and thus that in this molecular environment the $\mathrm{Me}_{3} \mathrm{Si}$ and the methyl groups have similar 'sizes'. ${ }^{2}$ Allen et al., ${ }^{3}$ who studied the solvolysis of (2-trifluoromethyl)adamant-2-yl 4-methylbenzenesulfonate (tosylate) suggested a steric acceleration of the solvolysis by the CF_{3} group and pointed out that their results suggest that steric effects may accelerate also the solvolysis of the $2-\mathrm{Me}_{3} \mathrm{Si}-$ adamantyl derivative relative to the $2-\mathrm{Me}$ derivative. ${ }^{3}$ In a more recent paper, Apeloig et al. provided further evidence for their earlier conclusion that the solvolysis rate of the adamant-2-yl derivatives is not sterically accelerated by a $2-\mathrm{Me}_{3} \mathrm{Si}$ group in contrast to strong steric rate acceleration by a $2-\mathrm{Bu}^{t}$ group. ${ }^{4}$ The conclusion was that at the adamant-2-yl position the $\mathrm{Me}_{3} \mathrm{Si}$ and the Me groups have similar effective sizes, although the van der Waals size of the silyl group is much larger considering that a $\mathrm{Si}-\mathrm{C}$ bond is much longer than a $\mathrm{C}-\mathrm{C}$ or a $\mathrm{C}-\mathrm{H}$ bond.
The higher homologue in the silicon series-the tris(trimethylsilyl)silyl group, $\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{Si}^{5}{ }^{5}\right.$-also referred to as 'supersilyl', ${ }^{6 a}$ has recently attracted considerable interest ${ }^{6-10}$ due to its remarkable combination of steric and electronic properties. Thus, the first kinetically stable silene at room temperature $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{Si}=\mathrm{C}\left(\mathrm{OSiMe}_{3}\right) \mathrm{Ad}$ was synthesized via a photochemical rearrangement of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{SiC}(=0)$ Ad. ${ }^{7}$ Also the first stable formylsilane, $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{SiCHO}^{8 a}$ and iminoborane ($\left.\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{SiB}=\mathrm{NCMe}_{3}{ }^{88}$ contain the 'supersilyl' group. Numerous organometallic derivatives of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$-group have been synthesized and characterized ${ }^{9}$ and $\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{SiH}\right.$ is gaining popularity as a novel reducing reagent. ${ }^{10}$ Bock et al. have demonstrated that the 'supersilyl' group can serve both as an efficient electron-donor and electron-acceptor. ${ }^{6 a}$ Compari-
son of the molecular structure of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si-Si}\left(\mathrm{SiMe}_{3}\right)_{3}{ }^{6}$ with the formal alkyl analogue $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{Si}-\mathrm{Si}\left(\mathrm{CMe}_{3}\right)_{3}$ reveals that the central $\mathrm{Si}-\mathrm{Si}$ bond is significantly longer in the latter, i.e. 2.70 \AA, than in $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}-\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3}$, i.e. $2.40 \AA,{ }^{6}$ indicating that the Bu^{t} group is significantly bulkier by this measure than the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$-group. This can be expected as $\mathrm{Si}-\mathrm{Si}$ distances ($c a$. $2.37 \AA$) are $0.5 \AA$ longer than $\mathrm{C}-\mathrm{Si}$ distances $(c a .1 .87 \AA$) and the latter are approximately $0.3 \AA$ longer than $\mathrm{C}-\mathrm{C}$ distances ($c a$. $1.54 \AA){ }^{11}$

What is the size of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group in other molecular environments? Can its steric effect be defined quantitatively relative to the lower silicon member, $\mathrm{Me}_{3} \mathrm{Si}$, as well as relative to the formal alkyl analogue, $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$? In this paper we address these questions in relation to crowded polyaryl substituted enols 1, of which 1a-1f were previously studied extensively by one of us. ${ }^{12}$ We found that for 2,2-dimesityl-1-R-ethenols, 1a1e, the keto-enol equilibrium constants, ${ }^{13}$ the barrier for the two-ring flip correlated rotation of the mesityl rings around the Mes-C bonds, ${ }^{14}$ and crystallographic parameters such as the cosines of the $\mathrm{R}-\mathrm{C}=\mathrm{C}$ bond angles or the Mes- $\mathrm{C}=\mathrm{C}$ torsional angles ${ }^{15}$ show linear correlation with Taft's steric parameter $E_{\mathrm{s}}{ }^{16} \mathrm{We}$ have therefore suggested ${ }^{12-15}$ that the above parameters and processes provide a set of sensitive probes to the steric effects of various groups R in a crowded environment.

$$
\begin{gathered}
\mathrm{Mes}_{2} \mathrm{C}=\mathrm{C}(\mathrm{OH}) \mathrm{R} \\
1
\end{gathered}
$$

$\mathbf{a} \mathbf{R}=\mathrm{H} ; \mathbf{b} \mathbf{R}=\mathrm{Me} ; \mathbf{c} \mathbf{R}=\mathrm{Et} ; \mathbf{d} \mathbf{R}=\operatorname{Pr}^{\mathrm{i}} ; \mathbf{e} \mathbf{R}=\mathrm{Bu}^{t} ; \mathbf{f} \mathbf{R}=$ $\mathrm{SiMe}_{3} ; \mathbf{g R}=\mathrm{Si}\left(\mathrm{SiMe}_{3}\right)_{3} ; \boldsymbol{h} \mathbf{R}=\mathbf{C}\left(\mathrm{SiMe}_{3}\right)_{3}$

Mes $=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$ (mesityl)

Indeed, when the internal rotation of the mesityl groups in the trimethylsilyl derivative if was investigated, ${ }^{17}$ the threshold mechanism was found to be a two-ring flip with a rotation barrier of $11.1 \pm 0.2 \mathrm{kcal} \mathrm{mol}^{-1}, \dagger$ a value intermediate between
$\dagger 1 \mathrm{cal}=4.184 \mathrm{~J}$.

Table 1 Dynamic NMR data for the rotation of the mesityl rings of 1 g in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}^{\text {a }}$

Process	$\delta(\Delta v, 180 \mathrm{~K})^{a, \mathrm{~b}}$	$k_{\mathrm{c}} / \mathrm{s}^{-1}$	$T_{\mathrm{c}} / \mathrm{K}$	$\Delta G_{\mathrm{c}}^{\ddagger} / \mathrm{kcal} \mathrm{mol}{ }^{-1}$	$\delta^{c}(\mathrm{ppm})$
$o-\mathrm{Me} \rightleftharpoons o-\mathrm{Me}$	$1.60,2.43(330.5)$	734	226.3	10.3	2.11
$o-\mathrm{Me} \rightleftharpoons \mathrm{o}$-Me	$1.70,2.51(326.2)$	725	230.0	10.3	2.20
Mes-H Mes-H	$6.56,6.84(114.2)$	254	215.6	10.1	6.78
Mes-H \rightleftharpoons Mes-H	$6.66,6.93(105.3)$	254	215.6	10.1	6.79

${ }^{a}$ Measured at 400 MHz . ${ }^{\text {b }}$ At slow exchange. ${ }^{c} \delta$ of the average signal at fast exchange. Owing to the temperature dependence of the average signals, their assignment to the process given is not unequivocal.

Fig. 1 Dynamic NMR experiment of the Mes-H signals of $\mathbf{1 g}$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3} .(a)$ at 197 K (slow exchange); (b) at 211.5 K (signal broadening); (c) at 214 K (coalescence); (d) at 242 K (build up of new signals); (e) at 292 K (sharpening and temperature-dependent shift of new signals); (f) at 305 K (accidental overlap of average signals). Signals marked with an asterisk are due to impurities. The truncated singlet is the OH signal which is shifted as the temperature is increased.
those measured for $\mathbf{1 d}$ and $\mathbf{1 e},{ }^{14}$ in line with the A values ${ }^{18}$ of the $\mathrm{Pr}^{\mathrm{i}}, \mathrm{Bu}^{\mathrm{t}}$ and $\mathrm{Me}_{3} \mathrm{Si}$-groups (2.1, 4.9 and $2.5 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively). Note, however, that the van der Waals radius of $\mathrm{Me}_{3} \mathrm{Si}$ is similar ${ }^{19 a}$ or slightly larger ${ }^{19 b}$ than that of Bu^{t}. In a related study we have shown that due to its electronic effect a silyl substituent destabilizes (relative to methyl) the enol much less than it destabilizes its carbonyl analogue, ${ }^{20}$ and this prediction was indeed verified experimentally. ${ }^{20 a, 21}$

In this paper we apply several of the above mentioned criteria in order to estimate the 'size' of the 'supersilyl' group in a crowded molecular environment. The structure of the $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3}-$ Si-substituted enol 1 g was determined by X-ray crystallography and the correlated rotation barrier of the mesityl groups around the Mes-C bonds was determined. The studies were complemented by force-field calculations which were also used to determine the A value of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group.

Results

Synthesis.-2,2-Dimesityl-1-tris(trimethylsilyl)silylethenol 1g was prepared by the reaction of dimesitylketene ${ }^{22}$ with tris(trimethylsilyl)silyllithium. $3 \mathrm{THF}^{23}$ at room temperature [eqn. (1)]. The ${ }^{1} \mathrm{H}$ NMR spectrum of ig at room temperature in

$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ displays seven singlets: a $27 \mathrm{H}\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ signal at δ 0.14 , three methyl signals in a $2: 1: 3$ ratio at $\delta 2.11,2.18$ and 2.20 ascribed to $o-, p$ - and $o+p$-mesityl methyls, two 2 H signals at $\delta 6.78$ and 6.79 for the m-hydrogens of the two different mesityl rings and an OH signal at $\delta 6.14$.

Dynamic NMR Measurements.-When the temperature of a sample of 1 g in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ is lowered to 180 K decoalescence at both the Me and the aromatic region increases the number of signals to 12 at slow exchange. These include a broad $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{Si}$ singlet at $\delta 0.09$, six methyl singlets at $\delta .1 .60(o-)$, $1.70(o-), 2.11(p-), 2.14(p-), 2.43(o-), 2.51(o-)$, four aromatic singlets at $\delta 6.56,6.66,6.84$ and 6.93 and a hydroxy singlet at δ 7.25. When a solution of 1 g in $3: 7 \mathrm{CS}_{2}-\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was cooled to 150 K , broadening of the signal of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group was observed. This may indicate a slow rotation of the $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{Si}$ group at a low temperature, but complete decoalescence was not achieved.

On raising the temperature gradually to 320 K all the signals except for the OH signal broaden and those for the $m-\mathrm{H}$ and the o-Me coalesce. Four coalescence processes were observed, two at the methyl region and two at the aromatic region. Pairs of signals undergoing coalescence were identified by saturation transfer. ${ }^{24}$ The signals at $\delta 1.60$ and 2.43 pertain to one ring and those at $\delta 1.70$ and at 2.51 to the other. The two pairs of methyl signals coalesce at close temperatures, whereas those for the two pairs of the aromatic protons coalesce at the same temperature. The rate constant k_{c} at the coalescence temperature T_{c} was calculated from the Gutowsky-Holm approximation ${ }^{25}$ and the rotation barrier $\Delta G_{\mathrm{c}}^{\ddagger}$ was calculated from the Eyring equation. The data are given in Table 1 and the spectral changes at the aromatic region which show two coalescence processes are plotted in Fig. 1. As the temperature is raised above the coalescence temperature the average peaks display temper-ature-dependent shifts to different extents and the two resolved

Fig. 2 Numbering scheme for the atoms in the ORTEP stereoview drawing of compound $\mathbf{1 g}$. The four silicon atoms and the enolic oxygen have been picked out for ease of reference.

Fig. 3 Comparison of the main (experimental) structural parameters for enols $1 \mathrm{~g}\left[\mathrm{R}=\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}\right]$ and $1 \mathrm{e}\left(\mathrm{R}=\mathrm{Bu}^{t}\right)$. Values for the latter are given in parentheses.
signals appearing at 291.6 K merge to a single signal at 305 K [Fig. $1(e),(f)$]. We also note that the signals shift with temperature as shown for the non-coalescing p-Me signals. The most significant temperature-dependent shift is of the OH group which shifts from $\delta 6.14$ (180 K) to 7.25 (295 K). Consequently, the positions of the average signals after coalescence are not at the average δ value of the coalescing signals at slow exchange.
X-Ray Structure of Compound 1g.-The atom numbering scheme of $\mathbf{1 g}\left[\mathrm{R}=\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}\right]$ is given in the ORTEP stereoview drawing (Fig. 2). Tables of atomic coordinates, bond lengths and bond angles, and thermal parameters have been deposited at the Cambride Crystallographic Data Centre. \dagger

The main features of the X-ray data of 1 g are detailed below. As the most relevant structure comparison is with $1 \mathbf{e}\left(\mathrm{R}=\mathrm{Bu}^{t}\right)$, we collect in Fig. 3 the main geometrical parameters of $1 \mathbf{e}$ and $\mathbf{1 g}$: (a) The structure of $\mathbf{1 g}$, as that of other diarylvinyl systems ${ }^{15}$ is a propeller-type with a Mes- $\mathrm{C}=\mathrm{C}$ torsional angle of 63.3° for the β-ring (cis to the Si) and 59.6° for the β^{\prime}-ring (trans to the Si). The former angle is practically identical with that of 63.7° for $\mathbf{l e}$, while the latter is larger (66.0°) for $\mathbf{1 e}$. The $\mathrm{O}-\mathrm{H}$ and the $\mathrm{C}=\mathrm{C}$ moieties are essentially syn-coplanar [the torsional $\mathrm{C}(2) \mathrm{C}(1) \mathrm{OH}$ angle $\left.=1.9^{\circ}\right]$. (b) The widest bond angle of 133.8° is found for $\mathrm{C}(2) \mathrm{C}(1) \mathrm{R}$. This is the largest known bond angle for enols $\left[133.2^{\circ}\right.$ in $\left.1 \mathbf{e}\left(\mathrm{R}=\mathrm{Bu}^{t}\right)\right] \cdot{ }^{14,15}$ (c) The smallest bond angle around the double bond is $\mathrm{RC}(1) \mathrm{O}$, which is 104.6° for $\mathbf{1 g}$ (107.4° for 1 e). ${ }^{14}$ (d) The β-MesC(2) β^{\prime}-Mes and the β^{\prime} $\mathrm{MesC}(2) \mathrm{C}(1)$ bond angles in both enols $\mathbf{1 e}$ and $\mathbf{1 g}$ differ by only
\dagger For details of the deposition scheme, see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 2, 1994, Issue 1.
$1-1.9^{\circ}$ while the β-Mes $\mathrm{C}(2) \mathrm{C}(1)$ angle and the $\mathrm{C}(2) \mathrm{C}(1) \mathrm{O}$ angle are 2.9° smaller and 2° larger, respectively for $\mathbf{1 g}$. (e) The $\mathrm{C}(1)-$ $\mathrm{C}(2)$ bond length is longer by $0.02 \AA$ in 1 e than in 1 g . (f) The $=\mathrm{C}$-Si distance is $1.94 \AA$. This value is $0.08 \AA$ longer than the value in vinylsilane $2,{ }^{26 a} 0.01-0.02 \AA$ longer than in the less congested tetrasilylethylenes $3^{36 b}$ and $4^{26 c}$ but $0.02 \AA$ shorter than in the apparently more congested 1,2 -disilylethylene $5 .{ }^{26 d}$ (g) The torsional bond angle of the double bond $[\mathrm{OC}(1) \mathrm{C}(2)-$ $\mathrm{C}(3)]$ is 9.2°.

Force-field Calculations.-Method. The force-field calculations were carried out with the MacroModel program ${ }^{27}$ which uses the MM2* force-field which treats electrostatics and conjugation differently ${ }^{28}$ than the original MM2. ${ }^{29}$ There are also some small differences in the parameters of the MM2 and MM2* force-field and they are responsible for the small differences found between various geometrical values reported in Table 2 and those reported previously by some of us ${ }^{14}$ using the MM2 (85) force-field. In some of the studied cases 'highquality' optimized parameters do not exist and we have used the recommended 'low-quality' parameters [e.g. 109.5° for the CSiSi bond angle in the $\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{Si}\right.$ fragment]. ${ }^{27} \mathrm{We}$ find that in general, the MM2* results are in better agreement with experiment than the MM2 results (see below). The MM2* calculated rotation barriers of the mesityl groups in 1a-1h are reported in Table 3 together with the available experimental values.

Structures and rotation barriers of enols 1. The MM2* forcefield method was used for calculating the ground state geometries of 1 and the rotation barriers for the correlated rotation of the mesityl rings. The main geometrical parameters of the ground states of enols 1 , which include bond angles around the double bond, bond lengths to $C(1)$ and $C(2)$, the mesityl- $\mathrm{C}=\mathrm{C}$ torsional angles φ_{1} and φ_{2} and the $\mathrm{C}=\mathrm{C}-\mathrm{O}-\mathrm{H}$ torsional angles, as well as the definitions of the geometrical parameters are given in Table 2.

Table 2 also contains the experimental parameters for all the enols (except for $\mathbf{1 f}$ and $\mathbf{1 h}$) in the solid state. ${ }^{14}$ The calculated parameters given in Table 2 are for both the syn and anti conformers, with regard to the $\mathrm{C}=\mathrm{C}-\mathrm{O}-\mathrm{H}$ dihedral angle. The energy differences between the conformers are not large (Table 2) and the changes in the geometrical parameters upon rotation around the $=\mathrm{C}-\mathrm{OH}$ bond are minor and therefore they will not affect our analysis.

The geometrical parameters for 1a-1e were previously

Table 2 Calculated (MacroModel, V3.5X, MM2*) and experimental (in parentheses) bond angles, torsional angles and bond lengths for enols 1^{a}

R	Angle (deg)									
	α_{1}	α_{2}	α_{3}	α_{4}	α_{5}	α_{6}	φ_{1}	φ_{2}	$\varphi^{\text {b }}$	$\Delta(s-a)^{c}$
H	$\begin{gathered} 120.0 \\ (118.1)^{f} \end{gathered}$	$\begin{gathered} 120.5 \\ (121.0)^{f} \end{gathered}$	$\begin{gathered} 119.5 \\ (120.8)^{f} \end{gathered}$	$\begin{gathered} 119.7 \\ (118.1)^{f} \end{gathered}$	$\begin{gathered} 114.9 \\ (118.7)^{f} \end{gathered}$	$\begin{gathered} 125.4 \\ (123.0)^{s} \end{gathered}$	$\begin{gathered} 57.6 \\ (56.7)^{f} \end{gathered}$	$\begin{gathered} 50.7 \\ (50.2)^{f} \end{gathered}$	$5.2,{ }^{d} 165.8^{e}$ g	-1.78
Me	$\begin{gathered} 121.9 \\ (121.8) \end{gathered}$	$\begin{gathered} 119.0 \\ (118.2) \end{gathered}$	$\begin{gathered} 119.1 \\ (119.9) \end{gathered}$	$\begin{gathered} 123.3 \\ (126.0) \end{gathered}$	$\begin{gathered} 114.1 \\ (112.4) \end{gathered}$	$\begin{gathered} 122.6 \\ (121.6) \end{gathered}$	$\begin{gathered} 56.5 \\ (57.5) \end{gathered}$	$\begin{gathered} 59.8 \\ (55.7) \end{gathered}$	$5.6{ }^{d} 136.5^{e}$	0.54
Et	$\begin{gathered} 121.7 \\ (119.9) \end{gathered}$	$\begin{gathered} 118.5 \\ (120.6) \end{gathered}$	$\begin{gathered} 119.7 \\ (119.4) \end{gathered}$	$\begin{gathered} 123.3 \\ (127.4) \end{gathered}$	$\begin{gathered} 113.3 \\ (109.0) \end{gathered}$	$\begin{gathered} 123.5 \\ (123.4) \end{gathered}$	$\begin{gathered} 57.2 \\ (59.7) \end{gathered}$	$\begin{gathered} 61.0 \\ (58.3) \end{gathered}$	$\begin{aligned} & 6.3,{ }^{d} 137.9^{e} \\ & h \end{aligned}$	0.55
$\mathrm{Pr}^{\text {i }}$	$\begin{gathered} 121.7 \\ (120.4) \end{gathered}$	$\begin{gathered} 118.4 \\ (121.2) \end{gathered}$	$\begin{gathered} 119.8 \\ (118.4) \end{gathered}$	$\begin{gathered} 123.0 \\ (127.7) \end{gathered}$	$\begin{gathered} 113.6 \\ (110.0) \end{gathered}$	$\begin{gathered} 123.2 \\ (121.8) \end{gathered}$	$\begin{gathered} 57.3 \\ (62.8) \end{gathered}$	$\begin{gathered} 63.3 \\ (60.1) \end{gathered}$	$\begin{aligned} & 5.1,{ }^{d} 129.6^{e} \\ & h \end{aligned}$	0.24
Bu^{t}	$\begin{gathered} 125.4 \\ (125.4) \end{gathered}$	$\begin{gathered} 116.4 \\ (116.3) \end{gathered}$	$\begin{gathered} 118.2 \\ (118.3) \end{gathered}$	$\begin{gathered} 128.8 \\ (133.2) \end{gathered}$	$\begin{gathered} 111.2 \\ (107.4) \end{gathered}$	$\begin{gathered} 120.7 \\ (119.2) \end{gathered}$	$\begin{gathered} 57.2 \\ (66.0) \end{gathered}$	$\begin{gathered} 68.9 \\ (63.7) \end{gathered}$	$\begin{aligned} & 8.0,{ }^{d} 137.5^{e} \\ & h \end{aligned}$	0.26
$\mathrm{Me}_{3} \mathrm{Si}$	122.6	118.4	118.9	127.9	108.4	123.6	56.9	67.8	$\begin{aligned} & 5.2,{ }^{d} 142.1^{e} \\ & h \end{aligned}$	-1.06
$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$	$\begin{gathered} 126.9 \\ (122.5) \end{gathered}$	$\begin{gathered} 115.2 \\ (117.3) \end{gathered}$	$\begin{gathered} 117.8 \\ (120.2) \end{gathered}$	$\begin{gathered} 132.4 \\ (133.8) \end{gathered}$	$\begin{gathered} 107.1 \\ (104.6) \end{gathered}$	$\begin{gathered} 120.6 \\ (121.2) \end{gathered}$	$\begin{gathered} 60.2 \\ (59.6) \end{gathered}$	$\begin{gathered} 67.4 \\ (63.3) \end{gathered}$	$\begin{aligned} & 6.0,{ }^{d} 141.0^{e} \\ & h \end{aligned}$	-1.36
$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$	129.2	110.3	120.5	135.0	110.2	114.8	61.4	68.0	$8.2,{ }^{\text {d }} 132.5{ }^{\text {e }}$	-2.46

	Bond length (\AA)					
	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}-\mathrm{O}$	$=\mathrm{C}-\mathrm{Mes}(\beta)$	$=\mathrm{C}-\mathrm{Mes}\left(\beta^{\prime}\right)$	$=\mathrm{C}-\mathrm{R}$	
H	1.345	1.360	1.509	1.507	1.103	
	$(1.326)^{f}$	$(1.372)^{f}$	$(1.501)^{f}$	$(1.506)^{f}$		
Me	1.350	1.365	1.508	1.511	1.513	
	(1.311)	(1.371)	(1.492)	(1.515)	(1.51)	
Et	1.350	1.365	1.509	1.511	1.518	
	(1.329)	(1.371)	(1.511)	(1.500)	(1.49)	
Pr^{i}	1.351	1.365	1.510	1.513	1.524	
	(1.359)	(1.371)	(1.505)	(1.493)	(1.494)	
Bu^{t}	1.354	1.369	1.508	1.520	1.541	
	(1.350)	(1.391)	(1.511)	(1.516)	(1.519)	
$\mathrm{Me}_{3} \mathrm{Si}$	1.349	1.363	1.507	1.514	1.881	
$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$	1.351	1.367	1.509	1.519	1.890	
$\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{C}\right.$	(1.33)	(1.39)	(1.47)	(1.53)	(1.94)	

${ }^{a}$ Experimental values are from ref. 14. ${ }^{b}$ The $\mathrm{C}=\mathrm{C}-\mathrm{O}-\mathrm{H}$ angle. ${ }^{c} \Delta(s-a)=$ energy difference (in kcal mol ${ }^{-1}$) between the syn and anti conformers. A negative value indicates that the syn conformer is more stable. ${ }^{d}$ syn Conformer. ${ }^{e}$ anti Conformer. ${ }^{f}$ Average of values for four crystallographically different molecules. ${ }^{g}$ Only the structure of the ethanolate $(1 \cdot \mathrm{EtOH})$, where the $\mathrm{C}=\mathrm{C}-\mathrm{O}-\mathrm{H}$ conformation is anti, was determined. ${ }^{h} \mathrm{The}$ conformation of the $\mathrm{C}=\mathrm{C}-\mathrm{O}-\mathrm{H}$ moiety is syn.

Table 3 Experimental and calculated barriers ($\mathrm{kcal} \mathrm{mol}^{-1}$) for the two-ring flips in enols $\mathrm{Mes}_{2} \mathrm{C}=\mathrm{C}(\mathrm{OH}) \mathrm{R} 1$

Compound	R	$\Delta G_{\text {exp }}^{\ddagger}{ }^{a}$	$\Delta E_{\text {calc }}{ }^{\mathrm{b}}$
$\mathbf{1 a}$	H	14.2	$14.6(16.4)$
$\mathbf{1 b}$	Me	12.5	$13.0(9.1)$
$\mathbf{1 c}$	Et	12.0	12.9
$\mathbf{1 d}$	$\mathrm{Pr}^{\mathbf{i}}$	11.7	12.5
$\mathbf{1 e}$	Bu^{t}	10.4	10.7
$\mathbf{1 f}$	$\mathrm{Me}_{3} \mathrm{Si}$	11.1	11.6
$\mathbf{1 g}$	$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$	10.2	10.3
$\mathbf{1 h}$	$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$	c	8.0

${ }^{a}$ Experimental data (referred to in the text as ΔG^{\ddagger}) for the first five enols are from ref. 14, for $\mathrm{R}=\mathrm{SiMe}_{3}$ from ref. 17 and for $\mathrm{R}=$ $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ from the present work. ${ }^{b}$ Calculated with the MM2* forcefield. Values in parentheses are those reported in ref. $14 .{ }^{c}$ Not available.
calculated by the MM2 (85) program, and while the differences from the present calculations are small, it is noteworthy that the present calculated values are generally closer to the observed values. A consistent, although small difference between the calculated and observed values is found for α_{4}-the widest
bond angle-for the R alkyl groups. The calculated values are lower by $2.7-4.7^{\circ}$ than the observed values. However, the difference is smaller, being only 1.4° for $1, R=\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$.
The transition state energies for mesityl ring rotations were calculated for conformations where both rings were perpendicular to the double bond. All other parameters were fully optimized. In some cases, deviations of the aromatic rings from planarity of up to 4.5° were noted. However, as the resulting changes in energy were very small, the results reported in the tables are for the planar ring structures. Much larger deviations from ring planarity were found when the MM2 force-field was used. ${ }^{14}$
The calculated rotation barriers, $\Delta E_{\text {calc }}$, which are the differences in steric energies of the ground state and the transition state for each enol are given in Table 3, together with the experimentally measured ΔG^{\ddagger} values for the two-ring flips. ${ }^{14}$
Also reported are the previously calculated (MM2) rotation barriers for $\mathbf{1 a}$ and $\mathbf{1 b}$. The agreement between the calculated and observed rotation barriers is very good, except that the calculated rotation barriers are consistently higher than the experimental ones by a fraction $(0.1-0.9)$ of a $\mathrm{kcal} \mathrm{mol}^{-1}$. The new calculated rotation barriers (MM2*) for 1a and 1b are

Table 4 Experimental and calculated (MM2* and MM2, kcal mol ${ }^{-1}$) A values of alkyl and silyl substituents

R	$A_{\text {exp }}{ }^{\text {a }}$	$\begin{aligned} & A_{\text {cilc }} \\ & \text { (MM2*) } \end{aligned}$	$\begin{aligned} & A_{\text {calc }} \\ & \text { (MM2) } \end{aligned}$	$A_{\text {calc }}($ lit.)
Me	1.74	1.78	1.78	$1.77^{\text {b,c }}$
Et	1.79	1.82	1.82	$1.87{ }^{\text {b,c }}$
Pr ${ }^{1}$	2.21	1.72	1.72	$2.05^{\text {b,c }}$
But	4.7, 4.9	5.00	4.99	$5.41{ }^{\text {b,c }}$
SiH_{3}	1.45, 1.52	0.95	0.94	$1.26,{ }^{c} 1.08{ }^{\text {d }}$
$\mathrm{Me}_{3} \mathrm{Si}$	2.5	2.59	2.49	$3.41{ }^{\text {b }}$
$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$	e	4.89	4.83	e
$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$	e	13.3	10.76	e

${ }^{a}$ Values from ref. $31(a) .{ }^{b}$ R. J. Ouellette, D. Baron, J. Stolfo, A. Rosenblum and P. Weber, Tetrahedron, 1972, 28, 2163. ${ }^{\text {c }}$ N. L. Allinger, J. A. Hirsch, M. A. Miller, I. J. Tyminski and F. A. Van Catledge, J. Am. Chem. Soc., 1968, 90, 1199. ${ }^{\text {d R. J. Unwalle, S. Prefeta, }}$ Jr. and F. C. Catledge, J. Org. Chem., 1988, 53, 5658. The ab initio calculated value at $\mathrm{MP} 3 / 3-21 \mathrm{G}^{*} / / 3-21 \mathrm{G}^{*}$ is $1.13 \mathrm{kcal} \mathrm{mol}^{-1}$.
${ }^{e}$ Not available.

Table 5 Experimental and calculated (MM2*, kcal mol^{-1}) $=\mathrm{C}-\mathrm{Si}$ bond lengths of vinyl-Si derivatives

	$=\mathrm{C}-\mathrm{Si}(\AA)$			
Compound	Exp. (ref.)	Calc.		
$\mathbf{2}$	$1.853^{26 a, a}$	1.873		
$\mathbf{3}$	$1.915^{26 b}$	1.897		
$\mathbf{4}$	$1.915,1.926^{26 c}$	1.907		
$\mathbf{5}$	$1.956^{26 d}$	1.887		
$\mathbf{1 g}$	1.94	1.890		

${ }^{a}$ From microwave determination.
much closer to the experimental ones than those previously calculated by MM2. ${ }^{14}$ Since the calculated values are activation enthalpies $\left(\Delta H^{t}\right)$ while the measured rotation barriers are activation free energies (ΔG^{\ddagger}), the good agreement between the calculated and experimental values may indicate only a small experimental contribution of ΔS^{\ddagger} to the rotation barriers. Indeed, a ΔS^{\ddagger} of $c a$. 0 was measured for the mesityl rotation in the more crowded tetramesitylethylene. ${ }^{30}$
\boldsymbol{A} values. The \boldsymbol{A} values, defined as the free energy difference between equatorial and axial substituents on a cyclohexane ring, ${ }^{31}$ for the six R groups of $\mathbf{1 b - 1 g}$ and for SiH_{3} and $\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{C}\right.$ were calculated from the computed MM2* differences between the steric energies of the axial and equatorial R groups in cyclohexane. Owing to the central role of A values in discussions of steric effects and substituent 'sizes' we have calculated the A values also with the MM2 force-field which has previously been used extensively in the literature. ${ }^{32}$ The calculated \boldsymbol{A} values by both MM2* and MM2 together with the available experimental values and several older calculated values from the literature are given in Table 4.
$=\mathrm{C}-\mathrm{Si}$ Bond lengths. The MM2* computed $=\mathrm{C}-\mathrm{Si}$ bond length in 1 g is $c a .0 .05 \AA$ shorter than the experimental value (Table 2). In order to find out if this is due to a deficiency of the MM2* force-field, the $=\mathrm{C}-\mathrm{Si}$ bond lengths for compounds 2-5 were also computed by MM2*. Comparison of the calculated values and the experimentally determined bond distances (Table 5) indicates lower calculated values (except for 2), up to a $0.07 \AA$ shorter bond length in the highly congested 5 .

Discussion

The Rotation Mechanism for Compound $\mathbf{1 g}$.-Three conclusions are derived from the data of Table 1. First, the activation free energy for rotation of the two mesityl rings in
$\mathbf{1 g}$, as measured by two probes for each ring are the same, $10.2 \pm 0.1 \mathrm{kcal} \mathrm{mol}^{-1}$. Although this can result from two consecutive one-ring flips which have similar rotation barriers, it is more likely that this is due to a single correlated two-ring flip of the two rings. The arguments supporting the two-ring flip mechanism are similar to those discussed previously for other systems $1,{ }^{12,17}$ and the very good agreement between the observed barriers and the force-field calculated ones for both $1 f$ and 1 g fully support this conclusion. The transition state for the enantiomerization is shown in eqn. (2), where -1 represents a mesityl ring perpendicular to the $\mathrm{C}=\mathrm{CO}$ plane.

Second, the rotation barrier of $10.2 \mathrm{kcal} \mathrm{mol}^{-1}$ in 1 g is lower by $0.9 \mathrm{kcal} \mathrm{mol}^{-1}$ than the barrier in $\mathbf{1 f}$, the analogue with the 'smaller' $\alpha-\mathrm{Me}_{3} \mathrm{Si}$ substituent. Third, this rotation barrier is slightly smaller, although within the combined experimental errors, than the value for the α-tert-butyl analogue 1e, for which $\Delta G_{\mathrm{c}}^{\ddagger}=10.4 \mathrm{kcal} \mathrm{mol}^{-1} .{ }^{14}$ The calculations are in full agreement. The calculated barrier for the two-ring flip in 1 g is 10.3 kcal mol^{-1}, by 1.3 and $0.4 \mathrm{kcal} \mathrm{mol}^{-1}$ lower than in $1 f$ and 1 e , respectively. This agreement is noteworthy in view of the fact that the calculated $=\mathrm{C}-\mathrm{Si}$ bond distance in $\mathbf{1 g}$ is much shorter than the experimental value.
The interpretation of the two above-mentioned rotation barriers depends on the ground state geometries of $\mathbf{1 e}, 1 \mathrm{f}$ and $\mathbf{1 g}$, since the α-R-substituent exerts severe steric distortions on the systems, especially by affecting the Mes- $\mathrm{C}=\mathrm{C}$ torsional angles. The experimental Mes- $\mathrm{C}=\mathrm{C}$ torsional angles for $1 \mathrm{e}\left(66.0,63.7^{\circ}\right.$) are somewhat higher than for $\lg \left(59.6,63.3^{\circ}\right)$, whereas the calculated values for these molecules are even closer (Table 2). In the absence of X-ray data for 1 If we compare the calculated torsional angles, which again do not differ much from those in 1g (1f: $56.9,67.8^{\circ} ; 1 \mathrm{~g}: 60.2,67.4^{\circ}$). We conclude that the difference in the steric effect of the Bu^{t} and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ groups on the torsional angles in 1 is small, but that these small differences can partially account for the small differences in their $\Delta G_{\mathrm{c}}^{\ddagger}$ values.
E_{s} Value for the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ Group.-Assuming that the previously observed linear relationship between ΔG_{c}^{\ddagger} for the two-ring flip and the steric parameter E_{s} of an $\alpha-\mathrm{H}$ and α-alkyl substituents in 1 (Fig. 4) also holds for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$, the calculated E_{s} value for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ value from this plot is $c a$. -1.6 . This value is very similar to the E_{s} value of the Bu^{t} group (-1.54), which is not surprising since the $\Delta G_{\mathrm{c}}^{\ddagger}$ values for Bu^{t} and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ are almost the same. This value is much smaller than the E_{s} values for $\mathrm{Me}_{2}\left(\mathrm{Bu}^{1}\right) \mathrm{C}$ or $\mathrm{Et}_{3} \mathrm{C}$ (-3.9 and -3.8 , respectively ${ }^{16}$) although formally, i.e. by counting the number of methyl groups and taking into account its symmetry,

Fig. 4 Estimation of the E_{s} value for the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group from a plot of $\Delta G_{\mathrm{c}}^{\ddagger} v s$. E_{s}

Fig. 5 Estimation of the E_{s} value for the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group from a plot of $\cos \varphi_{2} v s . E_{\mathrm{s}}$
$\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{Si}\right.$ should be much bulkier and hence should have a larger E_{s}.

Another approach for estimating the E_{s} value of $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{Si}$ is based on the linear correlation observed between $\cos \varphi_{2}$ in enols 1a-le and $E_{\mathrm{s}}{ }^{12 a}$ When the observed $\cos \varphi_{2}$ value for 1 g is added to the plot in Fig. 5, an E_{s} value of -1.32 is obtained. Again, the bulk of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group in the ground state does not differ much from that of the Bu^{t} group. The average E_{s} value of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group from the two approaches is -1.46 .

A manifestation that alkyl and silyl substituents obey the same correlation is that the point for 1 g perfectly fits the line of the linear $\Delta G_{\mathrm{c}}^{\mathrm{t}}$ vs. α_{4} plot (not shown) for enols 1a-1e.

We conclude that both the structural data for 1 g and the barrier in the correlated two-ring flip rotation of the dimesitylvinyl moiety indicate that in the molecular environment of 1 the steric bulk of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ and the $\mathrm{Me}_{3} \mathrm{C}$ groups is very similar and much smaller than might have been deduced from the van der Waals bulk of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$.

A Values.-Another parameter related to the 'size' of groups is their A value. Since the A values are based on axial-equatorial equilibria of cyclohexyl-R derivatives the experimental range of values accessible is not large and values for bulky groups are lacking.

Comparison of our calculated A values with the experimentally available values (Table 4) indicate that the calculations well reproduce the latter values. Most interesting are the calculated values (in kcal mol^{-1}) for $\mathrm{Me}_{3} \mathrm{Si}(2.59)$ and Bu^{t} (5.00) which agree very well with the experimental values of 2.5 and 4.9, respectively. This excellent agreement gives confidence in the calculated value for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ of 4.89 which is practically identical with that of Bu^{t}. Consequently, similarly to systems 1, when attached to cyclohexane, the $\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{Si}\right.$ group displays a significantly larger 'size' than that of $\mathrm{Me}_{3} \mathrm{Si}$ and close to that of $\mathrm{Me}_{3} \mathrm{C}$.
E_{s} and A Values for the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ Group.-The $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ group, the 'trisyl' group, ${ }^{33}$ is another silicon-containing 'bulky substituent' which has attracted recently considerable interest. ${ }^{33-35}$ In particular, Eaborn and co-workers have used the 'trisyl' group extensively in their studies aimed at generating silicenium ions and stable methyl-bridged siliconium ions. ${ }^{33 a}$ Most recently the organic chemistry of simple 'trisyl' derivatives of the type $\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{CX}(\mathrm{X}=\right.$ halogen $)$ was studied ${ }^{33 b}$ and the X -ray structure of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CK}$ was reported. ${ }^{34}$ In view of this interest we have included also the 'trisyl' group in our computational study, but no attempt was made to synthesize the highly strained $\mathbf{1 h}$.
The calculated structure of $\mathbf{1 h}$ (Table 2) indicates that the high steric crowding leads to extreme bond angles and bond lengths. Only α_{3} has a regular sp^{2} value of $c a .120^{\circ}$. Both α_{1} and α_{4}, which are on the same side of the double bond, are substantially widened (to 129.2 and 135.0°, respectively), mostly at the expense of the bond angles α_{2} and α_{5} between the geminal substituents, which have values close to 110°. All the bonds, especially the $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{R}$ bonds are significantly elongated compared with their calculated distances in the other enols. Surprisingly, the Mes- $\mathrm{C}=\mathrm{C}$ torsional angles and the double bond torsional angle $[\mathrm{OC}(1) \mathrm{C}(2) \mathrm{C}(3)]$ are only slightly higher than those calculated for $\mathbf{1 g}$.

The calculated \boldsymbol{A} value for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ is 13.3 , much higher than the value for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$, reflecting mainly the much shorter bond ($\mathrm{C}-\mathrm{C}$ vs. $\mathrm{C}-\mathrm{Si}$) between the substituent and cyclohexyl ring.

It is interesting to note that the A values calculated with MM2* and MM2 are very similar for all substituents R, except for $\mathrm{R}=\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ for which the MM2 value $\left(10.8 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ is significantly smaller than the MM2* value ($13.3 \mathrm{kcal} \mathrm{mol}^{-1}$). However, the actual A value of $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ might be even higher than $13.3 \mathrm{kcal} \mathrm{mol}^{-1}$ as the calculated MM2* C -Si distances are somewhat too long. For example, the bond length of $1.905 \AA$ calculated for $(\mathrm{H}) \mathrm{C}-\mathrm{Si}$ in $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{CH}$ is by $0.017 \AA$ longer than the measured value. ${ }^{36}$

The high calculated A value for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ raises interest in the unavailable E_{s} value for this group, which can be roughly estimated from our calculations. From the excellent correlation ($r=0.9961$) between the MM2* calculated activation energies (ΔE) for the correlated rotation of the mesityl rings of $\mathbf{1 a - 1 g}$ and the E_{s} values of R (Fig. 6) and the calculated ΔE value for $\mathrm{Mes}_{2} \mathrm{C}=\mathrm{C}(\mathrm{OH}) \mathrm{C}\left(\mathrm{SiMe}_{3}\right)_{3}, E_{\mathrm{s}}$ for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ is -3.6 . From the fair correlation ($r=0.9581$, not shown) between the calculated α_{4} and $E_{s}, E_{s}\left[\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{C}\right]=-3.8\right.$. We believe that the average value, i.e. -3.7 , can be taken as a reasonable estimate for the E_{s} value of the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ group. This E_{s} value is much larger than E_{s} for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}(-1.46)$ and similar to the values for $\mathrm{Et}_{3} \mathrm{C}$ (-3.9) and $\mathrm{Me}_{2}\left(\mathrm{Bu}^{t}\right) \mathrm{C}(-3.8){ }^{16}$

The fact that the A and E_{s} values for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{C}$ are much larger than for $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ is consistent with the recently reported cone angles $(\theta)^{37 a}$ of these groups $\left(\theta=216\right.$ and 199°, respectively ${ }^{37 b}$). The very large calculated A and E_{s} values for the $\left(\mathrm{Me}_{3} \mathrm{Si}_{3}\right)_{3} \mathrm{C}$-group are consistent with the severe inhibition to bimolecular substitution that the trisyl group imposes at

Fig. 6 Plot of the calculated (MM2*) barriers ΔE for the two-ring flip $v s$. E_{s} values
silicon directly bonded to it. A dramatic example is the resistance of $\left(\mathrm{Me}_{3} \mathrm{Si}_{3} \mathrm{CSiCl}_{3}\right.$ to prolonged boiling in methanol and its lack of reactivity with organolithium reagents. ${ }^{35}$

Experimental

Preparation of 2,2-Dimesityl-1-tris(trimethylsilyl)silylethenol $\mathbf{1 g}$. $-\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{SiLi} \cdot 3 \mathrm{THF}^{23}(2.2 \mathrm{~g}, 4.7 \mathrm{mmol})$ in dry benzene ($20 \mathrm{~cm}^{3}$) was placed in a Schlenk flask under vacuum, and dimesitylketene ($1.17 \mathrm{~g}, 4.2 \mathrm{mmol}$) in dry benzene $\left(10 \mathrm{~cm}^{3}\right)$ was added. After stirring at room temperature for 2 h , saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(20 \mathrm{~cm}^{3}\right)$ was added to the mixture, the organic layer was separated and dried $\left(\mathrm{MgSO}_{4}\right)$, the volatile materials were evaporated under vacuum and then the crude product was isolated by column chromatography on silica gel with 10:1 hexane-diethyl ether as eluent. The major fraction was an oily product from which colourless crystals of the title compound 1 g ($1.5 \mathrm{~g}, 73 \%$) were separated in the cold and used for the X-ray analysis, m.p. $121-122^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) \quad 0.92[27 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}\right], 2.10,2.15,2.20(3 \times 3 \mathrm{H}, 3 \mathrm{~s}$, Mes-Me), 6.73, 6.80 ($2 \times 1 \mathrm{H}, 2 \mathrm{~s}$, Mes-H); $m / z(\mathrm{El}) 436\left(\mathrm{M}^{+}-\mathrm{Me}_{3} \mathrm{Si}\right)$ (Found: C, 67.3; H, 9.9. Calc. for $\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{OSi}_{4}$: C, 66.09; H, 9.56%).

Dynamic NMR Measurements.-These were conducted with a Bruker AMX-400 spectrometer operating at 400.13 MHz . Temperature measurements were based on the chemical shift separation of the protons of methanol and the use of known temperature shift correlations. ${ }^{38}$ The sample was equilibrated thermally at the reaction temperature for 15 min before measurements. Pairs of coalescing diastereotopic signals were assigned by saturation transfer at slow exchange.
X-ray Structure Determination of Compound $\mathbf{1 g}$.-Intensity was measured with a Philips PW1 100 four-circle diffractometer with graphite-monochromated Mo-K α radiation ($0.71069 \AA$) in the $\omega-2 \theta$ method. The crystal structure was solved and refined by SHELXS. ${ }^{39}$ The refinement procedure was carried in separate blocks; the heavy atoms, anisotropically in one, and the hydrogen atoms, isotropically with their atomic displacement parameters riding on their bonded heavy atoms in the other one.
$\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{OSi}_{4}$; colourless cubic crystals crystallize in monoclinic space group $C c ; a=23.503(10), b=16.894(8), c=$ 8.932(4) $\AA, \beta=110.64(2)^{\circ}, D_{\mathrm{x}}=1.04 \mathrm{~g} \mathrm{~cm}^{-3}$ for four molecules in the unit cell. At the end of the refinement the discrepancy factors are $R=0.090$ and $R_{\mathrm{w}}=0.093$ for 2324 observed reflections $\left[F_{\mathrm{o}}>3.0 \sigma\left(F_{\mathrm{c}}\right)\right]$.

Acknowledgements

In both Jerusalem and Haifa this work was supported by the United States-Israel Binational Science Foundation (BSF). At the Technion it was also supported by the Fund for Promotion of Research and the Research Fund of the Jewish Communities in Germany.

References

1 H. Försten and F. Vögtle, Angew. Chem., Int. Ed. Engl., 1977, 16, 429.
2 Y. Apeloig and A. Stanger, J. Am. Chem. Soc., 1985, 107, 2806.
3 A. D. Allen, R. Krishanmurti, G. K. Surya Prakash and T. T. Tidwell, J. Am. Chem. Soc., 1990, 112, 1291.

4 Y. Apeloig, R. Biton and A. Abu-Freih, J. Am. Chem. Soc., 1993, 115, 2522.
5 The first compounds containing the $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{Si}$ group were reported by Gilman and co-workers, see: (a) H. Gilman and C. L. Smith, J. Am. Chem. Soc., 1964, 86, 1454; J. Organomet. Chem., 1967, 8, 245; 1968, 14, 191; (b) H. Gilman and R. L. Harrell, J. Organomet. Chem., 1966, 5, 199.
6 (a) A term coined by H. Bock, see H. Bock, J. Meuret and K. Ruppert, Angew. Chem., Int. Ed. Engl., 1993, 32, 414; (b) S. P. Mallela, I. Bernal and R. A. Geanangel, Inorg. Chem., 1992, 31, 1616.
7 A. G. Brook, S. C. Nyberg, F. Abdosaken, B. Gutekunst, G. Gutekunst, R. Krishna, M. R. Kallury, Y. C. Poon, Y.-M. Chang and W. Wong-Ng, J. Am. Chem. Soc., 1982, 104, 5667.
8 (a) F. H. Elsner, H.-G. Woo and T. D. Tilley, J. Am. Chem. Soc., 1988, 110, 314; (b) M. House, V. Klingebiel, R. Boese and M. Polk, Chem. Ber., 1986, 119, 1117.
9 T. D. Tilley, in The Chemistry of Organic Silicon Compounds, eds. S. Patai and Z. Rappoport, Wiley, Chichester, 1989, ch. 24.

10 M. Ballestri, C. Chatgilialogu, K. B. Clark, D. Griller, B. Giese and B. Kopping, J. Org. Chem., 1991, 56, 678.

11 W. S. Sheldrick, in The Chemistry of Organic Silicon Compounds, eds. S. Patai and Z. Rappoport, Wiley, Chichester, 1989, ch. 3.
12 (a) S. E. Biali and Z. Rappoport, Acc. Chem. Res., 1988, 21, 442; (b) H. Hart, Z. Rappoport and S. E. Biali, in The Chemistry of Enols, ed. Z. Rappoport, Wiley, Chichester, 1990, ch. 8, pp. 481-590.
13 D. A. Nugiel and Z. Rappoport, J. Am. Chem. Soc., 1985, 107, 3669.
14 S. E. Biali, D. A. Nugiel and Z. Rappoport, J. Am. Chem. Soc., 1989, 111, 846.
15 M. Kaftory, D. A. Nugiel, S. E. Biali and Z. Rappoport, J. Am. Chem. Soc., 1989, 111, 8181.
16 O. Exner, in Correlation Analysis in Chemistry, eds. N. B. Chapman and J. Shorter, Plenum Press, New York, 1978, ch. 10, p. 473.
17 E. B. Nadler and Z. Rappoport, Tetrahedron Lett., 1991, 32, 1233.
18 (a) W. Kitching, H. Olszowy, C. M. Drew and W. Adcock, J. Org. Chem., 1982, 47, 5153; (b) F. R. Jensen and C. H. Bushweller, Adv. Alicyclic Chem., 1971, 3, 139; (c) J. A. Hirsch, Top. Stereochem., 1967, 1, 199.
19 (a)A. Bondi, J. Phys. Chem., 1964, 68, 441; (b) M. Charton, Top. Curr. Chem., 1983, 114, 57.
20 (a) E. B. Nadler, Z. Rappoport, D. Arad and Y. Apeloig, J. Am. Chem. Soc., 1987, 109, 7873; (b) Y. Apeloig, D. Arad and Z. Rappoport, J. Am. Chem. Soc., 1990, 112, 9131.

21 A. J. Kresge and J. B. Tobin, J. Am. Chem. Soc., 1990, 112, 2805; J. Org. Chem., 1993, 58, 2652.

22 R. C. Fuson, L. J. Armstrong, D. H. Chadwick, J. W. Kneisley, S. P. Ronald, W. J. Schenk, Jr. and G. F. Soper, J. Am. Chem. Soc., 1945, 67, 386.
23 G. Gutekunst and A. G. Brook, J. Organomet. Chem., 1982, 225, 1.
24 S. Forsen and R. A. Hoffman, J. Chem. Phys., 1963, 39, 2892; 1964, 40, 1189.
25 H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 1956, 25, 1228.
26 (a) J. M. O'Reilley and L. Pierce, J. Chem. Phys., 1961, 3, 1176; (b) H. Sakurai, Y. Nakadaira, H. Tobita, T. Ito, K. Toriumi and H. Ito, J. Am. Chem. Soc., 1982, 104, 300; (c) H. Sakurai, H. Tobita, Y. Nakadaira and C. Kabuto, J. Am. Chem. Soc., 1982, 104, 4288; (d) M. Weidenbruch, H. Flott, B. Ralle, K. Peters and H. G. von Schnering, Z. Naturforsch., B. Chem. Sci., 1983, 38, 1062.
27 MacroModel V3.5X, F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, C. Caufield, G. Chang, T. Hendrickson and W. C. Still, J. Comput. Chem., 1990, 11, 440.

28 All force field equations in MM2* are identical with those of MM2 except for the following: (1) The electrostatic equation: MM2* uses the partial charges/Coulomb's law whereas MM2 uses the bond dipoles/Jeans equation; (2) the out-of-plane bending equation:

MM2* uses an improper torsion while MM2 uses a pyramidalization distance; (3) the way conjugation is handled: MM2* uses specific $V_{1}-V_{3}$ torsional terms for various conjugated systems whereas MM2 uses an SCF π-calculation. Further information can be obtained from ref. 27 and the user's Manual of MacroModel.
29 N. L. Allinger, QCPE, see also: J. T. Sprague, J. C. Tai, Y. H. Yuh and N. L. Allinger, J. Comput. Chem., 1987, 8, 581; T. Liljefors, J. Tai, S. Li and N. L. Allinger, J. Comput. Chem., 1987, 8, 1051

30 E. Gur, Y. Kaida, Y. Okamoto, S. E. Biali and Z. Rappoport, J. Org. Chem., 1992, 57, 3689.

31 (a) E. L. Eliel, S. H. Wilen and L. N. Mander, Stereochemistry of Organic Compounds, Wiley, New York, 1994, 696-697; (b) J. March, Advanced Organic Chemistry, Wiley, New York, 4th edn., 1992, pp. 144-145.
32 U. Burket and N. L. Allinger, Molecular Mechanics, American Chemical Society, Washington, 1982.
33 (a) C. Eaborn, J. Organomet. Chem., 1991, 405, 173; (b) B. M. Clark, C. Eaborn and D. A. R. Happer, J. Chem. Soc., Perkin Trans. 2, 1994, 341.

34 C. Eaborn, P. B. Hitchcock, K. Izod, A. J. Jaggar and J. D. Smith, Organometallics, 1994, 13, 753.
35 S. S. Dua, C. Eaborn, D. A. R. Happer, S. P. Hopper, K. D. Safa and D. R. M. Walton, J. Organomet. Chem., 1979, 178, 75.

36 B. Beagley and R. G. Pritchard, J. Mol. Struct., 1982, 84, 129.
37 (a) C. A. Tolman, Chem. Rev., 1977, 77, 313; (b) M. Aggarwal, R. A. Geanangel and M. A. Ghuman, Main Group Met. Chem., 1991, 14, 263.
38 A. L. van Geet, Anal. Chem., 1968, 40, 2227; 1970, 42, 679.
39 G. M. Sheldrick, SHELXS-76, Program for Crystal Structure Determination, University of Cambridge, 1976.

Paper 4/02949F
Received 17th May 1994 Accepted 27th July 1994

